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The study of condensation of monopoles and the resultant
state of chromo-magnetic superconductivity has been
undertaken in restriced chromodynamics (RCD) in SU(3)
gauge theory. It has been shown that the resultant
Lagrangian leads to dyonic condensation, color
confinement and dual superconductivity with the presence
of two scalar modes and two vector modes.

“NTRODUCTION

he condensation of monopoles incorporates the sfateagnetic superconductivity

and the notion of chromo-magnetic supercondifttahere the Meissner effect confining
magnetic field in ordinary superconductivity woutdd replaced by dual Meissner effect which
would confine the color electric field. It leadsdaorrespondence between quantum chromo-
dynamic situation and chromo-magnetic supercondugthere the Abelian electric field is
squeezed by solenoidal monopole cufféhand the color confinement takes place due to dual
Meissner effect caused by monopole condensationgusiis idea of confinement of electric
flux due to condensation of magnetic monopoles,ual djauge theory called restricted
chromodynamics RCD) has been constructed out QCD in SU(2) theor®l. This dual
gauge theory incorporates a dynamical dyoniccoratem®% and exhibits the desired dual
dynamics that guarantees the confinement of dyguiark through generalized Meissner
effect. ThisRCD has been extracted fro@CD by imposing an additional internal symmetry
named magnetic symmefry! which reduces the dynamical degrees of freedorteryits
have been ma#é'3 to establish an analogy between superconductarity the dynamical
breaking of magnetic symmetry, which incorporatesdonfinement phase RCD vacuum.

In this paper the formulation d®CD has been extended in the light of the concept of
chromo-dyonic superconductor and it has been shiwah in the confinement phase the
dyonic condensation of vacuum gives rise to the gleriscreening current which confines
both the chromo-electric and chromo-magnetic flutkesugh the mechanism of generalized
Meissner effect (the usual one and its dual).Extenthe RCD in the realistic color gauge

group SU(3) by using two internal killing vectors as-like octet and\s-like octet, theRCD
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Lagrangian ofSU(3) theory has been obtained in magnetic gaugeitamals been shown to
lead to dyoniccondensation, color confinement dredresulting superconductivity i8J(3)
theory with the presence of two scalar modes armdvisetor modes as the consequence of the
presence of two magnetic octefs-{ike and Az-like). It has been shown that due to the
dynamical breaking of magnetic symmetry the vacagquires the properties similar to those
of relativistic superconductor where the quantueid§ generate non-zero expectation values
and induce screening currents.

%AGNETIC SYMMETRY AND RESTRICTED CHROMODYNAMICS (RCD) IN

SU(3) GAUGE THEORY.

M athematical foundation of restricted chromodynanfiRED) is based on the fact that

a non-Abelian gauge theory permits some additiangérnal symmetryi.e, magnetic
symmetr{?8l, Unified spacé® of non-Abelian gauge theory may be thought of as

P=MOG .. (2.2)
which is (4 +n) dimensional manifold wher®! is 4-dimensional external space a&din
general, is then-dimensional internal space, generatednldilling vectorsg; satisfying the
conditions

(&, Ej] = fijkEk ..(2.2)
and EEi gag =0 .. (2.3)
wheregas (A, B = 0, ... n + 3) is the metric of manifoldP with gauge symmetry as n
dimensional isometf#*°! and £g, is the Lie derivative along;. In equation (2.2) fi}‘ is

internal structure parameter, the four dimensiguatient spac® = P/G is the base manifold
and P is the principal fibre bundle. It has been conjeetl that the dynamics of magnetic
monopole is effectively described by a gauge thd@sed on magnetic symmetry which has
the topological meaning. This magnetic symmetrgrisadditional internal isomet#y having

some additional Killing vector fields of generalizgauge theory. These additional Killing
vectors are purely internal ones and hence commititealready existing fieldsfi of G. The
internal isometryH is Cartan’s subgroup o6& and commutes with it. Let the additional

Killing vector fields bema (a =1, 2, ..k = dimH). Then we have

m, =m, &, (=12,3)

(&,my) =0,
(Ma.my) = £ em,
Ema9ag =0 .. (2.4)

where £, is the Lie derivative along the direction of maimeymmetry. Since the isometry
H commutes with the right isomet@, it is called the left isometry. The topologicaagmetic
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charge associated with monopoles corresponds teléments of second homotopic group
T (G/H).

Let us start with the construction of the restdctdromodynamics ii8U(3) limit. The
magnetic structure of this theory may be describgdwo internal Killing vectors which
commute with each other and also with the gaugersstny itself and are normalized to unity
according to the following equations :

AP =1 and M? =1 .. (2.5)
These Killing vectors are as- like octetm and its symmetric product
A = /3 (Mxm) ... (2.6)

which is Ag-like. The restricted theory (RCD) may be extracfesm the full QCD by
imposing the extra internal symmetries. Let usrigsthe dynamical degrees of freedom of
the theory (while keeping the full gauge degreedreédom intact) by imposing the extra

magnetic symmetry which restricts the generalizedtAbelian gauge potentie\?;l to satisfy

the constraints given by
D, =0, M+i|q|¥; xm=0 .. (2.7)
and D, =9,/ +i|q|¥; xm =0

where D, is covariant derivative for the gauge group. Tiiee dyonic generalized four-
potential

V,=4,- B,
u u u
of QCD inSU(3) gauge theory may written as follows in RSGD(3) gauge theory:

Vi ==V =iV mw{ﬁl]mxaum(ﬁ}ﬁ xd,M ... (2.8)

where MV = =iV, .. (2.9)
and MG ==V, ... (2.10)

are, respectivelyhs-like and Ag-like unrestricted Abelian components of the resdd
potential. In the magnetic gaugk and ' become the space-time independé@tand 28
respectively, where

and &= ... (2.10)

P O O 0O oo oo

O O O o okrr oo
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Then the generalized potential of equation (2.8y bmwritten as

Vo = (—iV W) B+ (1Y, +We ) &g . (2.11)

where W, and WLj may be identified as the potentials of topologidgbns in magnetic

symmetry ofSU (3) gauge theory. These are entirely fixedrhyand v, respectively, up to
Abelian gauge degrees of freedom. The generaliedidtrength can, then, be constructed as

. P
Gy =Gy +_[)‘7T1 x¥]

lal
= (iR +Hpy) &3+ (-IF [y +H ) &g . (2.12)
where S =Vo,u Vv
Fav =Vo.u ~Viwv: . (2.13)
™ =[ﬁ] . [0, 3, - (2.14)
G =0,V —0, % .. (2.15)

v / *
F'lav =0,W =0V 15
and H'y =0,W'\-0W, ... (2.16)
In this theory the gauge fields are expressibleeims of purely time-like non-singular
potentialsvﬁ and V L , Wy andW .. Then in the absence of quarks or any coloredcbljee
RCD Lagrangian o8U(3) theory in magnetic gauge may be written as
L—EH HW +iLH' H'W +—1[H H*W +H JH*™ +3 D <|>|2
T 4 W 4t W Hv M
1 P * % o
+E|Du<p|2—V(cp 0.9* @) ... (2.17)
where Do =(9, +i|q[W,)¢;
Do '=0u+ilqaW 35 ... (2.18)

and the dyonic field operatore and ¢ correspond tom and m respectively. Here

V (¢r@, ¢g*@) is the effective potential introduced to indube tdynamical breaking of the
magnetic symmetry.



An International Peer Reviewed Journal of Physical Science
Acta Ciencia Indica, Vol. XLVIII-P, No. 1 to 4 (2022) 65

pYONlC CONDENSATION AND SUPERCONDUCTIVITY IN RCD IN SU(3)
GAUGE THEORY

he Langarian (2.17) of RCD in magnetic gauge inabgence of quark or any colored
object looks like Ginsburg—Landau Lagrangian foe theory of superconductivity if we
identify the dyon field as an order parameter drelgeneralized potentislij, as the electric
potential. The dynamical breaking of the magneyimmetry, due to the effective potential
V(g* @, g*q@), induces the dyonic condensation of the vacuuhis §ives rise to the dyonic
supercurrent, the real part of which (electric tibment) screens the electric flux which
confines the magnetic color charge (through usuelsher effect) and the imaginary part
(i.e. magnetic constituent) of this supercurrenesns the magnetic flux that confines the
electric color iso-charges (due to dual MeissnéectX. In other words, the dual Meissner
effect expels the electric field between statimooéd charges into a narrow flux tube, giving
rise to a linearly rising potential and to confiremh This Lagrangian leads to dyonic
condensation, color confinement and the resultingl duperconductivity ir8U(3) theory.
Lagrangian (2.17) has been obtained from the stdn8d(3) Lagrangian and hence the
desired dynamical breaking of magnetic symmetighigined by fixing the following form of
the effective potential

V(¢ @ ¢* @)= —n(1p]” +|¢'|* = v* —v"* - (3.2
wheren is a constanty andv’ are the expectation values of Higgs fiefdand¢’ :
Vv = <> ... (3.2
and V' = <@>o ... (3.3)
In Prasad-Sommerfeld linfit
V(g ¢ ¢*¢) =0 .- (3.4)
butv # 0 andv’ = 0 ... (3.5)

In this limit, the dyons have lowest possible egyefgr given electric and magnetic
chargese and g respectively. Due to the presence of two magnatictors m and m' in
U(3) theory, we have here two scalar modes with esass

Me=+(8n) v and Mg =V(8n) v' ... (3.6)
and two vector modes with masses given by

Mp = |qlvandMp, = |q|v' .. (3.7)
respectively.

With these two mass scales the coherence leregdmsle’ and the penetration length
and)\’,corresponding to the two magnetic vectonsand i, are given by

£=1Mp= UN@EN) V] ; € = IMg = L/[(Bn)V] .. (3.8)
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and A=1IMp=1/(flv); AN =1IMp =1/ (|g)") .. (3.9)

The region in phase diagram space, where A and €' = A’ constitutes the border
between type-l and type-Il superconductors. It rhayachieved for the following values of
constantn of the effective potential given by eqgn. (3.1):

2 2

2
n=1l=t .. (3.10)
wheree andg are the electric and magnetic charges of dyon.

The superconductivity provides vivid model for thetual confinement mechanism and
the color confinement is due to the generalized skter effect caused by dyonic
condensation. The dual superconductivity model gsed by Alessandret all*” places the
Yang-Mills vacuum close to the border between tymed type-ll superconductors and
marginally on the type-Il side.

Discussion

quation (2.7) give the magnetic structure of retd chromo-dynamics iBU(3)

theory where two internal Killing vectodglike octet and\s.octet given by equation (2.6)
have been introduced keeping in view the facts dhgtsystem possessin@d(3) symmetry
suffers with a non-Abelian magnetic instability fire 4-7 gluond'®! and the 8 gluon
corresponds to the diagonal generator in color &pé&t Equation (2.11) and (2.12) give
restricted generalized potential and gauge fielebngth respectively in the magnetic
symmetry ofSU(3) gauge theory, where the space-time indeperm#ates; andes are given

by equations (2.10). The RCD Lagrangiansuf(3) theory in the absence of quarks or an
colored object, is given by equation (2.17). Thagtangian leads to dyonic condensation,
color confinement and the resulting dual supercotidity in SU(3) theory with the presence
of two scalar modes and two vector modes as thesecprence of the presence of two
magnetic octetXz-like andAg-like) in RCD of SU(3) theory. The masses of these two scalars
and two vector modes are given by equations (308) equations (3.7) respectively. The
coherence lengthsande’ and the penetration lengthandA’ are given by equations (3.8) and

equations (3.9) respectively. The mases of scatatesMgy andMg determine how fast the

perturbative vacuum around a color source reachedensation and the masdés and Mp'
of vector modes determine the penetration lengthiseocolored flux.

The Lagrangian, given by equation (2.17) for RCDrniagnetic gauge in the absence of
quarks or any coloured objects, establishes anogpabetween superconductivity and the
dynamical breaking of magnetic symmetry which ipawates the confinement phase in RCD
vacuum where the effective potentMl(¢* ¢, ¢*¢), given by equation (3.1), induces the
dyonic condensation of vacuum. This gives risedymnic supercurrent. The electric
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constituent of this current.€., its real part) screens the electric flux and coegithe magnetic
charges due to usual Meissner effect while its imay part {.e. its magnetic constituent)
screens the magnetic flux and confines the colercigarges as the result of dual Meissner
effect. Thus the dynamical breaking of the magnstimmetry in this theory ultimately
induces the generalized Meissner effect with decnstituent as the usual Meissner effect
and its magnetic constituent as the dual Meissffecte It dictates the mechanism for the
confinement of the electric and magnetic fluxesoaisded with dyonic quarksl in the
present theory. The confinement of colour is dught® spontaneous breaking of magnetic
symmetry which yields a non-vanishing magneticaliyarged Higg's condensate, where the
broken magnetic group is chosen by Abelianizatiocess demonstrated by equation (2.12)
to equation (2.16). It shows that the dyonic cosation mechanism of confinement in RCD
is dominated by Abelian degrees of freedom. SuckliAb dominance in connection with
monopole condensation has been demonstrated byoB@ylkl!*?). The similar result has also
been obtained in a dual superconductivity médethich places the Y-M vacuum close to the
border between Type — | and Type-Il superconduetndsmarginally on the Type-Il side.
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