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The study of condensation of monopoles and the resultant 
state of chromo-magnetic superconductivity has been 
undertaken in restriced chromodynamics (RCD) in SU(3) 
gauge theory. It has been shown that the resultant 
Lagrangian leads to dyonic condensation, color 
confinement and dual superconductivity with the presence 
of two scalar modes and two vector modes. 

IIIINTRODUCTION 

The condensation of monopoles incorporates the state of magnetic superconductivity[1] 

and the notion of chromo-magnetic superconductor[2] where the Meissner effect confining 
magnetic field in ordinary superconductivity would be replaced by dual Meissner effect which 
would confine the color electric field. It leads to a correspondence between quantum chromo-
dynamic situation and chromo-magnetic superconductor, where the Abelian electric field is 
squeezed by solenoidal monopole current[3,4] and the color confinement takes place due to dual 
Meissner effect caused by monopole condensation.Using this idea of confinement of electric 
flux due to condensation of magnetic monopoles, a dual gauge theory called restricted 
chromodynamics (RCD) has been constructed out of QCD in SU(2) theory[5-8]. This dual 
gauge theory incorporates a dynamical dyoniccondensation[9-10] and exhibits the desired dual 
dynamics that guarantees the confinement of dyonic quark through generalized Meissner 
effect. This RCD has been extracted from QCD by imposing an additional internal symmetry 
named magnetic symmetry[5-11] which reduces the dynamical degrees of freedom. Attempts 
have been made[12,13] to establish an analogy between superconductivity and the dynamical 
breaking of magnetic symmetry, which incorporates the confinement phase in RCD vacuum. 

In this paper the formulation of RCD has been extended in the light of the concept of 
chromo-dyonic superconductor and it has been shown that in the confinement phase the 
dyonic condensation of vacuum gives rise to the complex screening current which confines 
both the chromo-electric and chromo-magnetic fluxes through the mechanism of generalized 
Meissner effect (the usual one and its dual).Extending the RCD in the realistic color gauge 

group SU(3) by using two internal killing vectors as λ3-like octet and λ8-like octet, the RCD 
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Lagrangian of SU(3) theory has been obtained in magnetic gauge and it has been shown to 
lead to dyoniccondensation, color confinement and the resulting superconductivity in SU(3) 
theory with the presence of two scalar modes and two vector modes as the consequence of the 

presence of two magnetic octets (λ3-like and λ2-like). It has been shown that due to the 
dynamical breaking of magnetic symmetry the vacuum acquires the properties similar to those 
of relativistic superconductor where the quantum fields generate non-zero expectation values 
and induce screening currents. 

MMMMAGNETIC SYMMETRY AND RESTRICTED CHROMODYNAMICS (RCD) IN 

SU(3) GAUGE THEORY.  

Mathematical foundation of restricted chromodynamics (RCD) is based on the fact that 

a non-Abelian gauge theory permits some additional internal symmetry i.e., magnetic 
symmetry[5-8]. Unified space P of non-Abelian gauge theory may be thought of as 

     P = M ⊗ G ... (2.1) 

which is (4 + n) dimensional manifold where M is 4-dimensional external space and G, in 

general, is the n-dimensional internal space, generated by n Killing vectors ξi satisfying the 

conditions  

     [ , ] k
i j ij kfξ ξ = ξ  ... (2.2) 

and     £ 0
i ABgξ =  ... (2.3) 

where gAB (A, B = 0, … n + 3) is the metric of manifold P with gauge symmetry as n 

dimensional isometry[14,15] and £
iξ is the Lie derivative along ξi. In equation (2.2) k

ijf  is 

internal structure parameter, the four dimensional quotient space M = P/G is the base manifold 
and P is the principal fibre bundle. It has been conjectured that the dynamics of magnetic 
monopole is effectively described by a gauge theory based on magnetic symmetry which has 
the topological meaning. This magnetic symmetry is an additional internal isometry H having 
some additional Killing vector fields of generalized gauge theory.  These additional Killing 

vectors are purely internal ones and hence commute with already existing fields iξ  of G. The 

internal isometry H is Cartan’s subgroup of G and commutes with it. Let the additional 

Killing vector fields be ma (a = 1, 2, ... k = dim H). Then we have  

             , ( 1,2,3)i
a a im m i= ξ =  

                      ( , ) 0,i amξ =  

     ( )( , ) cH
a b cabm m f m= −  

     £ 0ma ABg =  ... (2.4) 

where £ma  is the Lie derivative along the direction of magnetic symmetry. Since the isometry 

H commutes with the right isometry G, it is called the left isometry. The topological magnetic 
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charge associated with monopoles corresponds to the elements of second homotopic group     

π2 (G/H).  

Let us start with the construction of the restricted chromodynamics in SU(3) limit.  The 
magnetic structure of this theory may be described by two internal Killing vectors which 
commute with each other and also with the gauge symmetry itself and are normalized to unity 
according to the following equations : 

     2ˆ 1m =  and 2 1m′ =)
 ... (2.5) 

 These Killing vectors are a   λ3- like octet m̂  and its symmetric product  

     ˆ ˆ ˆ3 ( )m m m′ = ×  ... (2.6)  

which is λ8-like. The restricted theory (RCD) may be extracted from the full QCD by 
imposing the extra internal symmetries. Let us restrict the dynamical degrees of freedom of 
the theory (while keeping the full gauge degrees of freedom intact) by imposing the extra 

magnetic symmetry which restricts the generalized non-Abelian gauge potential Vµ
r

 to satisfy 

the constraints given by 

     ˆ ˆ ˆ| | 0D m m i q V mµ µ µ= ∂ + × =
r

 ... (2.7)  

and     ' ' 'ˆ ˆ ˆ| | 0D m m i q V mµ µ µ= ∂ + × =
r

 

where Dµ is covariant derivative for the gauge group. Then the dyonic generalized four-
potential 

       ��
���� = ��

����� −  	�
����� 

of QCD in SU(3) gauge theory may written as follows in  RCD SU(3) gauge theory: 

       * '* ' 'ˆ ˆ ˆ ˆ ˆ ˆ'
| | | |

i i
V iV m iV m m m m m

q qµ µ µ µ µ
   

= − − + ×∂ + ×∂   
   

r
 ... (2.8) 

where    *ˆ .m V iVµ µ= −
r

 ... (2.9) 

and     '*ˆ .m V iVµ µ′ = −
r

 ... (2.10) 

are, respectively, λ3-like and λ8-like unrestricted Abelian components of the restricted 

potential. In the magnetic gauge m̂  and  m̂′  become the space-time independent 3ξ̂  and 8ξ̂  

respectively, where  

     3

0

0

1

0ˆ
0

0

0

0

 
 
 
 
 
 ξ =  
 
 
 
 
 
 

   and    8

0

0

0

0ˆ
0

0

0

1

 
 
 
 
 
 ξ =  
 
 
 
 
 
 

 ... (2.10) 
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Then the generalized potential of equation (2.8) may be written as 

   * '*
3 8

ˆ ˆ( ) ( )V iV W iV Wµ µ µ µ ϖ′= − + ξ + − + ξ
r

 ... (2.11)  

where Wµ and Wµ′  may be identified as the potentials of topological dyons in magnetic 

symmetry of SU (3) gauge theory. These are entirely fixed by m̂  and m̂′ , respectively, up to 

Abelian gauge degrees of freedom. The generalized field strength can, then, be constructed as  

   [ ]
| |

i
G G V V

qµν µν µ ν= + ×
r r r r

 

           3 8
ˆ ˆ( ) ( ' ' ) 'iF H iF Hµν µν µν µν= − + ξ + − + ξ  ... (2.12) 

where  , , ,G V Vµν ν µ µ ν= −
r r r

 

   * *
, , ;F V Vµν ν µ µ ν= −  ... (2.13) 

   ˆ ˆ ˆ. [ ]
| |

i
H m m m

qµν µ ν
 

= ∂ × ∂ 
 

; ... (2.14) 

   ;v vG V Vµν µ µ= ∂ −∂
r r r

 ... (2.15)  

   / *' ' ;v vF V Vµν µ µ= ∂ − ∂  

and   ' ' 'vH W Wµν µ ν µ= ∂ − ∂  ... (2.16) 

In this theory the gauge fields are expressible in terms of purely time-like non-singular 

potentials *Vµ  and  *'V µ , Wµ and W′µ. Then in the absence of quarks or any colored object, the 

RCD Lagrangian of SU(3) theory in magnetic gauge may be written as  

  21 1 1 1
[ '* ' * ] | |

4 4 4 2
L H H H H H H H H Dµν µν µν µν

µν µν µν µν µ′ ′= + + + + ϕ  

      ' ' 21
| | ( * , '* ')

2
D Vµ+ φ − φ φ φ φ  ... (2.17)  

where ( | | ) ;D i q Wµ µ µϕ = ∂ + ϕ  

       ' ' ( | | ' ) ';D i q Wµ µ µϕ = ∂ + ϕ  ... (2.18) 

and the dyonic field operators φ and φ′ correspond to m and m′ respectively. Here                    

V (φ*φ, φ′*φ′) is the effective potential introduced to induce the dynamical breaking of the 

magnetic symmetry. 
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DDDDYONIC CONDENSATION AND SUPERCONDUCTIVITY IN RCD IN SU(3) 

GAUGE THEORY  

The Langarian (2.17) of RCD in magnetic gauge in the absence of quark or any colored 

object looks like Ginsburg–Landau Lagrangian for the theory of superconductivity if we 

identify the dyon field as an order parameter and the generalized potential Wµ as the electric 

potential. The dynamical breaking of the magnetic symmetry, due to the effective potential 

V(φ*φ, φ′*φ′), induces the dyonic condensation of the vacuum. This gives rise to the dyonic 
supercurrent, the real part of which (electric constituent) screens the electric flux which 
confines the magnetic color charge (through usual Meissner effect) and the imaginary part 
(i.e. magnetic constituent) of this supercurrent screens the magnetic flux that confines the 
electric color iso-charges (due to dual Meissner effect). In other words, the dual Meissner 
effect expels the electric field between static coloured charges into a narrow flux tube, giving 
rise to a linearly rising potential and to confinement. This Lagrangian leads to dyonic 
condensation, color confinement and the resulting dual superconductivity in SU(3) theory. 
Lagrangian (2.17) has been obtained from the standard SU(3) Lagrangian and hence the 
desired dynamical breaking of magnetic symmetry is obtained by fixing the following form of 
the effective potential 

   V(φ*φ, φ′*φ′)= −
( ||� + |�|� − �� − ���
) ... (3.1) 

where 
 is a constant, � and �′ are the expectation values of Higgs fields  and ′ : 

     � = <φ>0 ... (3.2) 

and                       �′ = <φ’>0  ... (3.3) 

In  Prasad-Sommerfeld limit[16] 

     V(φ*φ, φ′*φ′) =0 ... (3.4) 

but � ≠ 0 and �′ ≠ 0       ... (3.5) 

In this limit, the dyons have lowest possible energy for given electric and magnetic 

charges e and g respectively. Due to the presence of two magnetic vectors m̂  and m̂′  in 

SU(3) theory, we have here two scalar modes with masses 

     Mφ = √(8η) ν        and   Mφ’ = √(8η) ν′ ... (3.6) 

and two vector modes with masses given by 

     �� =  |�|� and ��� =  |�|�′  ... (3.7) 

respectively.   

With these two mass scales the coherence lengths ε and ε’ and the penetration length λ 

and λ’,corresponding to the  two magnetic vectors m̂  and m̂′ ,  are given by  

   ε = 1/Mφ = 1/[√(8η) �] ; ε′ = 1/Mφ′ = 1/[√(8η)�′] ... (3.8) 



An International Peer Reviewed Journal of Physical Science 

66 Acta Ciencia Indica, Vol. XLVIII-P, No. 1 to 4 (2022) 

and   λ = 1/MD = 1/ (|q|�);      λ′ = 1/MD′ = 1/ (|q|�′) ... (3.9)   

The region in phase diagram space, where ε = λ and ε′ = λ′ constitutes the border 

between type-I and type-II superconductors. It may be achieved for the following values of 

constant  
 of the effective potential given by eqn. (3.1): 

     
 =
|�|�

�
=

�����

�
  ... (3.10)  

where e and g are the electric and magnetic charges of dyon. 

The superconductivity provides vivid model for the actual confinement mechanism and 
the color confinement is due to the generalized Meissner effect caused by dyonic 
condensation. The dual superconductivity model proposed by Alessandro et al[17] places the 
Yang-Mills vacuum close to the border between type-I and type-II superconductors and 
marginally on the type-II side.  

DDDDISCUSSION 

Equation (2.7) give the magnetic structure of restricted chromo-dynamics in SU(3) 

theory where two internal Killing vectors λ3-like octet and λ8-octet given by equation (2.6) 

have been introduced keeping in view the facts that any system possessing a SU(3) symmetry 

suffers with a non-Abelian magnetic instability for the 4-7th gluons[18] and the 8th gluon 

corresponds to the diagonal generator in color space[5, 6]. Equation (2.11) and (2.12) give 

restricted generalized potential and gauge field strength respectively in the magnetic 

symmetry of SU(3) gauge theory, where the space-time independent octet ε3 and ε8 are given 

by equations (2.10). The RCD Lagrangian of SU(3) theory in the absence of quarks or an 

colored object, is given by equation (2.17). This Lagrangian leads to dyonic condensation, 

color confinement and the resulting dual superconductivity in SU(3) theory with the presence 

of two scalar modes and two vector modes as the consequence of the presence of two 

magnetic octet (λ3-like and λ8-like) in RCD of SU(3) theory. The masses of these two scalars 

and two vector modes are given by equations (3.6) and equations (3.7) respectively. The 

coherence lengths ε and ε′ and the penetration length λ and λ′ are given by equations (3.8) and 

equations (3.9) respectively. The mases of scalar modes Mφ and Mφ′ determine how fast the 

perturbative vacuum around a color source reaches condensation and the masses MD and MD′′′′ 
of vector modes determine the penetration lengths of the colored flux. 

The Lagrangian, given by equation (2.17) for RCD in magnetic gauge in the absence of 

quarks or any coloured objects, establishes an analogy between superconductivity and the 

dynamical breaking of magnetic symmetry which incorporates the confinement phase in RCD 

vacuum where the effective potential V (φ*φ, φ′*φ′), given by equation (3.1), induces the 

dyonic condensation of vacuum.  This gives rise to dyonic supercurrent. The electric 
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constituent of this current (i.e., its real part) screens the electric flux and confines the magnetic 

charges due to usual Meissner effect while its imaginary part (i.e. its magnetic constituent) 

screens the magnetic flux and confines the color iso-charges as the result of dual Meissner 

effect.  Thus the dynamical breaking of the magnetic symmetry in this theory ultimately 

induces the generalized Meissner effect with electric constituent as the usual Meissner effect 

and its magnetic constituent as the dual Meissner effect. It dictates the mechanism for the 

confinement of the electric and magnetic fluxes associated with dyonic quarks[19] in the 

present theory. The confinement of colour is due to the spontaneous breaking of magnetic 

symmetry which yields a non-vanishing magnetically charged Higg’s condensate, where the 

broken magnetic group is chosen by Abelianization process demonstrated by equation (2.12) 

to equation (2.16). It shows that the dyonic condensation mechanism of confinement in RCD 

is dominated by Abelian degrees of freedom. Such Abelian dominance in connection with 

monopole condensation has been demonstrated by Boykov et al[19]. The similar result has also 

been obtained in a dual superconductivity model[20] which places the Y-M vacuum close to the 

border between Type – I and Type–II superconductors and marginally on the Type–II side. 
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