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The study of supersymmetric quantum theory of 
superconductivity has been undertaken in a broader 
sense.  The main features of supersymmetric quantum 
mechanics have been derived in the straight forward 
manner and the consequences of supersymmetric 
breaking have been analyzed in terms of possibility of 
occurrence of superconductivity, dual superconductivity 
and color superconductivity.  

IIIINTRODUCTION 

The discovery of high temperature superconductivity in several Cu-oxide systems have 

caused great excitement and led to many proposals and models to explain this phenomenon. 
There is still no consensus among the experts about the model representing correct starting 
point and as such the microscopic theory of superconductivity still remains controversial. On 
the other hand, the phenomenological theory of superconductivity at microscopic level has 
been carried out[1-5] in the framework of local gauge invariance, Quantum Chromo Dynamics 
(QCD)[6-9] and dynamical as well as spontaneous breaking[10-16] of symmetry (DSB and SSB). 
Through these efforts it became clear that there exists a sort of parallelism between the 
Condensed Matter Physics (CMP) and High Energy Physics (HEP). Gauge theories in four 
dimensions can manifest themselves in three phases, Coulomb, Higgs and Confinement 
Phases. As the parameters of the theory are varied, a phase transition between them can take 
place. A gauge in Coulombian phase has a massless photon and hence it is subject to standard 
electric-magnetic duality. 

Quantum Chromo Dynamics (QCD) is the most favored color gauge theory of strong 
interactions whereas superconductivity is a remarkable manifestation of quantum mechanics 
on a truly macroscopic scale[17]. In the process of current understanding of 
superconductivity[18,19]

, Rajput et al have conceived the notion of its hopeful analogy with 
QCD. The essential clues for gauge symmetry breaking emerged from the crucial theoretical 
framework of superconductivity formulated by Bardeen, Cooper and Schrieffer (BCS)[20] by 
demonstrating that the ground state of an assembly of mutually attracting fermions is 
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separated by an energy gap from the lower excited level of energy spectrum. Moreover, other 
salient features of superconductivity i.e., the Meissner effect and the flux quantization, 
provided the vivid models for actual confinement mechanism in QCD. In this 
connection.Nambu and others[3,4,21] suggested that the color confinement could occur in QCD 
in a way similar to magnetic flux confinement in superconductors.  

In general the thermal fluctuations restore various spontaneously broken inter-symmetries 
but the fermions and bosons respond differently to thermal fluctuations and hence it is natural 
to speculate that any supersymmetric system immersed in a thermal bath should loose 
supersymmetry[22,23]. This problem has drawn many controversies [24-26] in connection with the 
resolution of mingled quest of supersymmetry breaking at finite temperature. The desire to 
restore this beautiful symmetry at a finite temperature and then to break it spontaneously to 
explore the superconductivity at high temperature has motivated some authors[27-29] to propose 
various models of restoration of supersymmetry at finite non-zero temperature. Keeping in 
view the proposal[30] that the high temperature superconductivity must have its origin in the 
gauge theoretical formulations, the superconductivity at high temperature may be identified as 
the consequence of spontaneous breaking of supersymmetry restored at non-zero temperature. 
This question of restoration of super-symmetry (and hence manifestation of 
superconductivity) has been examined in principle[27] by constructing the temperature 
dependent supercharge and Hamiltonian from their expressions at zero temperature. This 
study demonstrates that the study of supersymmetry at finite temperature provides a 
convincing argument to understand the behavior of superconductor at high temperature. In the 
present paper the study of supersymmetric quantum theory of superconductivity has been 
undertaken in a broader sense.  The main features of supersymmetric quantum mechanics 
have been derived in the straightforward manner and the consequences of supersymmetric 
breaking have been analyzed in terms of possibility of occurring of superconductivity, dual 
superconductivity and color superconductivity.  

SSSSUPERSYMMETRIC QUANTUM MECHANICS               

Supersymmetry is a relativistic symmetry between fermions (i.e, the mathematical 

objects which on quantization are associated with an anti-commutation algebra) and bosons 
(i.e. the objects where quantization is associated with commutator algebra). In its simplest 
form, supersymmetric algebra is an extension of usual Poincare albegra. It is such a graded 
Lie algebra[31,32] which involves both commutation and anti-commutation relations, plays a 
unique role in particle physics and provides a fusion between space-time and internal 
symmetries overcoming no-go theorm[33] about the possible symmetries of S-matrix. This 
graded algebra or superalgebra, in its simplest form, is generated by fourteen Hermition 

operators which include ten generators of Poincare group (Pµ and Jµν) and four self-conjugate 

spin –1/2 anti-commuting generators  corresponding to Majorana spinor charge Qα (α = 1…4) 
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known as super-translations. Apart from usual commutation rules for Poincare generator, 
these generators also satisfy the following relations [31,32]. 

     [ , ] 0;Q Pα µ =  

     
1

[ , ] ( )
2

i iQ J Qβ
α µν µν α β= σ  

     
1

[ , ] ( )
2

i iQ J Qβ
α µν µν α β= σ  

     { , } 2 ( )ji ijQ J C Pµ
α µ αββ = γ δ  ... (2.1) 

where bracket [ ] denotes commutation while { } denotes anti-commutation and 

     
1

[ ]
2µν µ ν ν µσ = σ σ − σ σ  ... (2.2)  

and C is charge conjugation matrix. The other symbols have their usual meaning. Of all the 
graded Lie algebra, only the super-algebra, described by equation (2.1), generates the 
symmetries of S-matrix consistent with relativistic quantum field theory. 

Starting with the pioneer work of Witten[34], it has been recognized that supersymmetry 
could be applied to quantum mechanics as a limiting case (N = 1) of field theory and the 
subsequent development of supersymmetric quantum mechanics provides us with the realistic 
model of particle physics which do not suffer with gauge hierarchy problem besides its 
intrinsic mathematical interest. Rajput et al[35-37], have developed supersymmetric quantum 
mechanics in complex space-time. In order to develop it in a straight forward manner, let us 
construct super space formulation by extending ordinary time variable t to new super-time 

involving two time variables θ and θ , where the covariant derivatives are constructed as 

follows: 

     D i
tθ

∂ ∂= − θ
∂ ∂

 

     D i
tθ

∂ ∂= − θ
∂ ∂

 ... (2.3) 

The corresponding supersymmetric transformations are 

     ( )t t t i′→ = − θ ∈ − ∈ θ  

     ′θ → θ = θ + ∈  

     θ → θ = θ + ∈  ... (2.4) 

where ∈  and ∈  are constant anti-commuting parameters. We can then construct the 
supersymmetry generators as 

     exp { ( )}G i Q Q+= ∈ + ∈  ... (2.5) 
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where    Q i
t

∂ ∂= − θ
∂θ ∂

 ... (2.6) 

and     Q i
t

+ ∂ ∂= + θ
∂θ ∂

 ... (2.7) 

are non-Hermitian supercharge operators. From equations (2.6) and (2.7), we obviously have 

   † † †{ , } 2 2 ,q Q QQ Q Q i H
t

∂= + = =
∂

 ... (2.8) 

where H is super symmetric Hamiltonian. The super position is then constructed as 

   ( , , } ( ) ( ) ( ) ( )Z t q t i t i t A tθ θ = + θψ + θψ + θθ  ... (2.9) 

where the usual position variable q(t) and the function A(t) are bosonic variables while Ψ(t) 

and ( )tψ  are the fermionic variables. This superposition and the corresponding super-field 

φi(t, θ, �̅) with i as anti-symmetric index, along with the covariant derivatives (2.3) acting on 

them, are sufficient to form supersymmetric Lagrangian. With single real super field φ          

(i.e. N = 1), we have following Lagrangian density which is invariant under super symmetric 
transformations (2.4): 

   
1

[ ][ ] ( )
2

L D D W= φ φ − φ  ... (2.10) 

where the super potential W(φ) is an arbitrary function of the super field φ. Its Taylor’s 

expansion in power of θ and θ  may be written in the following term keeping in view equation 

(2.10); 

   ( ) ( ) ( ) ( ) | | ( )W W q i W q i W q W q A W q′ ′ ′ ′′θ = + θ ψ + θ ψ + θθ + ψψ  ... (2.11) 

where primes denote the derivatives with respect to q.  

Using Berezin integration rules[38] for integration of the anti- commuting variables, we 
write the action of equation (2.10) as 

   S dtL= ∫ ...  ... (2.12) 

where L is the Lagrangian given by  

   2 21 1 1
( ) ( ) ( ) ( )

2 2 2 2

i
L q A AW q W q′ ′′= + + ψψ − ψψ − = − ψψ − ψψ& &&  ... (2.13) 

Since the coordinate A does not have a kinetic term, it may be eliminated from this 
equation by using the condition.  

   ( ) 0
L

AW q
A

∂ ′= =
∂

 ... (2.14) 

and then equation (2.13) reduces to  

   ... (2.15) 

/2
21 1

( ) "( )
2 2 2 2

i W
L q Wψ ψ ψ ψ ψ ψ ψ ψ= + − − − −& &&
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which corresponds to Witten model[39]. The corresponding expression for Hamiltonian is  

    ... (2.16) 

which may be decomposed into bosonic part HB (which does not contain any fermionic degree 
of freedom) and the fermionic part HF (which does not contain any bosonic degree of 
freedom); 

          H = HB + HF ... (2.17) 

where      2 ' 21 1
[ ( )]

2 2BH p W q= +  

and     ( )FH iW q Y′′= −  ... (2.18) 

with         [ , ]
2

i
Y = ψ ψ  ... (2.19) 

Using these equations, we obviously have 

    [Y, Q] = – iQ, 

     † †[ , ]Y Q iQ= −  

    †{ , } 2Q Q H=  ... (2.20) 

and    † †[ , ] [ , ] 0,Q Q H Q= =  

          2 †2 0Q Q= =  

Choosing different types of supersymmetric potentials in equation (2.16) for the 
Hamiltonian, energy eigen values and eigen functions may be derived for the quantum 
mechanical states of supersymmetric harmonic oscillator[40], supersymmetric hydrogen 
atom[41] and first order Dirac equation[42]. Without making any specific choice of this potential 
in any specific model, we demonstrate here some characteristics of a supersymmetric quantum 
mechanical system. 

Equations (2.17) and (2.20) require 

     � = [� − �	
��
]�� 

and    † [ ( )]Q p iQW q′= + ψ  ... (2.23) 

Let us assume that En is an eigen value of H with the corresponding eigen state | n >, 

     † [ ( )]Q p iQW q′= + ψ  

     † †1
[ ] |

2 nQQ Q Q n E n+ > = >  

or    †1
[ | | |

2 nQ n Q n E n+ −> + > = >  ... (2.24) 

where    †| |n Q n+> = >  ... (2.25) 

2 21 1 1
[ '( )] "( )[ , ]

2 2 2
H p W q W q ψ ψ= + +
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and     | |n Q n−> = >  

Equation (2.24) yields 

   
1

[ | ( | ] 0
2nE n n n n+ + − −= < > + > ≥  ... (2.26) 

showing that all eigen values of the operator H are non-negative and hence the energy in 
supersymmetric theory is always a positive quantity. This eigen value is zero only when 

   †| | 0Q n Q n> = > =  ... (2.27) 

which is necessary condition for the supersymmetric ground state and hence the ground state 
of a supersymmetric system is the true vacuum (i.e., zero particle state). The super symmetry 
is spontaneously broken when the ground state energy is non-zero. 

Any state | B >, satisfying the conditions  

     Q | B > 0 ... (2.28) 

and                † | 0,Q B > ≠  

is bosonic state for which we have 

                      †1
| |

2
H B QQ B> = >  ... (2.29)  

The fermionic state | F > satisfies the conditions 

            † | 0Q F > =  

and              Q | F > ≠  0 ... (2.30) 

which give 

     †1
| |

2
H F QQ F> = >  ... (2.31)  

Using these relations, it may readily be i.e. 

     1/2| |H F E B> = >  ... (2.32)  

and     † 1/2| |Q B E F> = >  

showing that the supersymmetry pairs the bosonic and fermionic states of all positive energy 
states of H. On the other hand, the zero energy states are not paired in this way. Each state 
annihilated by H is also annihilated by Q. These states form trivial one dimensional 
supersymmetric  multiplets. There exists the unpaired state (ground state) if and only if the 
supersymmetry is an exact symmetry of the system.  In other words, the ground states of zero 
energy preserve super symmetry, while those of positive energy break it spontaneously. Thus 
supersymmetry is unbroken if and only if the energy of vacuum is exactly zero. In other words 
in supersymmetric theories, the energy E is equal to or greater than the magnitude of the 

momentum p  for any state. Zero energy states must therefore have 0.p =r
 In super space of 

states of zero momentum, the supersymmetric algebra is particularly simple. 
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In general, there may be an arbitrary number 0E
Bn =  zero-energy bosonic states and 

arbitrary number 0E
Fn =  zero-energy fermionic states. In the most general allowed form of the 

spectrum, there are paired states of positive energy and there may be states, not necessarily 
paired, of zero energy. As we vary the parameters, the states of non-zero energy move around 

in energy. They move of course, in Bose-Fermi pairs. One of these pairs (E ≠ 0) may move 

down to E = 0. In this case 0E
Bn =  and 0E

Fn =  both increase by one.  On the other hand, with the 

variation of parameters, some states of zero-energy may gain non-zero energy.  It is possible 
for a single zero-energy state to acquire a non-zero energy. As soon as it has a non-zero 
energy, it must have a supersymmetric partner. What can occur is that a pair of states (one 

boson and one fermion) can move from E = 0 to E ≠ 0. In this case 0E
Bn =  and 0E

Fn = both 

decrease by one.  In either case the difference 

     0 0 0E E
B Fn n= =− =  

is not changed as one varies the parameters. If 0 0 0,E E
B Fn n= =− ≡  supersymmetry is not 

broken spontaneously since either 0E
Bn =  or 0E

Fn = ≠ 0 or both are non-zero.  In any case, there 

are some states of zero energy and hence supersymmetry is unbroken. 

Formally, the quantity 0E
Bn =  – 0E

Fn =  may be regarded as trace of the operator 

     ( 1) exp (2 )f
ziJ− = π  ... (2.33) 

where Jz is the third component of angular momentum associated with the state concerned. 

The states of non-zero energy do not contribute to the trace of (–1)f because for every bosonic 

state that contributes + 1 to this trace there is a fermion state of non-zero energy that 

contributes –1 and cancels the bosonic contribution. Therefore (–1)f can be evaluated among 

the non-zero states only and it is equal to 0E
Bn =  – 0E

Fn = ;  

     0 0( 1) f E E
B Ftr n n= =− = − = ∆  ... (2.34) 

where ∆ is known as Witten index. 

Supersymmetry is unbroken if ∆≠0. It is also unbroken if ∆ = 0 but 0E
Bn =  = 0E

Fn = ≠ 0. 

If the supersymmetry charge is Hermitian operator written as  

     
*0

0

M
Q

M

 
=   
 

 ... (2.35) 

and states are arranged as 

     
|

|

B

F

> 
 > 

, 
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we have H = Q2 and then the zero-energy states are precisely the states annihilated by Q. In 

this case the Hilbert space H of the theory can be splitted into bosonic and fermionic 

subspaces HB  and HF. Then the bosonic states annihilated by Q are states Ψ in HB that satisfy    

     MΨ = 0 ... (2.36) 

and the fermionic states annihilated by Q are states Ψ in HF that satisfy 

     M*Ψ = 0 ... (2.37) 

The quantity ∆ is therefore the difference of number of solutions of equation (2.36) and 
number of solutions of equation (2.37) 

Let us make use of two Hermitian supersymmetric charges Q1 and Q2 and define 

     1 2
1

[ ]
2

Q Q iQ± = ±  ... (2.38) 

Then the supersymmetric algebra, in the zero momentum sector of Hilbert space, takes 
the simple form given by 

              2 2 0Q Q+ −= =  

     Q Q Q Q H+ − − ++ =  ... (2.39) 

where Q+ annihilates at least half of the states in Hilbert space. A state Ψ is either annihilated 

itself by Q+, i.e 

     Q+Ψ = 0  

or its supersymmetric partner χ = Q+Ψ is annihilated by Q+, i.e., 

     2 0Q Q+ +χ = ψ =  

Zero energy states are precisely the states χ such that  

     Q+ χ = 0 but  χ ≠  Q+ Ψ for any   Ψ. 

The algebra (2.39) yields 

     [ , ] 0iQ H =  

and     [ , ]i j ijQ Q H= δ  ... (2.40) 

where i, j = 1, 2. The simplest such system has N = 2 and involves a spin – ½ particle moving 
on a line. The wave function is therefore a two component Pauli spinor, 

     
1

2

( )

( )
( )

x

x
x

φ

φ

 
ψ =   

 
 ... (2.41) 

The algebra (2.40) is satisfied for  

     Q1 = ½ [σ1 p + σ2 W(x)] 

     Q2 = ½ [σ2 p – σ1 W(x)] ... (2.42)  
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and     2 2
3

1
( )

2

dW
H p W x

dx
 = + + σ  

h  ... (2.43) 

where σi are Pauli spinor matrix � = −�ℏ � ��� . A super symmetric state must satisfy. 

     Qi Ψ = 0 

Because of the general relation 

     2 2
1 2

1
,

2
Q Q H= =  

it is enough to satisfy the following relations by a super symmetric state Ψ;  

     Q1 Ψ = 0  

or    σ1p Ψ = – σ2WΨ ... (2.44) 

Multiplying it by σ1 and using the property  

     σ1σ2 = iσ3 , 

we get     3
1

( ) ( )
d

W x x
dx

ψ = σ ψ
h

 ... (2.45) 

Solution of this equation is  

     30

( )
( ) exp (0)

x W y
x dy

 ψ = σ ψ 
 

∫
h

 ... (2.46) 

which defines a supersymmetric state provided that Ψ(x) is normalizable. 

The supersymmetric Largangian (2.15), containing kinetic term (D-type), mass term      
(F-type) and interaction term (F-type), does not remain invariant when one introduces the 
gauge transformation. It must be reconstructed in a gauge covariant manner by introducing a 
gauge field. Usually, gauge invariant interactions are introduced on replacing ordinary 
derivative by gauge covariant derivative. But the kinetic term of chiral superfield does not 
have any explicit derivative term visible in the space of super-fields. This fact precludes the 
method of replacing ordinary derivatives by gauge covariant derivatives for the introduction 
of local gauge invariance in supersymmetric theory.  The simplest supersymmetric 
generalization of spin –1 gauge boson is that of a vector super- field consisting of the spin – 1 
along with spin   – ½ component fields. 

SSSSUPERCONDUCTIVITY DUE TO SUPER SYMMETRY BREAKING 

Supersymmetry relates particles having different spins following different statistics, 

demanding that there is equivalence between fermions and bosons. Such equivalence is not 
observed in nature and hence supersymmetry (SUSY) should be broken spontaneously 
preserving all its nice properties and attractive aspects of the theory and also suggesting the 
presence of super-partners (with predictable properties) of all the fundamental particles of 
Nature. Supersymmetric quantum mechanics serves as theoretical laboratory for testing 



An International Peer Reviewed Journal of Physical Science 

78 Acta Ciencia Indica, Vol. XLVIII-P, No. 1 to 4 (2022) 

various ideas of supersymmetry breaking mechanism in high energy physics and it has 
enhanced the hope to get better insight in to the mechanisms of supersymmetry breaking. In 
unbroken supersymmetry there are no quadratic divergences and the finite induced mass 
splittings are determined through the mechanism of supersymmetric break down.  

A superconductive phase transition is always accounted for as a spontaneous breaking of 
supersymmetry. It has recently been shown[43] that color superconductivity dynamically takes 
place at non-SUSY vacuum due to spontaneous breaking of baryon number symmetry as the 
consequence of SU(2) strong gauge dynamics in the vacuum structure of N = 2 
supersymmetric QCD based on the gauge group SU(2) in the presence of flavours of 
hypermultiplet quarks. 

In general any boundary condition or any environment which would distinguish between 
bosons and fermions, would break supersymmetry. In particular, since bosons and fermions 
respond differently to temperature, a supersymmetric system immersed in a thermal bath 
would loosesupersymmetry[22,23]. Finite temperature supersymmetry breaking can also be 
visualized by applying the properties of thermo-field-dynamics (TFD) which is an alternative 
way[44] of making calculations in quantum mechanics. One of the order parameter for SUSY 
breaking at finite temperature is the thermal ground state energy. Its non-vanishing value is a 
sure test of breakdown of SUSY and hence the occurrence of high – TC superconductivity.  
One of the important criteria for spontaneous breakdown of SUSY at non-zero temperature is 
that the thermal average of at least one auxiliary field of supersymmetric theory does not 
vanish[45]. This criterion has enhanced the hope to restore SUSY at finite temperature. The 
spontaneous breaking of this restored SUSY at finite temperature would lead to high-Tc 
superconductivity. 

DDDDISCUSSION 

 It is interesting to note that of all the graded Lie algebra, only the super-algebra, 

described by equation (2.1), generates the symmetries of S-matrix consistent with relativistic 
quantum field theory. Equations (2.6) and (2.7) give the supercharge operators and equation 
(2.8) give the general supersymmetric Hamiltonian. Supersymmetric Lagrangian density is 
given by equation (2.10) with the supersymmetric [potential given by eqn. (2.11).  Under the 
condition (2.14), this Lagrangian density leads to the form given by eqn. (2.15) which 
corresponds to Witten model[39]. Equation (2.26) show that all eigen values of the 
supersymmetric Hamiltonian operator H, given by eqn. (2.16), are non-negative and hence the 
energy in supersymmetric theory is always a positive quantity. Equation (2.27) is the 
necessary condition for the supersymmetric ground state and hence the ground state of a 
supersymmetric system is the true vacuum (i.e. zero particle state) and the super symmetry is 
spontaneously broken when the ground state energy is non-zero. Any state satisfying 
condition (2.28) is bosonic state for which we have equation (2.29) while any fermionic state, 
given by eqn. (2.31) satisfies conditions (2.30). Equations (2.32) demonstrate that the operator 
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Q transforms states | F > into states | B > of the eigen energy E and the operator †Q  

transforms states | B > into the states | F >, showing that the supersymmetry pairs the bosonic 
and fermionic states of all positive energy states of H. These equations also show that the 
ground states of zero energy preserve super symmetry, while those of positive energy break it 
spontaneously. Thus supersymmetry is unbroken if and only if the energy of vacuum is 
exactly zero. Equation (2.34) gives Witten Index, the nonzero of value of which ensures the 
supersymmetry.  
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