
An International Peer Reviewed Journal of Physical Science 

Acta Ciencia Indica, Vol. XLVIII-P, No. 1 to 4 (2022) 91 

COHESIVE ENERGY OF KnC60 DOPED SOLIDS  

S. CHANDRA, K. RANJAN AND V.K. JINDAL 

Department of Physics, Panjab University, Chandigarh – 160014, India 

 

We report cohesive energy calculations for doped KnC60 solids. 
Model calculations are presented for K1C60, K2C60, K3C60, K4C60 
and K6C60. In this work, the C60 molecule is modelled as a 
uniform spherical shell with appropriate surface density of 
carbon atoms, while the ionised alkali atoms, forming the cations 
are taken to be point charges. Part of the electrons freed by those 
ionised K atoms are distributed on the C60 molecule making it an 
anion, while the rest (say x) are assumed to form a delocalised 
electron gas. This electron gas screens the Coulomb interaction 
between the various anion and cations. We also account for on-
shell Coulomb repulsion between the electrons on the C60 shell. 
With these assumptions the total cohesive energy is calculated 
taking into consideration vander Waals and screened Coulomb 
interaction between different ions. On minimising the energy 
thus calculated with respect to x, the fraction of electrons 
forming electron gas, we find that x is zero i.e., total charge 
transfer from cation to anion is favoured. Thus ionic character of 
K doped C60 solids is established on the basis of the model. 
Comparison of the total energy thus obtained has been made 
with other calculations. We also show the phase instability of 
K2C60 system.  

Keywords : KnC60; Cohesive energy; Ionic solid, Bulk modulus; 
Structure. 

IIIINTRODUCTION 

Carbon has a variety of stable forms like diamond, graphite and nanotubes. Apart from 

this it has its own class of compounds known as organic compounds, which form the basis of 
life. 

Carbon has also the tendency to form clusters of various sizes. These clusters may 
contain minimum of about 11 and a maximum of 114 carbon atoms [1]. The closed cage 
nearly spherical molecule, C60—a cluster of 60 carbon atoms, and other related fullerene 
molecules have attracted a great deal of interest in recent years because of their unique 
structures and properties.  

The 60 carbon atoms in a C60 molecule are located at the vertices of a truncated 
icosahedron where all carbon sites are equivalent. A regular truncated icosahedron has 90 
edges of equal length, 60 equivalent vertices, 20 hexagonal faces and 12 additional pentagonal 
faces to form a closed shell. The boundary between a hexagon and its neighbouring pentagon 
is a single C–C bond and that between two hexagons is a double bond. The molecule is known 
to have a structure slightly deviating from the ideal truncated icosahedron, in that the single 
and double bonds have slightly different lengths i.e., 1.45 and 1.4 Å, respectively [2]. While 
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the bonding within a C60 molecule is covalent (mixture of sp2 and sp3), the interfullerene 
bonding in the solid is recognised to be of vander Waals type, making the solid C60 a loosely 
bound condensate. Hence, it is not surprising that the C60 molecules condense into a FCC 
solid, similar to the inert gas atoms. Because of the large size of fullerene molecules, the 
interstitial cavities in a C60 lattice are large too, and can accommodate various guest species. 
The free C60 molecule in its ground state electronic configuration has a completely filled 
HOMO level. The LUMO is split into two three-fold degenerate levels which get filled as the 
bucky-ball is charged with more and more electrons. When the pure C60 solid is doped with 

alkali metal (exohedral doping) MnC60 compounds are formed, where n can go up to 6 filling 

the above described levels [3]. The alkali metal doped C60 solid has attracted a great deal of 
attention as M3C60 systems (M represents alkali metal) were found to be superconducting with 

TC around 30 K or larger. Subsequently, M1xM23–xC60 (M1, M2 being different alkali metals) 

systems were extensively studied as it was found that TC can be increased considerably with a 
suitable M1–M2 combination. For these reasons, a lot of interest in structure and stability of 
these compounds was generated.  

We present model calculations for alkali metal doped C60 solids to find their cohesive 
energy and the ionic state of C60 molecule. Wide disparity in cohesive/ Madelung energy 
calculations [4–9] has made it an interesting problem. In fact, Schulte and Bohm have 
objected to the possibility of complete transfer of charge and thus to the formation of K3C60 as 
an ionic solid. But various experiments have verified K3C60 as a stable ionic system [10–11]. 
Not only K3C60 but total charge transfer takes place in K6C60 also [12]. However, in view of 
on-shell Coulomb repulsion, this is even less likely. Therefore, it becomes pertinent to enquire 
the ionic state of C60 molecule in alkali doped solids. We attempt to answer this question in 
the present paper. In doped C60 solids, there is little overlap between molecular wave 
functions on neighbouring C60, so the electrons are practically localised on C60 shell. The 
alkali metal atoms are completely ionised. This leads one to believe that even in K4C60 and 
K6C60 systems such calculations may suffice. However, since the on-shell Coulomb repulsion 
is large for the C60 molecule, as the charge on the anion is increased, the possibility of 
delocalisation develops. In the next section we describe the model used for our calculations. 
In Section 3 we describe numerical calculations. Results and discussion are presented in 
Section 4. 

MMMMODEL AND CALCULATIONS  

In this section we describe van der Waals and Coulomb interaction between various 

species. Structure of doped C60 solids, determination of van der Waals parameters, electron 
affinity of C60 and on-shell Coulomb repulsion have been discussed at length. 

2.1 Interactions between ions/atoms  

To calculate the potential energy of a system, one needs to take into account various 

interactions between constituent ions/atoms of the solid. Among the doped KnC60, the 
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structure of C60 sublattice changes from FCC to BCC as n increases. For n = 1 – 3 the 
structure is found to be FCC and for n = 4 and 6, BCT and BCC, respectively [9]. The dopant 
alkali ions (denoted by M in the formulae) occupy interstitial positions in these C60 lattices. 
The unit cell of each of these is shown in Fig. 1. In our calculations these experimentally 
observed structures enter as input in lattice sums. 

The C60 molecule, in our model, is taken to be completely rigid. This is justifiable since 
interactions within the solid are known to leave the bucky-ball undistorted [13]. In the pure 
C60 solid, the intermolecular (C60–C60) interaction is described well by a C–C potential of       
6-exp form given by Kitaigorodsky [13]: 

 
Fig. 1. Unit cells of Potassium doped C60 solids. The squares show various relevant  

cross-sections parallel to x–y plane. Open circles represent C60 ions and solid circles are K ions. 

     ( ) ( )
6

exp
A

V r Be r
r

= − + − α  ... (1) 

The first term in Eq. (1) is the attractive part, having its origin in van der Waals 

interaction, while the second term is the Born–Mayer repulsion. In MnC60 systems, however, 

the bonding is known to be mainly of the ionic type [2, 10–12]. When alkali atoms are 
diffused into the pure solid C60 (FCC lattice), they start taking up positions at the interstitial 
void sites—tetrahedral (T), of which these are eight per unit cell, or octahedral (O), of which 
these are four per unit cell. They also get ionised, becoming K+, while the C60 molecules 
acquire the electrons and become anions. The extent of anion formation depends upon the 
electron affinity (EA) of C60 and ionisation potential (EI) of the M atom. This interstitial site 
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filling goes on till the formula of the doped solid is M3C60. On induction of further alkali 
atoms into the matrix, the host lattice (of C60 molecules) distorts to present a BCT structure 
[14] till the formula is M4C60. Further diffusion of M into the lattice may be done till the 
system is M6C60 when the host lattice is BCC [15]. Although the system is not entirely 
insulating, the electron density around the large anion is sufficiently localised and an ionic 
type calculation is justified. 

 
Fig. 2. Variation of vander Waal's energy between two C60 molecules in discrete and shell model. The distance 

between two C60 molecules is in Å. 

 

Fig. 3 : Variation of Coulomb energy between two –3
60C   molecules in discrete and continuous models. The 

distance between two –3
60C  ions is in Å. 
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Fig. 4 : Variation of Coulomb energy between –3
60C  ion and K+ in discrete and continuous model. The 

tetrahedral and octahedral in discrete model are not visible distinctly. The distance is in Å. 

 

Fig. 5 : Variation of vander Waals energy between –3
60C  ion and K+ in discrete and continuous model. The 

tetrahedral and octahedral refer to two different directions from which K+ is approaching –3
60C  as discussed in 

the text. The distance is in Å. 



An International Peer Reviewed Journal of Physical Science 

96 Acta Ciencia Indica, Vol. XLVIII-P, No. 1 to 4 (2022) 

The C60 molecule, which acquires anything from 1 to 6 electrons in these systems, can be 
a heavily charged anion. This extra charge is expected to be distributed over the whole 
molecule. The n extra electrons may add to the electron clouds around the atom sites, or 
around single or double bond sites, and may even be non-uniformly distributed over the shell. 
However, we use a uniformly charged sphere model for Coulombic interactions of the anion. 
This approximation introduces very little error. The reason for this belief lies in comparison 
between the uniform charged sphere and discrete distribution (1/60th of electron) of charge on 
each of the 60 vertices of C60 molecule. We have calculated the van der Waals and Coulomb 

energy between two 3
60C−   ions assuming discrete C atoms and charges at the vertices and 

compare with same energies in the smeared shell model. vander Waals interaction energy 
(Fig. 2) is found to be dependent on distribution of carbon atoms on bucky-ball at distances 
less than 9Å , whereas Coulomb interaction (Fig. 3) is same for discrete model and shell 

model. We have also made a similar comparison of the interactions between 3
60C−  and a point 

charge M+. Fig. 4 shows the plot of Coulomb energy with M+ placed along two directions      

x-axis (octahedral) and (1, 1, 1) (tetrahedral), keeping C60 in ‘‘standard’’ orientation, and that 
with C60 as a uniformly charged sphere. From this figure it is clear that discrete distribution of 
charge does not make substantial difference in Coulomb energy as compared to uniform 
charged sphere model. In case of van der Waals interaction (Fig. 5), discrete model differs 

from shell model, but only at distances less than 6.5Å. In doped KnC60 systems the 

equilibrium nearest neighbour distance between a C60 molecule and K+ is about 6Å. The 
vander Waal interaction energy in discrete model differ (by about 2 kcal/ mol for each pair of 
interacting ions at a distance of about 6Å) from shell model for tetrahedral direction of alkali 
metal dopant. While computing the total energy of formula unit (M3C60) one tetrahedral      
M–C60 pair contribute so discrete model gives a difference of only 2 kcal/mol of total energy, 
which is about 330 kcal/mol and hence does not make a substantial difference. For octahedral 
direction no substantial difference in the vander Waals interaction energy has been seen when 
discrete and shell model are compared. Therefore, shell model which is simpler, is found to be 
more suitable.  

The interaction between a C60 anion and an alkali cation is predominantly of the Coulomb 
type or screened Coulomb type, screening depending upon the concentration of delocalised 

electrons. Apart from this, C-atoms on a C60 molecule and the M+ ion also interact via a 6-exp 

interaction (Eq. (1)). The parameters A, B and α for C-alkali interaction are chosen by us 
based on considerations described below. Two alkali cations also interact via Coulomb and 
van der Waals interactions, the latter being negligible. 

Effects of on-shell Coulomb correlations (or Hubbard parameter U) and incomplete 
charge transfer from cation to anion are considered in a subsequent section. 

2.2 Parameters of 6-exp interaction 

The van der Waals interaction between two carbon atoms are widely used in literature 
and whether one is using 6-exp or 6–12 potential, the parameters are readily available. Those 
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for interaction between C and alkali atoms are, however, not readily available. The interaction 
parameters [13] A, B and α are known for interactions between two carbon atoms (the C–C 

interaction). To find parameters for interaction between a C-atom and an alkali ion, we make 
use of alkali halide parameters [16]. For these pairs, we observe, 

     ( )1/2
1 2Z Z∝  ... (2a) 

and   

( )
8

1

21 2

0.0165 10 erg 2372.99k cal/mole
B

Z Z

−= × =  ... (2b) 

where Z is the number of electrons in the interacting anion/cation/atom. However, for carbon, 
Z = 6 and if we consider the value of parameter B given by Kitaigorodsky for C–C interaction, 
we find 

   

( )
8

1

21 2

0.0487 10 erg 7000k cal/mole
B

Z Z

−≈ × =  ... (2c) 

which is at variance with the value (Eq. (2b)) for alkali halides. This is, however, not 
surprising since electron distribution in a C-atom is quite different from an alkali or halide ion 
(where it is inert gas configuration). On the other hand, C atoms can be presumed to be like 
alkali or halide ions for this purpose, provided we attribute an effective charge, Zeff = 17.7 to 
them. Using this Zeff we get B values for K–C interactions. For K–K interaction Eq. (2b) may 
be used directly.  

If vander Waals radii of two ions are r1 and r2 then it is reasonable to expect the repulsive 

range parameter α to obey 

     
1 2

1

r r
α ∝

+
 ... (3a) 

Comparing again with the given α values for alkali halides, and using the known radii for 
these ions, we find 

     ( )1
1 20.11 r r−α ≈ +  ... (3b) 

Radius for K is 1.33 Å using which we obtain αKK. Kitaigorodsky has given αCC. We 
obtain αKC as the harmonic mean of αCC and αKK in accordance with Eq. (3).  

The parameter A is not that important because Madelung energy dominates van der Waals 
interaction energy. For completeness we determined A for K–C interaction as the one giving 
best fit to lattice constant data with B and α fixed as obtained above. Finally, K–K interaction 
parameter A is fixed from the criterion (see Appendix B) 

     ( )
1/2

.8786KC KK CCA A A≅  ... (3.9) 

In this way, we have estimated various parameters for K–K and K–C interactions. These 
parameters (A, B, and α) thus obtained for K–K and K–C interactions need further refinement. 
This is done by obtaining best fit to the experimental values of lattice parameters and bulk 
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modulus of K3C60. The refined parameters are presented in Table 1. It may be mentioned that 
the parameters A, B, α for K+ – K+ interactions have no major role in the determination of 
cohesive energy of doped C60 systems, as interactions between these small cations are 
dominated by Coulomb interaction. 

Table 1 : Interaction Parameters 

Atom-Atom A (kcal-Å6/mol) B (kcal/ mol) αααα (A–1) 

C-C 358 42000 3.58 

K-K 171 49138 3.62 

K-C 235 28370 3.50 

UUUUNIFORM SPHERE APPROXIMATION  

We have shown in Section 2.1, that orientation of C60 molecule is mostly unimportant. 

One can then replace the C60 molecule by a spherical shell [13], with 60 carbon atoms 
uniformly smeared over the shells. In order to do this for the 6-exp part of the potential of the 
interaction between two C60 molecules; we integrate the potential (Eq. (1)) over the surface of 

two spheres. While integrating, r
r

  is the position vector of surface area element ds from 

origin of ball b and  r
r

 is the position vector of surface area element ds' of ball b' from its own 

origin. S and S' are the surfaces of two balls of radius RB.  R
r

 is the position vector of the point 
alkali metal or ball bb' from the centre of ball b as the case may be: 
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R is the distance between the centres of the two bucky-balls, and RB is their radius. 
Similarly, the potential energy arising from van der Waals interaction between an alkali metal 
ion and a C60 molecule separated by a distance R is given by 

   ( )2
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60 exp( ) 1

cosh ( ) 1 sinh ( )B
B B

B
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R R

R R R

−α   + − α + + α  α α  
 

The vander Waals interaction between two alkali metal ions separated by distance R is of 
the same form as Eq. (1). 

     ( )
6

expKK
A

U B R
R

′ = − − − α  ... (6) 

EEEENERGY IN CHARGE STATES  

The C60 molecule, on acquiring extra electrons, becomes a large anion. The energy 

required to put one additional electron, which goes in the LUMO, is generally accepted to be 
–2.65 eV (the measured electron affinity, EA, of the C60 molecule is 2.65 eV). Addition of still 
more electrons, however, involves Coulomb repulsion between them. Thus the energy 
required to add m electrons on a C60 molecule may be taken to be of the form 

     
( )1

2m A
m m

E mE U
−

= +  ... (7) 

where U is an average pair wise Coulomb repulsion parameter. To determine appropriate 
values of EA and U, we make use of data [17], giving energies of various charge states of C60 
anion. The data fits to EA = –2.76 eV and U = 3 eV. When the anion is a part of solid, U gets 
modified to a value of 1.3 eV [18]. It is interesting to note that the energy required for a 
metallic sphere of radius 3.58 Å (same as that of C60 molecule) to be charged with n electrons 

is 
( )1n n

r

−
, which corresponds to U ≅ 4 eV, not very different from the LDA calculations 

[17]. We use well established values of EA = 2.65 eV and U = 1.3 eV in our calculations.  

MMMMODEL FOR IONIC CHARACTER 

In the system under consideration m in Eq. (7) can go up to 6, so the Coulomb energy of 
the anion can become large. It may be energetically favourable for the solid to retain part of 

charge (out of n electrons in MnC60) in the vicinity of the cation i.e., in the s-band. Thus, there 

is distinct possibility of incomplete charge transfer. We, therefore, incorporate in our model, 
the possibility of fractional charge state of the anion. Let n – x be the charge (no. of electrons) 

on each C60 shell. Then the total energy of anion and cation become, for the MnC60 System, 

     ( ) ( ) ( ) ( ) 1
1

2ion A
n x n x

n x E U n x E
− − −

Φ = − + + −  ... (8) 

where EI denote the ionisation energy of the alkali atom M (for K, EI = 4.34 eV). Eq. (8) gives 

energy per MnC60 molecule excluding the interaction between the various charged species of 

ions. 
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The inter-ionic interaction must be of the screened Coulomb type rather than pure 
Coulomb, where the screening is due to the electrons present in the s-band (x electrons per 

cation). These x electrons still ‘localised’ around the K+ sites, must exist in the s-band, 

although in formula (8) above, we have neglected the width of that band. A more pronounced 
role played by these s-electrons would, however, be to screen the Coulomb interaction 

between the ions. Thus the system is now supposed to consist of ( )
60

n x
C

− −  and K+ ions with x 

electrons per C60 forming a free-electron gas. While determining the electron density of this 
electron gas, the volume of the C60 molecules is excluded, as it is well known that there is 
virtually no electronic charge density in the interior of the fullerene cage.  

The screened Coulomb potential between two K+ cation is that between two point 

charges, i.e., 

   ( ) ( ) ( )2 / exp /SC
KKU R e R R= − λ  ... (9) 

where e is the charge of electron. To obtain the screened Coulomb potential between the K+ 

and ( )
60

n x
C

− −  anion in the smeared out model, we perform the appropriate integration over the 

C60 shell. The charge per carbon atom is – (n – x) e/60. The desired integral becomes 

         
( )( )2
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exp /60

604
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B s

R re n x
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R rR

− − λ−= −
−π ∫

ur r

ur r  

   ( ) ( ) ( ) ( ) ( ){ }
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exp / sinh / / /SC
bK B B

e n x
U R R R R

R

−
= − − λ λ λ  ... (10) 

where R
r

 is the position vector of the point K+ cation or ball b' from the centre of ball b as the 

case may be. While integrating r
r

 is the position vector of surface area element ds from 

origin of ball b and r
r

 is the position vector of surface area element ds' of ball b' from the 
origin of ball b'. S and S' are the surfaces of two balls of radius RB. Similarly, performing the 
integration over surface of two uniform spheres charged with (n – x) electrons, yields, for 

screened Coulomb potential between two ( )
60

n x
C

− −  anions, 

        
( )( )2 2

2
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R r rn x
U e ds ds

R r rR
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′− − + λ  −  ′=      ′− + π 
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   ( ) ( ) ( ) ( ) ( ){ }
22

2
exp / sinh / / /SC

bb B B
e n x

U R R R R
R

′
−

= − λ × λ λ  ... (11) 

These expressions are obtained assuming that the screening is due to a gas of free 

electrons, where λ, the screening length is, of the free electron gas, i.e., 

     ( ) 1/21 2
06 / Fn e

−−λ = π ε  ... (12) 
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where n0 is the electron density and Fε  is free-electron Fermi energy. This gives 

     1 10 1/6
02.73 10 n− −λ ≅ ×      

The effective mass of the s-band is likely to be large. However, presently we use free 
electron mass in Eq. (12). 

NNNNUMERICAL CALCULATIONS  

Taking into account all interactions, we now proceed to calculate total cohesive energy 

and thus calculate bulk modulus for all KnC60 systems under consideration. 

3.1 Cohesive energy  

The intermolecular contribution to total potential energy Φ can be obtained by carrying 
out the lattice sums, knowing the positions of the ions/atoms in the lattice. Combining Eqs. 
(5), (6), (8)–(11), we express the total potential energy of a monovalent atom-doped C60 solid 
in the following form. 

     , ' ' ,
, , ', '

1

2
vdw SC
lk l k lk l k ion

l k l k

U U ′ ′ Φ = + + Φ
 ∑  ... (13) 

The summation is over all pairs of lattice points within the chosen volume. The 
summation over vander Waals term in Eq. (13) is simple and converges after a few lattice 
distances taken into account. The screened Coulomb term is, however, not convergent if we 
make a straightforward sum; so we use Evjen’s method [19] to calculate Coulomb 
contribution to the cohesive energy. The appropriate lattice sum of the Coulomb part 
(Appendix A) yields Madelung energy. We have calculated Madelung constant for each of the 

MnC60 structures used. This procedure for calculating Madelung constant yields correct values 

for NaCl and CsCl structures [20]. This method shows a good convergence of the Coulomb 
potential sum with few lattice distances. The screened Coulomb summation also converges 
nicely using Evjen’s method with few lattice distances.  

Thus the total energy Φ is expressed as a function of parameters, x (fraction of electron 

forming gas) and a (cubic lattice constant). For K4C60, which is the only non-cubic system out 
of those considered, it is a function of x, a and c. Equilibrium lattice constant a0 (or a0 and c0 
for K4C60) and x is obtained by minimising cohesive energy with respect to these parameters.  

3.2 Bulk modulus  

We plot (Fig. 6) cohesive energy as a function of volume and find the second derivative 
of the curves at their minima (equilibrium). This is used to evaluate bulk modulus, which is 
given by 

     

0

2

2
V V

U
B V

V =

 ∂=  
∂  

 ... (14) 
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The bulk modulus is calculated for x = 0 case (complete charge transfer to anion). 

 
Fig. 6. Variation of Total Cohesive energy with volume per  

KnC60 volume is in Å3 

 

Fig. 7 : Variation of cohesive energy with n – x for KnC60 systems. 

 
Fig. 8 : Variation of (n – x)/n with U = U0. Here U0 is energy of  

the system at x equal to n i.e., no charge placed on C60. 
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Fig. 9. The comparison of total energy of K3C60 w.r.t different values of electron affinity (EA) and on shell 

Coulomb repulsion (U) for n–x varying from 2.0 to 3.0. The solid line represents the realistic cas 

RRRRESULTS AND DISCUSSION 

We first establish that shell model for C60 molecule in doped C60 solids is justified to 

calculate cohesive energy of these systems. As discussed in Sections 2.1 and 2.3 as far as 
Coulomb part of cohesive energy is concerned (Figs. 3 and 4), shell approximation is as good 
as discrete model. van der Waals part of cohesive energy certainly determines the orientation 

of C60 in the solid if distances are short, as shown in Figs. 2 and 5. But in all KnC60 systems 

nearest distances are larger than what becomes important for discrete model. Shell model is 
simple and sufficiently accurate as well, so one can proceed with shell model. We look into 

the possibility of fractional charge transfer on C60 molecule. We assume, in KnC60 system, 

only n – x electrons transferred on each C60 molecule, with x electrons contributing to a free-
electron gas. We have calculated the equilibrium fraction of charge (n – x) transferred to C60 
molecule. The variation of cohesive energy with n – x is shown in Figs. 7 and 8. The cohesive 
energy is maximum negative (maximum cohesion) for vanishing x, which implies complete 

charge transfer to C60 molecule in all KnC60 systems. In Eq. (13) electron affinity (EA) and on-

shell Coulomb repulsion (U) are assumed to be constant. In order to further study the 
possibility of fractional charge transfer in similar systems, we have repeated these cohesive 
energy calculations with several different sets of value of parameters EA and U. We present 
the calculations for K3C60 system. In Fig. 9 different curves show the variation of cohesive 
energy with fraction (3 – x) of charge on C60 molecule at constant EA and U. From these 
curves it is clear that there is a possibility of (3 – x) to be a fraction, i.e., for minimum of the 
curve lie at non-zero x, but this happens only for large values of on-shell Coulomb repulsion 
(U). However, for these cases the total energy becomes positive and hence system is not 
stable. Again complete charge transfer or full ionic character has been supported. Establishing 

full ionic character of all KnC60 systems, we proceed to calculate cohesive energy. We find 

lattice constant (a0) and bulk modulus. Fig. 6 shows variation of total cohesive energy with 
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respect to volume per KnC60. Our calculations show that K1C60 (NaCl structure) is more stable 

than K1C60 (CsCl) which is supported by literature [2]. We have summarised our results in 
Tables 2 and 3. We have compared (Table 4) our results with band calculations [8] of 
Oshiyama et al., Martin and Troullier [6] and those of Friedberg [5]. Our calculations are in 
good agreement with Friedberg [5] for K1C60, K2C60 and K3C60. Encouraged from this we have 
predicted Madelung part of cohesive energy for K4C60 and K6C60 systems also. Bulk modulus 
for K3C60 is also in good agreement with band calculations. From Table 2 and Fig. 6 we 

observe that volume per KnC60 is not a monotonically increasing quantity with n. One would 

expect it to be so because as more and more interstitials are created in the lattice it is expected 
to dilate more and more.  

Some remarks may be made here about the phase stability of different KnC60 structures on 

the basis of cohesive energies. From Table 4 we see that if we add cohesive energies of K1C60 
and K3C60 we get an amount (17.97), which exceeds twice that of cohesive energy of K2C60. 
Thus, K2C60 would tend to separate into K1C60 and K3C60. This observation holds for all the 
columns in Table 4 except Oshiyama’s calculations. Indeed this observation/result is correct 
because K2C60, although used for theoretical calculations, has not been found to be a stable 
system [21]. Same could be said about K3C60 separating into K2C60 and K4C60; but here the 
host lattices for n = 2 and 4 are different (FCC and BCT, respectively); so phase separation 
does not take place (would be extremely difficult to achieve by range order).  

Table 2 : Bulk properties of KnC60 solids 

KnC60 (n) 

Our Calculations Experimental Bulk Modulus (GPa) 

Lattice 
Constant (Å) 

Volume per 
C60 (Å3) 

Lattice 
Constant (Å) 

Volume per 
C60 (Å3) 

Our 
calculations 

Others 

1 13.94 677.2 14.07 [21] 696.3 18.4  

2 14.24 722.0   16.2  

3 14.11 702.3 14.240 [22] 721.9 23.9 28 [8] 

4 
(a) 11.6  (c) 

10.6 
713.2 

11.886 [23] 
10.774 [23] 

764.7 31.8  

6 11.06 676.5 11.385 [15] 738.8 61.0  

Table 3 : Cohesive energy of KnC60 solids 

KnC60 (n) 

Cohesive Energy - 
Lattice sum (eV) 

Electronic Energy 
Ionization (ev) 

Total Cohesive Energy = 
Cohesive Energy + 
Electronic Energy 

Our 
Calculations 

Friedberg 
[5] 

Our 
Calculations 

Friedberg 
[5] 

Our 
Calculations 

Friedberg 
[5] 

1 
(Octahedral) 

– 5.32 – 3.54 1.69 3.09 – 3.63 – 0.46 

2 – 12.76 – 11.79 4.68 6.18 – 8.08 – 5.61 
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3 – 23.31 – 22.41 8.97 9.27 – 14.34 – 13.14 

4 – 36.37  14.56 12.36 – 21.81  

6 – 72.89  29.64 18.54 – 43.25  

Table 4 : Comparison of cohesive energy of KnC60 solids 

KnC60 (n) 
Our Calculations  

(e V) 
Oshiyama et  al [8] 

(LDA) (eV) 
Friedberg [5] 

eV 
Martins [6] (LD 

Pseudopotential) (eV) 

1 
(Octahedral) 

– 3.63 – 10.1 – 0.46 – 1.4 

2 – 8.08 – 19.3 – 5.61 – 2.8 

3 – 14.34 – 24.2 – 13.14 – 5.1 

4 – 21.81    

6 – 43.25    

CCCCONCLUSION  

This paper describes a model for binding energy of doped C60 solids assuming 

formation of partially ionic MnC60. The calculation and result presented rule out the possibility 

of partial ionic character, clearly indicating a full ionic formation of MnC60. The results are in 

agreement with other calculations/experiments. We, thus, find that the uniformly smeared 
shell model describes well the structure of doped C60 solids. 
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Appendix A. Evjen’s method of lattice sum applied to MnC60 lattices 

Let ei and ej be the charges on the ith and the jth ions of the lattice, respectively. If r ij  is 

the distance between the two ions, then the electrostatic energy of the crystal will be 

     
,

1
/

2 i j ij
i j

U e e r= Σ  ... (1) 

If the summation over j is independent of i, i.e., all ions are similarly situated w.r.t. like 
and unlike ions (e.g., in NaCl), then the summation taken over all i, j is 

     
1

/
2 i j ij

j
U N e e r= Σ  ... (2) 

where N is total number of ions. We can then write the electrostatic energy as 
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     2
0/U Ne M r=  ... (3) 

where r0 is the nearest-neighbour distance in the lattice, and M is the Madelung constant.  

In KnC60 systems, when n > 1, all lattice points are not equivalent. Therefore, Eq. (2) is 

not valid. Let us consider a general case where there are three types of ions/lattice points A, B 

and C. Let one unit cell contains x formula units of the compound. Further, suppose that l, m 
and n are the number of type A, B and C ions, respectively, in each unit cell. Let the 
summation be carried over y unit cells. Now we choose an ion one by one of each type and 
sum over rest of the lattice and we get 

     /A A i Ai
i

U q q r= Σ  ... (4) 

     /B B i Bi
i

U q q r= Σ  ... (5) 

     /C C i Ci
i

U q q r= Σ  ... (6) 

where rAi is the distances of ith ion (having qi electrons) from ion A (having qA electrons). 

Replacing A by B and C, one gets corresponding quantities for B and C. Now electrostatic 
energy per unit cell is 

   ( )1
1

2CELL A B CU U m U n U= × + × + ×  ... (7) 

Multiplying Eq. (6) by y, we have 

        ABCU y x U= × ×  ... (8) 

where UABC is electrostatic energy per formula unit. If N = y × x, we have 

   /ABCU U N M= =  ... (9) 

UABC with unit lattice constant is the desired Madelung constant.  

The summation involved in Eqs. (4)–(6) requires specific method. The common methods 
for calculation of lattice sums are Ewald’s and Evjen’s methods. We have used Evjen’s 
method [19]. One constructs a neutral closed volume enclosed by a surface, such as a cube. 
Then the size of this closed volume is increased successively and the Madelung constant 
compared with the previous value. In our systems a unit cell or a group of unit cells may be 
considered as the closed area for summation. We start with the volume enclosed by eight unit 
cells placed together so as to get a cube of dimensions 2a × 2a × 2a, where a is the lattice 

constant. We have calculated Madelung constant of NaCl before applying it to KnC60 systems. 

Here, Madelung constant is w.r.t. lattice constant (a) instead of nearest-neighbour distance, so 
that the electrostatic energy (UE) per formula unit is 

     2 /EU M e a= ×  ... (10) 

From Table 5, it is clear that our calculated Madelung constant for NaCl and K3C60 is in 
excellent agreement with the standard value.  
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Table 5 : Madelung Constants of alkali doped C60 structures 

System 

Madelung Constant M 

Other authors Summation Volume 

2 × 2 × 2 4 × 4 × 4 6 × 6 × 6 

NaCl and K1C60 3.46700 3.49503 3.49603 3.49512 [9] 

K2C60 11.6422 11.6365 11.6406  

K3C60 22.0690 22.1230 22.1313 22.08 [24] 

K4C60 28.9947 29.1563 29.1592  

K6C60 56.1524 46.4728 56.4626  

The problem of weak convergence of Coulomb summation has been effectively 
countered. Summing over just a few lattice vectors gives a very good estimate.  

Appendix B. Estimation of vdW interaction parameters  

The formula for estimation of vdW interaction between too many electron atoms, based 
on second-order perturbation theory, has been given by Pauling and Wilson [26], based on a 
method suggested by Landau. By this treatment, the interaction energy between two atoms     
X and Y separated by a distance R, is given by 

     ( )
4 2 2

6 6

6

( )
X Y X Y XY

XY
X Y

n n e Z Z A
U R

R I I R
= − ≡ −

+
 ... (1) 

where n is the number of effective electrons; 2Z  for a spherical atom may be taken as 

2 21
3

,r r  being the mean square radial distance of the electrons from the nucleus; I is an 

energy of the order of first ionisation potential. The interaction energy for same interacting 
atoms, X, say, is 

     
2 4 2

6 6

3 ( )
( ) X X XX

XX
X

n e Z A
U R

R I R
= − ≡ −  ... (2) 

Using above two relations, we get 

     
2 2( )

4
XY X Y

XX YY
X Y

A I I
A A

I I

+
=  ... (3) 

or         1/22
( )

1
2

XY XX YY
X Y

Y X

A A A
I

I I

=
+ +

 ... (4) 

From the tables [16] ionisation energies for C atom and K+ ion are, 11.26 and 31.81 eV 

respectively. For C and K+ we have 

     1/20.8786( )CCCK K K
A A A+ + +=  ... (5) 
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