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The study of supersymmetric quantum theory of
superconductivity has been undertaken in a broader
sense. The main features of supersymmetric quantum
mechanics have been derived in the straight forward
manner and the consequences of supersymmetric
breaking have been analyzed in terms of possibility of
occurrence of superconductivity, dual superconductivity
and color superconductivity.

“NTRODUCTION

he discovery of high temperature superconductivitgeveral Cu-oxide systems have

caused great excitement and led to many proposalsredels to explain this phenomenon.
There is still no consensus among the experts aheumodel representing correct starting
point and as such the microscopic theory of supehactivity still remains controversial. On
the other hand, the phenomenological theory of mapeluctivity at microscopic level has
been carried olit™! in the framework of local gauge invariance, Quanfdhromo Dynamics
(QCDY** and dynamical as well as spontaneous bre8Rilfgof symmetry (DSB and SSB).
Through these efforts it became clear that thelistexa sort of parallelism between the
Condensed Matter Physics (CMP) and High Energy ieby$1EP). Gauge theories in four
dimensions can manifest themselves in three pha3eslomb, Higgs and Confinement
Phases. As the parameters of the theory are vaiptase transition between them can take
place. A gauge in Coulombian phase has a masdtessrpand hence it is subject to standard
electric-magnetic duality.

Quantum Chromo Dynamics (QCD) is the most favorelbrcgauge theory of strong
interactions whereas superconductivity is a remaekananifestation of quantum mechanics
on a truly macroscopic sc&® In the process of current understanding of
superconductivity®19 Rajputet al have conceived the notion of its hopeful analodthw
QCD. The essential clues for gauge symmetry brgakinerged from the crucial theoretical
framework of superconductivity formulated by Bande€ooper and Schrieffer (BG3) by
demonstrating that the ground state of an assermblynutually attracting fermions is
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separated by an energy gap from the lower excéteel lof energy spectrum. Moreover, other
salient features of superconductivite., the Meissner effect and the flux quantization,
provided the vivid models for actual confinement cimmism in QCD. In this
connection.Nambu and oth&rs?Y suggested that the color confinement could oauCD

in a way similar to magnetic flux confinement irpsuconductors.

In general the thermal fluctuations restore varigpentaneously broken inter-symmetries
but the fermions and bosons respond differenttyémmal fluctuations and hence it is natural
to speculate that any supersymmetric system immensea thermal bath should loose
supersymmeti?23L This problem has drawn many controver&&%!in connection with the
resolution of mingled quest of supersymmetry bneglkat finite temperature. The desire to
restore this beautiful symmetry at a finite tempg&® and then to break it spontaneously to
explore the superconductivity at high temperatwa tmotivated some authBfg® to propose
various models of restoration of supersymmetryiritef non-zero temperature. Keeping in
view the propos&” that the high temperature superconductivity muastehits origin in the
gauge theoretical formulations, the supercondugtat high temperature may be identified as
the consequence of spontaneous breaking of superstysnrestored at non-zero temperature.
This question of restoration of super-symmetry (artence manifestation of
superconductivity) has been examined in prinéipleby constructing the temperature
dependent supercharge and Hamiltonian from thegiressions at zero temperature. This
study demonstrates that the study of supersymmatryfinite temperature provides a
convincing argument to understand the behavioup&sconductor at high temperature. In the
present paper the study of supersymmetric quanheory of superconductivity has been
undertaken in a broader sense. The main featdrespersymmetric quantum mechanics
have been derived in the straightforward manner thedconsequences of supersymmetric
breaking have been analyzed in terms of possikilitpccurring of superconductivity, dual
superconductivity and color superconductivity.

SUPERSYMMETRIC QUANTUM MECHANICS

Eupersymmetry is a relativistic symmetry betweenmiens {.e, the mathematical

objects which on quantization are associated witlamti-commutation algebra) and bosons
(i.e. the objects where quantization is associated wifmmutator algebra). In its simplest
form, supersymmetric algebra is an extension ohluBwincare albegra. It is such a graded
Lie algebr&'32 which involves both commutation and anti-commutatielations, plays a
unique role in particle physics and provides a dosbetween space-time and internal
symmetries overcoming no-go thedtthabout the possible symmetries $matrix. This
graded algebra or superalgebra, in its simpleshfds generated by fourteen Hermition

operators which include ten generators of Poingesap @u andJuv) and four self-conjugate
spin —1/2 anti-commuting generators correspontbrigajorana spinor chard@, (o = 1...4)
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known as super-translations. Apart from usual cotatian rules for Poincare generator,
these generators also satisfy the following reted-32

[Qu, R =0;
[Q(iw ‘]uv] :%(ouv)g Q[li
[Q(iw I ] :%(ouv)g Q[li

{Q I =2 (¥uQ qp 3'PH - (2.2)

where bracket [ ] denotes commutation while { } degs anti-commutation and
1 —
Oy —E[ouc\, -0,0,] .. (2.2)

andC is charge conjugation matrix. The other symbolgehtheir usual meaning. Of all the
graded Lie algebra, only the super-algebra, desdriby equation (2.1), generates the
symmetries of S-matrix consistent with relativigjicantum field theory.

Starting with the pioneer work of Wittéfi, it has been recognized that supersymmetry
could be applied to quantum mechanics as a limitage N = 1) of field theory and the
subsequent development of supersymmetric quantuchanés provides us with the realistic
model of particle physics which do not suffer wiglauge hierarchy problem besides its
intrinsic mathematical interest. Rajpett al®>37] have developed supersymmetric quantum
mechanics in complex space-time. In order to devélin a straight forward manner, let us
construct super space formulation by extendingnamgi time variableg to new super-time
involving two time variable® and 6, where the covariant derivatives are constructed a
follows:

D :i—uei
dg ot

5=2_igd .. (2.3)
dg ot

The corresponding supersymmetric transformatioas ar
t-t'=t-i(60-086)
0-0=0+0
6.0=0+0 .. (2.4)

where [0 and O are constant anti-commuting parameters. We can tonstruct the
supersymmetry generators as

G=expfi Q" +0Q)} ... (2.5)
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.0 =0
where =ji—-0— ...(2.6
Q 00 ot (2:6)
.0 d
and foi—+0— .. (2.7
Q 00 ot .7)

are non-Hermitian supercharge operators. From eEmsaf2.6) and (2.7), we obviously have
.0
{a Q1 =QQ"+Q'Q=2i_=2H, . (2.8)
whereH is super symmetric Hamiltonian. The super posiisatihen constructed as
Z (t, 0,6} = o(t) +iBy(t) +i6T(t) + 68 At) .. (2.9)
where the usual position varialdét) and the functiorA(t) are bosonic variables whiké(t)

and @i(t) are the fermionic variables. This superpositiod &me corresponding super-field

cd(t, 8, ) with i as anti-symmetric index, along with thevadant derivatives (2.3) acting on
them, are sufficient to form supersymmetric Lagiang With single real super fielg
(i.e. N = 1), we have following Lagrangian density whishinvariant under super symmetric
transformations (2.4):

L:%[E(Q[D(ﬂ W9 .. (2.10)

where the super potenti&l{¢) is an arbitrary function of the super fielg Its Taylor's

expansion in power df and 8 may be written in the following term keeping irewi equation
(2.10);

W(6) =W(q) +iB8W'(q)J +iB8W'(q) Y +88W' |q | A+W" (q) Ty .. (2.11)
where primes denote the derivatives with respeqt to

Using Berezin integration ruléd for integration of the anti- commuting variablese
write the action of equation (2.10) as

s:j dtL ... .. (2.12)
whereL is the Lagrangian given by
L= 1 .2 1 2 [ T ’ — an
=34 +—2A +—2(llJfD-llJfD)-AW (Q)———2 (@) @y -yP) ... (2.13)

Since the coordinat& does not have a kinetic term, it may be eliminafiean this
equation by using the condition.

oL
—:AW' :0 214
A () (2.14)
and then equation (2.13) reduces to
1, 0, — w2 o1
L=>¢g>+— - - =\ -
5 q 5 Wy -yy) 5 5 Ty -yg) . (2.15)
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which corresponds to Witten mo#88l The corresponding expression for Hamiltonian is
1 1., 1

H=>p*+Z[W'(@)]*+-W"(q[F ¢]

2 2 2 ... (2.16)

which may be decomposed into bosonic pirtwhich does not contain any fermionic degree
of freedom) and the fermionic paHgs (which does not contain any bosonic degree of
freedom);

H=Hg+He .. (2.17)
1 1.,
where Hg :E p2+E[\/V(q)]2
and He =—iW"(q)Y ... (2.18)
with Y :i—z[tp, ] .. (2.19)
Using these equations, we obviously have
[Y1 Q] = _in
v, Q" =-iQ"
{Q Q} =2H .. (2.20)
and [Q Q" =[H, QT =0,
Q2 - QTZ -0

Choosing different types of supersymmetric potdsitim equation (2.16) for the
Hamiltonian, energy eigen values and eigen funstiomy be derived for the quantum
mechanical states of supersymmetric harmonic asoii®, supersymmetric hydrogen
atom*!! and first order Dirac equatiéfl. Without making any specific choice of this potaht
in any specific model, we demonstrate here someactexistics of a supersymmetric quantum
mechanical system.

Equations (2.17) and (2.20) require
Q=[p—iw' (@l
and Q" =[p+iQW' (A . (223)

Let us assume th&, is an eigen value df with the corresponding eigen statey,
Q"=[p+iQW (9]
210" +Q'lin>= En>
or %[Q|n>++ QT|n>_: E, In> .. (2.24)
where In>, = QJr [n> ... (2.25)
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and [In>_=Q|n>

Equation (2.24) yields
En:%[Jr<n|n>Jr +_(njn>_1=0 ... (2.26)

showing that all eigen values of the operdtbare non-negative and hence the energy in
supersymmetric theory is always a positive quanityis eigen value is zero only when

QIn>=Q'|n>=0 .. (2.27)

which is necessary condition for the supersymmaefrizind state and hence the ground state
of a supersymmetric system is the true vacuuey gero particle state). The super symmetry
is spontaneously broken when the ground state gm&rgpn-zero.

Any state B >, satisfying the conditions

Q|B>0 ... (2.28)
and QJr |B>#0,
is bosonic state for which we have
H|B>=%QQWB> .. (2.29)
The fermionic statef > satisfies the conditions
Q'IF>=0
and QIF># 0 ... (2.30)
which give
HIF>=2QQ" [F > . (231)
Using these relations, it may readily ibe
HIF>=EY?|B> . (2.32)
and Q' |1B>=EY?|F >

showing that the supersymmetry pairs the bosonicfammionic states of all positive energy
states ofH. On the other hand, the zero energy states ar@aid in this way. Each state
annihilated byH is also annihilated byQ. These states form trivial one dimensional
supersymmetric multiplets. There exists the umgubstate (ground state) if and only if the
supersymmetry is an exact symmetry of the systemmother words, the ground states of zero
energy preserve super symmetry, while those oftipestnergy break it spontaneously. Thus
supersymmetry is unbroken if and only if the enesfjyacuum is exactly zero. In other words
in supersymmetric theories, the eneigyis equal to or greater than the magnitude of the
momentump for any state. Zero energy states must therefave Ip = 0. In super space of

states of zero momentum, the supersymmetric algelparticularly simple.
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In general, there may be an arbitrary numh!ﬁr:0 zero-energy bosonic states and

arbitrary numbemE:0 zero-energy fermionic states. In the most geredlalved form of the

spectrum, there are paired states of positive gnang there may be states, not necessarily
paired, of zero energy. As we vary the parametbesstates of non-zero energy move around
in energy. They move of course, in Bose-Fermi pdnge of these pairE(# 0) may move

down to E = 0. In this casagzo and n,':E=O both increase by one. On the other hand, with the

variation of parameters, some states of zero-enmiy gain non-zero energy. It is possible
for a single zero-energy state to acquire a non-ssrergy. As soon as it has a non-zero
energy, it must have a supersymmetric partner. \Whatoccur is that a pair of states (one
boson and one fermion) can move fré¥ 0 toE # 0. In this casen,'%zO and nEZO both
decrease by one. In either case the difference

ng:o - n,':E=o =0

E=0 _
£ V=

is not changed as one varies the parametemgﬁo—n 0, supersymmetry is not

broken spontaneously since eithﬁz0 or nEzoi 0 or both are non-zero. In any case, there
are some states of zero energy and hence supersgmsgnbroken.

Formally, the quantit)ngzo - n,':E=O may be regarded as trace of the operator

-1)f =exp (21,) .. (2.33)
whereJ; is the third component of angular momentum assediatith the state concerned.
The states of non-zero energy do not contributeedrace of (—i)because for every bosonic
state that contributes + 1 to this trace there iraion state of non-zero energy that

contributes —1 and cancels the bosonic contribufltrerefore (—J‘f)can be evaluated among

the non-zero states only and it is equahE)=0 - n,':Ezo;

tr(-1)" =n§0-nE0=n .. (2.34)
whereA is known as Witten index.

Supersymmetry is unbrokenA0. It is also unbroken i = 0 butn§= = nE="# 0.

If the supersymmetry charge is Hermitian operatotten as

_(0 ™
Q—[M o ] ... (2.35)

and states are arranged as

(22)
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we haveH = Q2 and then the zero-energy states are preciselgtétes annihilated bg. In
this case the Hilbert spadé of the theory can be splitted into bosonic andmfenic
subspaceblg andHr. Then the bosonic states annihilatedbgre state¥ in Hg that satisfy

MW =0 ... (2.36)
and the fermionic states annihilated®yare state®¥ in Hr that satisfy
M*W =0 .. (2.37)

The quantityA is therefore the difference of number of solutiof®quation (2.36) and
number of solutions of equation (2.37)

Let us make use of two Hermitian supersymmetricgdsQ1 andQ2 and define

Q. :%[QliiQZ] .. (2.38)

Then the supersymmetric algebra, in the zero mamerstector of Hilbert space, takes
the simple form given by

Q2=Q%=0
QQ +Q Q. =H ... (2.39)

whereQ+ annihilates at least half of the states in Hillspce A stateW is either annihilated
itself by Q-+, i.e

QW =0
or its supersymmetric partngr= Q+%¥ is annihilated by, i.e,
Qx=Qfw=0
Zero energy states are precisely the statmsch that

QX =0butx# Q+W¥ forany W.
The algebra (2.39) yields

[Q. H]=0

wherei, j = 1, 2. The simplest such system has 2 and involves a spin — %2 particle moving
on a line. The wave function is therefore a two porrent Pauli spinor,

®(x)
W(x) =£ J .. (2.41)
92(X)
The algebra (2.40) is satisfied for
Q1 =" [01p + 02 W(X)]
Q2 =% [o2p — 01 W(X)] .. (2.42)
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and H :%[ p? +W2(x) +hc3ijﬂ} .. (2.43)
X

whereg;j are Pauli spinor matrig = —ih 6/6x' A super symmetric state must satisfy.

Qw=0
Because of the general relation
QA =Q5= % H,
it is enough to satisfy the following relations dguper symmetric state;
Q¥=0
or op W = -ocoWW ... (2.44)
Multiplying it by a1 and using the property
0102=i03,
we get %’J = %W(x) o3P(X) ... (2.45)

Solution of this equation is
x W
WX =[expj0 dy%og} ¥ (0) .. (2.46)

which defines a supersymmetric state provided4$h&} is normalizable.

The supersymmetric Largangian (2.15), containinge#ic term D-type), mass term
(F-type) and interaction ternf{type), does not remain invariant when one intreduthe
gauge transformation. It must be reconstructed gawge covariant manner by introducing a
gauge field. Usually, gauge invariant interacticem® introduced on replacing ordinary
derivative by gauge covariant derivative. But thieekic term of chiral superfield does not
have any explicit derivative term visible in theasp of super-fields. This fact precludes the
method of replacing ordinary derivatives by gaugeatiant derivatives for the introduction
of local gauge invariance in supersymmetric theoryThe simplest supersymmetric
generalization of spin —1 gauge boson is that\wéaor super- field consisting of the spin — 1
along with spin — % component fields.

SUPERCONDUCTIVITY DUE TO SUPER SYMMETRY BREAKING

Eupersymmetry relates particles having differentnspfollowing different statistics,

demanding that there is equivalence between fesnéomd bosons. Such equivalence is not
observed in nature and hence supersymmetry (SUSWYId be broken spontaneously
preserving all its nice properties and attractigpezts of the theory and also suggesting the
presence of super-partners (with predictable pt@®rof all the fundamental particles of
Nature. Supersymmetric quantum mechanics servethexwetical laboratory for testing
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various ideas of supersymmetry breaking mechanisnhmigh energy physics and it has
enhanced the hope to get better insight in to teeh@nisms of supersymmetry breaking. In
unbroken supersymmetry there are no quadratic giveres and the finite induced mass
splittings are determined through the mechanissupersymmetric break down.

A superconductive phase transition is always aculfor as a spontaneous breaking of
supersymmetry. It has recently been shi6#that color superconductivity dynamically takes
place at non-SUSY vacuum due to spontaneous bigakibaryon number symmetry as the
consequence of3U(2) strong gauge dynamics in the vacuum structufeNo= 2
supersymmetric QCD based on the gauge gr8u@?) in the presence of flavours of
hypermultiplet quarks.

In general any boundary condition or any environnwvetmch would distinguish between
bosons and fermions, would break supersymmetrpahticular, since bosons and fermions
respond differently to temperature, a supersymmetyistem immersed in a thermal bath
would loosesupersymmet?y?3l. Finite temperature supersymmetry breaking cao &ls
visualized by applying the properties of thermdefidynamics (TFD) which is an alternative
way*4l of making calculations in quantum mechanics. Ohthe order parameter for SUSY
breaking at finite temperature is the thermal grbatate energy. Its non-vanishing value is a
sure test of breakdown of SUSY and hence the oecoer of high —Tc superconductivity.
One of the important criteria for spontaneous bidealn of SUSY at non-zero temperature is
that the thermal average of at least one auxilfaalg of supersymmetric theory does not
vanisi*®l. This criterion has enhanced the hope to restt/8YSat finite temperature. The
spontaneous breaking of this restored SUSY atefitdmperature would lead to high-T
superconductivity.

plSCUSSION

ut is interesting to note that of all the graded kigebra, only the super-algebra,

described by equation (2.1), generates the symesetfi S-matrix consistent with relativistic
quantum field theory. Equations (2.6) and (2.7)dilie supercharge operators and equation
(2.8) give the general supersymmetric Hamiltoni@opersymmetric Lagrangian density is
given by equation (2.10) with the supersymmetrimt§ptial given by eqgn. (2.11). Under the
condition (2.14), this Lagrangian density leadstite form given by eqgn. (2.15) which
corresponds to Witten modi8l. Equation (2.26) show that all eigen values of the
supersymmetric Hamiltonian operator H, given by.€@rl6), are non-negative and hence the
energy in supersymmetric theory is always a pasitquantity. Equation (2.27) is the
necessary condition for the supersymmetric grouatksand hence the ground state of a
supersymmetric system is the true vacuum (i.e. particle state) and the super symmetry is
spontaneously broken when the ground state enesgpon-zero. Any state satisfying
condition (2.28) is bosonic state for which we hageation (2.29) while any fermionic state,
given by eqn. (2.31) satisfies conditions (2.3@u&ions (2.32) demonstrate that the operator
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Q transforms statesH > into states B > of the eigen energf and the operat0|QJr

transforms states§ > into the statesH >, showing that the supersymmetry pairs the basoni
and fermionic states of all positive energy staib$l. These equations also show that the
ground states of zero energy preserve super symmdiile those of positive energy break it
spontaneously. Thus supersymmetry is unbroken & amly if the energy of vacuum is
exactly zero. Equation (2.34) gives Witten Inddwe honzero of value of which ensures the
supersymmetry.
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