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We report cohesive energy calculations for doldg@so solids.
Model calculations are presented KaCso, K2Coso, K3Cs0, K4Cso
and KeCeo. In this work, theCso molecule is modelled as a
uniform spherical shell with appropriate surfacensiy of
carbon atoms, while the ionised alkali atoms, fogrthe cations
are taken to be point charges. Part of the elestimed by those
ionised K atoms are distributed on B& molecule making it an
anion, while the rest (say) are assumed to form a delocalised
electron gas. This electron gas screens the Coulntalaction
between the various anion and cations. We alsouatdor on-
shell Coulomb repulsion between the electrons erCta shell.
With these assumptions the total cohesive energalisulated
taking into consideration vander Waals and screébagomb
interaction between different ions. On minimisirtte tenergy
thus calculated with respect tq the fraction of electrons
forming electron gas, we find thatis zeroi.e., total charge
transfer from cation to anion is favoured. Thusdarharacter of
K dopedCso solids is established on the basis of the model.
Comparison of the total energy thus obtained has beade
with other calculations. We also show the phaséahitty of
K2Cso System.

Keywords : KnCso; Cohesive energy; lonic solid, Bulk modulus;
Structure.

7NTRODUCTION

arbon has a variety of stable forms like diamondpbite and nanotubes. Apart from

this it has its own class of compounds known asmiggcompounds, which form the basis of
life.

Carbon has also the tendency to form clusters obws sizes. These clusters may
contain minimum of about 11 and a maximum of 11lvbea atoms [1]. The closed cage
nearly spherical moleculeCso0—a cluster of 60 carbon atoms, and other relatdiéréne
molecules have attracted a great deal of interestecent years because of their unique
structures and properties.

The 60 carbon atoms in @s molecule are located at the vertices of a trumtcate
icosahedron where all carbon sites are equivalemegular truncated icosahedron has 90
edges of equal length, 60 equivalent vertices,eX@agonal faces and 12 additional pentagonal
faces to form a closed shell. The boundary betveekaxagon and its neighbouring pentagon
is a singleC—Cbond and that between two hexagons is a doubléd. Gdre molecule is known
to have a structure slightly deviating from theab&uncated icosahedron, in that the single

and double bonds have slightly different lengths 1.45 and 1.4 A, respectively [2]. While
PCM0230219
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the bonding within a&Cso molecule is covalent (mixture o and sp’), the interfullerene
bonding in the solid is recognised to be of vantiaals type, making the solitko a loosely
bound condensate. Hence, it is not surprising tieiCso molecules condense into a FCC
solid, similar to the inert gas atoms. Becausehef large size of fullerene molecules, the
interstitial cavities in &eo lattice are large too, and can accommodate vagoest species.
The freeCso molecule in its ground state electronic configiormthas a completely filled
HOMO level. The LUMO is split into two three-foldedenerate levels which get filled as the
bucky-ball is charged with more and more electrdfiben the puréeo solid is doped with

alkali metal (exohedral dopin@inCso compounds are formed, where n can go up to &dilli

the above described levels [3]. The alkali metagattCso solid has attracted a great deal of
attention advisCeo systems (M represents alkali metal) were founetsuperconducting with
Tc around 30 K or larger. Subsequen§ixM2; xCso (M1, M2 being different alkali metals)
systems were extensively studied as it was fouatiTthcan be increased considerably with a
suitableM1-M2 combination. For these reasons, a lot of intdrestructure and stability of
these compounds was generated.

We present model calculations for alkali metal adbfg, solids to find their cohesive
energy and the ionic state @k molecule. Wide disparity in cohesive/ Madelung rgge
calculations [4-9] has made it an interesting pobl In fact, Schulte and Bohm have
objected to the possibility of complete transfecbérge and thus to the formationkafCso as
an ionic solid. But various experiments have ved&sCso as a stable ionic system [10-11].
Not only KsCeo but total charge transfer takes placeky®so also [12]. However, in view of
on-shell Coulomb repulsion, this is even less lik@herefore, it becomes pertinent to enquire
the ionic state o molecule in alkali doped solids. We attempt toversthis question in
the present paper. In dopégk, solids, there is little overlap between molecueave
functions on neighbourin@so, SO the electrons are practically localised@g shell. The
alkali metal atoms are completely ionised. Thigigane to believe that even KaCso and
KsCso Systems such calculations may suffice. Howeveresthe on-shell Coulomb repulsion
is large for theCso molecule, as the charge on the anion is increated possibility of
delocalisation develops. In the next section wecidles the model used for our calculations.
In Section 3 we describe numerical calculationssuRe and discussion are presented in
Section 4.

%()DEL AND CALCULATIONS

un this section we describe van der Waals and Cdulotteraction between various
species. Structure of dopé&do solids, determination of van der Waals parametdegtron
affinity of Cso and on-shell Coulomb repulsion have been discusskuhgth.
2.1 Interactions between ions/atoms

To calculate the potential energy of a system, oneeds to take into account various
interactions between constituent ions/atoms of sbéd. Among the dopedKnCso, the
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structure ofCso sublattice changes from FCC to BCC as n incredsesn = 1 — 3 the
structure is found to be FCC and for 4 and 6, BCT and BCC, respectively [9]. The dudpa
alkali ions (denoted by M in the formulae) occupyerstitial positions in thes€g lattices.
The unit cell of each of these is shown in Figlrilour calculations these experimentally
observed structures enter as input in lattice sums.

The Cso molecule, in our model, is taken to be completadid. This is justifiable since
interactions within the solid are known to leave thucky-ball undistorted [13]. In the pure
Ceo solid, the intermolecularGgo—Cso) interaction is described well by @C potential of
6-exp form given by Kitaigorodsky [13]:
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Fig. 1. Unit cells of Potassium dope@so solids. The squares show various relevant
cross-sections parallel tox—y plane. Open circles represen€soions and solid circles are K ions.

V(r):—r%+ Beexp(-ar) (1)

The first term in Eqg. (1) is the attractive parfavimg its origin in van der Waals
interaction, while the second term is the Born—Mawpulsion. InMnCgo Systems, however,
the bonding is known to be mainly of the ionic tyf® 10-12]. When alkali atoms are
diffused into the pure soli@s (FCC lattice), they start taking up positionste tnterstitial
void sites—tetrahedrall}, of which these are eight per unit cell, or oe@dal O), of which
these are four per unit cell. They also get ionideetomingK*, while the Cso molecules
acquire the electrons and become anions. The egrfeahion formation depends upon the
electron affinity (EA) ofCeo and ionisation potential (EI) of thd atom. This interstitial site
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filling goes on till the formula of the doped solisl M3Cso. On induction of further alkali
atoms into the matrix, the host lattice @ molecules) distorts to present a BCT structure
[14] till the formula isM4Cso. Further diffusion ofM into the lattice may be done till the
system isMeCso When the host lattice is BCC [15]. Although thesteyn is not entirely

insulating, the electron density around the larg®rais sufficiently localised and an ionic
type calculation is justified.
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Fig. 2. Variation of vander Waal's energy betweenwo Cso molecules in discrete and shell model. The distaac
between twoCso molecules is in A.
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Fig. 3 : Variation of Coulomb energy between twcf:gg molecules in discrete and continuous models. The
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Fig. 4 : Variation of Coulomb energy betweencgo3 ion and K* in discrete and continuous model. The
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The Cso molecule, which acquires anything from 1 to 6 &hlats in these systems, can be
a heavily charged anion. This extra charge is expeto be distributed over the whole
molecule. Then extra electrons may add to the electron cloudsiratdhe atom sites, or
around single or double bond sites, and may evamheuniformly distributed over the shell.
However, we use a uniformly charged sphere modeCtailombic interactions of the anion.
This approximation introduces very little error.elheason for this belief lies in comparison
between the uniform charged sphere and discretiébdison (1/60th of electron) of charge on
each of the 60 vertices oké&mnolecule. We have calculated the van der WaalsCmdomb

energy between twdi:gg ions assuming discrete C atoms and charges atetttiees and

compare with same energies in the smeared shelblmednder Waals interaction energy
(Fig. 2) is found to be dependent on distributidrcarbon atoms on bucky-ball at distances
less than 9A , whereas Coulomb interaction (Figis3yame for discrete model and shell

model. We have also made a similar comparisonefriteractions betweeﬁgg and a point

chargeM®. Fig. 4 shows the plot of Coulomb energy with placed along two directions
x-axis (octahedral) and (1, 1, 1) (tetrahedral) pkegCso in “standard” orientation, and that
with Cso as a uniformly charged sphere. From this figuig dlear that discrete distribution of
charge does not make substantial difference in @ollenergy as compared to uniform
charged sphere model. In case of van der Waalsagtten (Fig. 5), discrete model differs
from shell model, but only at distances less thabA6 In dopedKnCso Systems the
equilibrium nearest neighbour distance betwee@s@molecule and Kis about 6A. The
vander Waal interaction energy in discrete modiééd{by about 2 kcal/ mol for each pair of
interacting ions at a distance of about 6A) frorallstnodel for tetrahedral direction of alkali
metal dopant. While computing the total energy ofifula unit M3Csg) one tetrahedral
M—Ceo pair contribute so discrete model gives a diffeeeaf only 2 kcal/mol of total energy,
which is about 330 kcal/mol and hence does not naakegbstantial difference. For octahedral
direction no substantial difference in the vandexal¥ interaction energy has been seen when
discrete and shell model are compared. Therefbed], model which is simpler, is found to be
more suitable.

The interaction between adanion and an alkali cation is predominantly of @milomb
type or screened Coulomb type, screening depengdog the concentration of delocalised
electrons. Apart from this, C-atoms oiC& molecule and th#1" ion also interact via a 6-exp
interaction (Eq. (1)). The parameteks B and o for C-alkali interaction are chosen by us
based on considerations described below. Two adledlons also interact via Coulomb and
van der Waals interactions, the latter being ndgkg

Effects of on-shell Coulomb correlations (or Hulibgrarameter U) and incomplete
charge transfer from cation to anion are consideredsubsequent section.

2.2 Parameters of 6-exp interaction

The van der Waals interaction between two carbomatare widely used in literature
and whether one is using 6-exp or 6—-12 potential parameters are readily available. Those
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for interaction betwee@ and alkali atoms are, however, not readily avéélabhe interaction
parameters [137, B anda are known for interactions between two carbon atdtneC—C
interaction). To find parameters for interactioriviieen aC-atom and an alkali ion, we make
use of alkali halide parameters [16]. For thesespaie observe,
1/2
0(2,2Z,) .. (2a)

and — 8 _-0.0165¢ 10° erg 2372.99k calime .. (2b)

(2125)2
whereZ is the number of electrons in the interacting afgation/atom. However, for carbon,

Z =6 and if we consider the value of param&given by Kitaigorodsky foC-Cinteraction,
we find

Ll ~0.0487x 108 erg= 7000k cal/mo ... (20)

(2125)2
which is at variance with the value (Eq. (2b)) falkali halides. This is, however, not
surprising since electron distribution irCaatom is quite different from an alkali or halidmni
(where it is inert gas configuration). On the othand, C atoms can be presumed to be like
alkali or halide ions for this purpose, provided at&ibute an effective charg&s« = 17.7 to
them. Using thiZex we get B values fokK—C interactions. FOK—K interaction Eq. (2b) may
be used directly.

If vander Waals radii of two ions arg andr2 then it is reasonable to expect the repulsive
range parameter to obey

1
n+ry

ol ... (3a)
Comparing again with the givenvalues for alkali halides, and using the knowrii izt
these ions, we find

at=0.19(r +r,) ... (3b)

Radius forK is 1.33 A using which we obtaink. Kitaigorodsky has givemcc. We
obtainokc as the harmonic mean @fc andaxk in accordance with Eq. (3).

The parameteA is not that important because Madelung energy dates van der Waals
interaction energy. For completeness we determiéar K—C interaction as the one giving
best fit to lattice constant data withando. fixed as obtained above. Finalks-K interaction
parameteA is fixed from the criterion (see Appendix B)

1/2
Axc 0.8786 Ak Acc) .. (3.9)

In this way, we have estimated various parametar&fK andK-C interactions. These
parametersA, B anda) thus obtained foK—K andK-C interactions need further refinement.
This is done by obtaining best fit to the experitaéwalues of lattice parameters and bulk
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modulus ofK3Cso. The refined parameters are presented in Tallemiay be mentioned that
the parameters, B o for K" — K* interactions have no major role in the determoraibf
cohesive energy of dope@so systems, as interactions between these small nsatime
dominated by Coulomb interaction.

Table 1 : Interaction Parameters

Atom-Atom A (kcal-A%mol) B (kcal/ mol) o (A7)
c-C 358 42000 3.58
K-K 171 49138 3.62
K-C 235 28370 3.50

%NIFORM SPHERE APPROXIMATION

e have shown in Section 2.1, that orientatiof€g@fmolecule is mostly unimportant.
One can then replace th&, molecule by a spherical shell [13], with 60 carbaioms
uniformly smeared over the shells. In order tolue for the 6-exp part of the potential of the
interaction between tw8s molecules; we integrate the potential (Eqg. (1)grae surface of
two spheres. While integrating; is the position vector of surface area elenisifrom
origin of ballb and r is the position vector of surface area elenushof ballb' from its own
origin. SandS' are the surfaces of two balls of radRis R is the position vector of the point
alkali metal or balbb' from the centre of babl as the case may be:

Ust" = (4TIRB)2'[ .[s ( r'—T)dsds

. 2
LW g :_602(AJI—Z(RB/RZHS/S(RB/R)A_B . R[smh(} %)J
bb’ ( ) ( ) [ RG {l—(ZRB/ RZ}‘?’ eXp( a ) GRB

%ué[k#%m .. (5)

R is the distance between the centres of the twdkybballs, andRs is their radius.
Similarly, the potential energy arising from van &iéaals interaction between an alkali metal
ion and aCso molecule separated by a distafkis given by

ut‘,’,%W:;ugé s V(R-T)ds

2
UVdWR :% 1+(Rsg /R)
(R ="% Ll— (Rg /R))*
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SOBEEOR_F cog o 12| s |

The vander Waals interaction between two alkaliaiieins separated by distanRes of
the same form as Eq. (1).

A
Ukk' :—F—Bexp(—(xR) ... (6)

sNERGY IN CHARGE STATES

he Cso molecule, on acquiring extra electrons, becoméarge anion. The energy

required to put one additional electron, which gmethe LUMO, is generally accepted to be
—2.65 eV (the measured electron affinigy, of theCgo molecule is 2.65 eV). Addition of still
more electrons, however, involves Coulomb repulsi@iween them. Thus the energy
required to addn electrons on &0 molecule may be taken to be of the form

m(m-1)
E, = mEg+ U——

. (7)

where U is an average pair wise Coulomb repulsion paraméte determine appropriate
values ofEa andU, we make use of data [17], giving energies ofousicharge states G
anion. The data fits tBRA= -2.76 eV and) = 3 eV. When the anion is a part of solitigets
modified to a value of 1.3 eV [18]. It is interewito note that the energy required for a
metallic sphere of radius 3.58 A (same as th&spinolecule) to be charged withelectrons

n(n-1)

[17]. We use well established valueskaf= 2.65 eV andJ = 1.3 eV in our calculations.

is , which corresponds to [04 eV, not very different from the LDA calculations

%()DEL FOR IONIC CHARACTER

In the system under considerationin Eq. (7) can go up to 6, so the Coulomb eneifgy o
the anion can become large. It may be energetitallgurable for the solid to retain part of

charge (out ofi electrons iMMnCso) in the vicinity of the catiome.,in thes-band. Thus, there

is distinct possibility of incomplete charge tragrsfWe, therefore, incorporate in our model,
the possibility of fractional charge state of timéom. Letn — xbe the charge (no. of electrons)

on eachCso shell. Then the total energy of anion and catiecdme, for th&inCso System,
n-x)(n-x-1

Pion =(n-x) EA+U—( )(2 )+(n—y9 B - (8)

whereE, denote the ionisation energy of the alkali atdnfor K, & = 4.34 eV). Eq. (8) gives

energy peMnCgso molecule excluding the interaction between theéower charged species of

ions.
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The inter-ionic interaction must be of the screeriamlilomb type rather than pure
Coulomb, where the screening is due to the elestpyasent in the-band & electrons per

cation). Thesex electrons still ‘localised’ around th&* sites, must exist in the-band,

although in formula (8) above, we have neglectedwidth of that band. A more pronounced
role played by these-electrons would, however, be to screen the Couloméraction

between the ions. Thus the system is how suppasednsist ong((Jn_X) andK* ions withx

electrons peeo forming a free-electron gas. While determining éhectron density of this
electron gas, the volume of tii&, molecules is excluded, as it is well known thar¢his
virtually no electronic charge density in the imeiof the fullerene cage.

The screened Coulomb potential between #4/o cation is that between two point
chargesi.e.,

U (R)=(¢ 1 Rexp(- RA) .(9)
wheree is the charge of electron. To obtain the scre@dedomb potential between th€"

and Cgc(]n_x) anion in the smeared out model, we perform theagpate integration over the

Cso shell. The charge per carbon atom is1—) €60. The desired integral becomes

UbSC _ —j:jé n6_OXJ; exp(—(Rir) /)\)dS

R-T

UbS,?(R)z—eZLR_X)exp(—R/)\){ sin{ B A) ( R A)} . (10)

where R is the position vector of the poikt™ cation or balb' from the centre of babh as the
case may be. While integrating is the position vector of surface area elenasifrom
origin of ballb and r is the position vector of surface area elendsiof ball b’ from the
origin of ballb'. SandS'are the surfaces of two balls of radRs Similarly, performing the
integration over surface of two uniform spheresrgbd with 6 — x) electrons, yields, for

screened Coulomb potential between m@gn_x) anions,

ut?b?:[ GOJ 2( j Hexp( % _H,r)/)\)dsds

4nRy

Ubsb(r:(R):Mexp(—R/)\)X{ sinf( Ry A) ( B M)} . (11)

These expressions are obtained assuming that teensog is due to a gas of free
electrons, wherg, the screening length is, of the free electron igas

)—1/2

A= (Brmge? e . (12)
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whereno is the electron density arg}- is free-electron Fermi energy. This gives

At 02.73x 101003/6

The effective mass of theband is likely to be large. However, presently use free
electron mass in Eq. (12).

%UMERICAL CALCULATIONS

aking into account all interactions, we now proctedalculate total cohesive energy

and thus calculate bulk modulus for iiCso Systems under consideration.
3.1 Cohesive energy

The intermolecular contribution to total potentédergy® can be obtained by carrying
out the lattice sums, knowing the positions of ihes/atoms in the lattice. Combining Eqs.
(5), (6), (8)—(11), we express the total potertiargy of a monovalent atom-dop@g solid
in the following form.

®=> 2 |:UIIV<(?IVYK‘+UII?,F’k’j|+qu0n .. (13)

1
21 KTk

The summation is over all pairs of lattice pointihim the chosen volume. The
summation over vander Waals term in Eq. (13) isp&nand converges after a few lattice
distances taken into account. The screened Coutemb is, however, not convergent if we
make a straightforward sum; so we use Evjen’s ntetht®] to calculate Coulomb
contribution to the cohesive energy. The approerimttice sum of the Coulomb part
(Appendix A) yields Madelung energy. We have caltedl Madelung constant for each of the
MnCso structures used. This procedure for calculatingl®iang constant yields correct values
for NaCl and CsCI structures [20]. This method sbi@vgood convergence of the Coulomb
potential sum with few lattice distances. The seegeCoulomb summation also converges
nicely using Evjen’s method with few lattice distas.

Thus the total energ® is expressed as a function of parametei@raction of electron
forming gas) an@ (cubic lattice constant). F&Cso, Which is the only non-cubic system out
of those considered, it is a functionxgfa andc. Equilibrium lattice constardo (or ap andco
for K4Csg) andx is obtained by minimising cohesive energy withpesg to these parameters.
3.2 Bulk modulus

We plot (Fig. 6) cohesive energy as a function @fime and find the second derivative
of the curves at their minima (equilibrium). Thgsused to evaluate bulk modulus, which is

given by
2
le:va—i} .. (14)
aV V:VO
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The bulk modulus is calculated for x = 0 case (cletepcharge transfer to anion).
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Coulomb repulsion (U) for n—x varying from 2.0 to 3.0. The solid line representthe realistic cas

ZESULTS AND DISCUSSION

e first establish that shell model f8s molecule in dopes solids is justified to

calculate cohesive energy of these systems. Asigisd in Sections 2.1 and 2.3 as far as
Coulomb part of cohesive energy is concerned (Rgmnd 4), shell approximation is as good
as discrete model. van der Waals part of cohesieegy certainly determines the orientation
of Cgo in the solid if distances are short, as shownigs 2 and 5. But in alKnCeo Systems
nearest distances are larger than what becomestampdor discrete model. Shell model is
simple and sufficiently accurate as well, so one peoceed with shell model. We look into
the possibility of fractional charge transfer 6g molecule. We assume, KnCeso System,
only n — xelectrons transferred on eaCky, molecule, withx electrons contributing to a free-
electron gas. We have calculated the equilibrivatfon of chargen(— X transferred t&Cso
molecule. The variation of cohesive energy with xis shown in Figs. 7 and 8. The cohesive
energy is maximum negative (maximum cohesion) famishing x, which implies complete
charge transfer t@so molecule in alKnCeo Systems. In Eq. (13) electron affinitigs) and on-
shell Coulomb repulsionl) are assumed to be constant. In order to furthedysthe
possibility of fractional charge transfer in similsystems, we have repeated these cohesive
energy calculations with several different setyvalfie of parameterEx andU. We present
the calculations foKsCso system. In Fig. 9 different curves show the vatabof cohesive
energy with fraction (3 x) of charge onCsp molecule at constariia and U. From these
curves it is clear that there is a possibility 8—(x) to be a fractioni.e., for minimum of the
curve lie at non-zerg, but this happens only for large values of onisGeulomb repulsion
(V). However, for these cases the total energy besopesitive and hence system is not
stable. Again complete charge transfer or full doctharacter has been supported. Establishing
full ionic character of alKnCso Systems, we proceed to calculate cohesive enkvgyfind
lattice constantgp) and bulk modulus. Fig. 6 shows variation of tatahesive energy with
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respect to volume p&nCso. Our calculations show th&uCso (NaCl structure) is more stable
than K1Ceo (CsCI) which is supported by literature [2]. Weveasummarised our results in
Tables 2 and 3. We have compared (Table 4) ourtsesith band calculations [8] of
Oshiyama et al., Martin and Troullier [6] and thadeFriedberg [5]. Our calculations are in
good agreement with Friedberg [5] #61Cso, K2Cso andKsCso. Encouraged from this we have
predicted Madelung part of cohesive energydgCso andKesCso Systems also. Bulk modulus
for KsCeo is also in good agreement with band calculatidgirem Table 2 and Fig. 6 we

observe that volume p&mCso is Nnot a monotonically increasing quantity withGme would

expect it to be so because as more and more ititdssare created in the lattice it is expected
to dilate more and more.

Some remarks may be made here about the phasistatiifferent KnCso Structures on
the basis of cohesive energies. From Table 4 we¢hseéf we add cohesive energieskalCeo
andKsCso we get an amount (17.97), which exceeds twice ahabhesive energy df>Ceo.
Thus, K2Cso would tend to separate intCso andKsCso. This observation holds for all the
columns in Table 4 except Oshiyama'’s calculatidndeed this observation/result is correct
becauseK,Cs, although used for theoretical calculations, hasbeen found to be a stable
system [21]. Same could be said abKeCso separating intd2Cso and K4Ceo; but here the
host lattices fon = 2 and 4 are different (FCC and BCT, respectivedp phase separation
does not take place (would be extremely difficalathieve by range order).

Table 2 : Bulk properties of KnCeo solids

Our Calculations Experimental Bulk Modulus (GPa)
KnCeo () Lattice | Volume per Lattice Volume per Our Others
Constant (A)| Ceo (A% | Constant (A) | Ceo(A3) calculations
1 13.94 677.2 14.07 [21] 696.3 184
2 14.24 722.0 16.2
3 14.11 702.3 14.240 [22] 721.9 23.9 28 (9]
(@) 11.6 (c) 11.886 [23]
4 713.2 764.7 31.8
10.6 10.774 [23]
6 11.06 676.5 11.385[15] 738.8 61.0
Table 3 : Cohesive energy dknCso solids
Total Cohesive E =
Cohesive Energy - Electronic Energy otal Lo .eswe neray
. L Cohesive Energy +
Lattice sum (eV) lonization (ev) .
KnCeo () Electronic Energy
Our Friedberg Our Friedberg Our Friedberg
Calculations [5] Calculations [5] Calculations [5]
1 L
(Octahedral -5.32 -3.54 1.69 3.09 - 3.63 -0.46
2 -12.76 -11.79 4.68 6.18 —-8.08 -5.61




An International Peer Reviewed Journal of Physigeience

Acta Ciencia Indica, Vol. XLVIII-P, No. 1 to 4 (2)2 105
3 -2331 —-2241 8.97 9.27 —14.34 -13.14
4 —36.37 14.56 12.36 -21.81
6 —-72.89 29.64 18.54 —43.25

Table 4 : Comparison of cohesive energy of §Cso solids

KnCo (n) Our Calculations [Oshiyama et al [8] Friedberg [5] Martins [6] (LD
m-%0 (eV) (LDA) (eV) eV Pseudopotential) (eV)
1
-3.63 -10.1 -0.46 -14
(Octahedral
2 -8.08 -193 -561 -28
3 -14.34 -24.2 -13.14 -51
4 -21.81
6 - 43.25
ConcLusion

his paper describes a

formation of partially ionidMnCeo. The calculation and result presented rule ouptssibility

model for binding energy oped Cso solids assuming

of partial ionic character, clearly indicating dl fionic formation ofMnCso. The results are in
agreement with other calculations/experiments. Was, find that the uniformly smeared
shell model describes well the structure of doPegdsolids.
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Appendix A. Evjen's method of lattice sum applied ® MnCsgo lattices

Let g andg be the charges on tlita and thgth ions of the lattice, respectively.rif is
the distance between the two ions, then the elgtetiio energy of the crystal will be

U . (1)

1
_Z /
2i,je|e] f

If the summation over j is independent of i, ial,ions are similarly situated w.r.t. like
and unlike ions (e.g., in NaCl), then the summataken over ali, j is

1
U:EN%gq/ﬁr (2

whereN is total number of ions. We can then write thettstatic energy as
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U=Ne&M/g .. (3)
whererg is the nearest-neighbour distance in the lattiodM is the Madelung constant.

In KnCeo systems, when > 1, all lattice points are not equivalent. Theref Eq. (2) is
not valid. Let us consider a general case whene thee three types of ions/lattice poiAtsB
andC. Let one unit cell contains formula units of the compound. Further, supposglthm
and n are the number of typd, B and C ions, respectively, in each unit cell. Let the
summation be carried ovgrunit cells. Now we choose an ion one by one ohdgpe and
sum over rest of the lattice and we get

UA:inZQi/rAi . (4)
UB:qBizQi/rBi ... (5)
Uc :OIciZQi ! 1 ... (6)

whererai is the distances dth ion (havinggi electrons) from iorA (havingga electrons).
ReplacingA by B andC, one gets corresponding quantities Boand C. Now electrostatic
energy per unit cell is

UCELL:%(leA"'mXUB"'nX Uc) - (7)

Multiplying Eq. (6) byy, we have
U :yxXxUABC (8)
whereUpgc is electrostatic energy per formula unitNIf y x x, we have
Upgc=U/N=M . (9)

Uasc With unit lattice constant is the desired Madelangstant.

The summation involved in Egs. (4)—(6) requiresciffzemethod. The common methods
for calculation of lattice sums are Ewald’s and éfvg methods. We have used Evjen’'s
method [19]. One constructs a neutral closed volemdosed by a surface, such as a cube.
Then the size of this closed volume is increasextessively and the Madelung constant
compared with the previous value. In our systemsiacell or a group of unit cells may be
considered as the closed area for summation. Weveth the volume enclosed by eight unit
cells placed together so as to get a cube of dimesnsa x 2a x 2a, wherea is the lattice
constant. We have calculated Madelung constanta@lMefore applying it t&nCeso Systems.

Here, Madelung constant is w.r.t. lattice consfahtinstead of nearest-neighbour distance, so
that the electrostatic energy (UE) per formula isit

Ug =Mxe?/a .. (10)

From Table 5, it is clear that our calculated Madgl constant for NaCl ands&so is in
excellent agreement with the standard value.
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Table 5 : Madelung Constants of alkali doped & structures

Madelung ConstantM
System Summation Volume Other authors
2x2x%x2 4x4x4 6x6x6
NaCl and KCso 3.46700 3.49503 3.49603 3.49512 [9]
K2Cso 11.6422 11.6365 11.6406
K3Cso 22.0690 22.1230 22.1313 22.08 [24]
K4Cso 28.9947 29.1563 29.1592
KeCso 56.1524 46.4728 56.4626

The problem of weak convergence of Coulomb summatias been effectively
countered. Summing over just a few lattice vecgives a very good estimate.
Appendix B. Estimation of vdW interaction parameters

The formula for estimation ofdW interaction between too many electron atoms, based
on second-order perturbation theory, has been diyelRauling and Wilson [26], based on a
method suggested by Landau. By this treatmentjnfegaction energy between two atoms
X andY separated by a distanReis given by

42 2
_bnxnve Zy &y __ Axy
RO(ly +1y) R®

Uxy (R) = . (1)

wheren is the number of effective electrong? for a spherical atom may be taken as
1,2 2
3
energy of the order of first ionisation potenti@he interaction energy for same interacting
atoms X, say, is

r? being the mean square radial distance of therelextfrom the nucleud;is an

an’g e (ZR) . Ax
U R)=- =- .. (2
xx (R) RE1, =5 )

Using above two relations, we get

Aay (Ix +1y)?

A = .. (3
xx Ay ayly 3)
2
or AXY =|—(AxxAyy)1/2 (4)
2+7X+7Y
ly T

From the tables [16] ionisation energies @atom and* ion are, 11.26 and 31.81 eV
respectively. Fo€ andK* we have

Ao+ =0.8786(Boc A+ s §/2 .. (5)
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