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Constructing the effective Lagrangian for dyonic field in 
Abelian projection of QCD, an Abelian Higgs model, 
incorporating dual superconductivity and confinement, has 
been constructed.  It has been demonstrated that the non-
Abelian dyons give rise to Abelian dyons in this Abelian 
projection (Abelianization). In this model the partition 
function in the Euclidean space-time has also been 
obtained. It has been shown that the dyonically condensed 
vacuum is characterized by two massive modes where the 
scalar mode determines how fast the perturbation vacuum 
around a colored source reaches condensation and the 
vector mode determines the penetration length of the 
colored flux. It has also been shown that the 
superconductivity provides a model for actual confinement 
mechanism caused by dyonic condensation. 

IIIINTRODUCTION 

Rajput et al[1,2,3] conceived theexcellent analogy of superconductivity at high-Tc with 

QCD and demonstrated that the essential features of superconductivity provided the vivid 
models[4-9] for actual confinement mechanism in QCD. Izawa and Iwazaki made an attempt[10] 

to analyze a mechanism of quark confinement and  demonstrated that  most important role of 
monopoles and dyons in physics is their participation in the mechanism of confinement 
through their condensation[11-14], leading to efficient microscopic theories of 
superconductivity[15-18], dual-superconductivity[19-20] and color superconductivity [21].However, 
the crucial ingredient for condensation in a chromo-magnetic superconductor would be the 
non-Abelian force in contrast to the Abelian ones in ordinary superconductivity. 
Topologically, a non-Abelian gauge theory is equivalent to a set of Abelian gauge theories 
supplemented by monopoles[22]. The method of Abelian projection is one of the popular 
approaches to confinement problem, together with dual superconductivity[23,24] picture, in non-
Abelian gauge theories. The condensation non-Abelian Monopole as a mechanism of 
confinement (together with dual superconductivity) implies that long-range physics is 
dominated by Abelian degrees of freedom [25,26] (Abelian dominance). The conjecture that the 
dual Meissner effect is the color confinement mechanism is realized if we perform Abelian 
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projection in the maximal gauge where the Abelian component of gluon field and Abelian 
monopoles are found to be dominant[27-28]. The vacuum of gluon-dynamics behaves as a dual 
superconductor and the key role in dual superconductor model of QCD is played by Abelian 
monopole. For the self-dual fields, the Abelian monopoles become Abelian dyons [29]. There 
exists the model [30-33] of QCD vacuum in which the non-Abelian dyons are responsible for the 
confinement. The non-Abelian dyons give rise to Abelian dyons in the Abelian projection and 
hence an important problem, before studying the vacuum properties of non-Abelian theories, 
is to Abelianize them. 

In the present paper  the effective Lagrangian for dyonic field has been constructed in 
Abelian projection of QCD in SU(2) and SU(3) gauge theories  and the Abelian Higgs model, 
incorporating dual superconductivity and confinement, has been developed.  It has been 
demonstrated that the non-Abelian dyons give rise to Abelian dyons in this Abelian projection 
(Abelianization). In this model the partition function in the Euclidean space-time has also 
been obtained. It has been shown that the dyonically condensed vacuum is characterized by 
two massive modes where the scalar mode determines how fast the perturbation vacuum 
around a colored source reaches condensation and the vector mode determines the penetration 
length of the colored flux. The condition of border between type-I and type-II  
superconductors has been derived and it has been shown  the superconductivity provides  a 
model for actual confinement mechanism where the color confinement is due to the 
generalized Meissner effect caused by dyonic condensation. 

IIIICONDENSATION OF DYONS IN SU(2) GAUGE THEORY 

The non-abeliannature of gauge group [SU(3) or SU(2)] is quite crucial to dyon 
condensation as mechanism of confinement.A general non-Abelian theory of dyons consists 
of usual four-space (external) and n-dimensional internal group space, where the field 
associated with dyons has n-fold internal multiplicity and the multiplets of gauge field 
transform as the basis of adjoint representation of n-dimensional non-Abelian gauge 
symmetry group. The field equations and equation of motion for abelian dyons preserve the 
invariance under the local non-Abelian gauge transformations: 

     � → �� = ����     ... (2.1)                                                  
where S is the local element of non-Abelian gauge group. Here the local gauge theory makes 
the presence of interacting field necessary. 

Choosing the internal gauge group as SU(2), the generalized dyonic field tensor may be 
constructed as  

     a
aG G Tµν µν=

r
 ... (2.2) 

with the generalized four-potential defined as 

      �	


�=  �	�  ... (2.3) 

where repeated indices are summed over 1, 2 and 3 (internal degrees of freedom) , vector sign 

is denoted in the internal group space and the matrices aT  are  three infinitesimal generators 

of group SU(2), satisfying the commutation relation 
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     [ , ]a b abc cT T i T= ε  

with abcε  as  structure constant of internal group. 

We may connect ��	� and  �
�	 through the following  relation 

   a a a abc
b cG V V q V Vµν ν µ µ ν µ ν= ∂ − ∂ + ε  ... (2.4) 

where the dyonic generalized charge q is given as following complex quantity with electric 
and magnetic constituents as its real and imaginary parts 

       � = � − �� ... (2.5) 

and the generalized four-potential �	 constitutes electric and magnetic constituents, �	 and   

�	 respectively as follows : 

      �	= �	 − ��	  ... (2.5a) 

A suitable Lagrangian density of a spontaneously broken non-Abelian gauge theory 
SU(2), yielding the classical dyonic solutions, may be constructed as 

                                  
1 1

( ) ( ) ( ) ( , , )
4 2

a a
a a dyonL G G D D V L A Bµν µ

µν µ µ µ= − + ϕ ϕ − ϕ = ϕ  

where                     Re( ) ( )D i q V ieA igBµ µ µ µ µ µϕ = ∂ ϕ − ∗ ϕ = ∂ − − ϕ  ... (2.6) 

with Re denoting the real part and 

                        2 21 1
( ) ( ) ( )

4 2
a a

a aV vϕ = ϕ ϕ − ϕ ϕ  

with     0 0v = 〈ϕ〉 = 〈 ϕ 〉  ... (2.7) 

which determines the vacuum expectation value of Higgs field. In simplest manner this 
equation may be written as 

     2 2 2( ) ( )V vϕ = − η ϕ −  ... (2.8) 

with η as a constant. 

The gauge dependent part of Lagrangian i.e., first term of rhs in eqn. (2.6) is invariant 

under the following transformations of the fields Aµ  and Bµ ; 

         �	 = ��	�	 � → ��′	�′	� = �′ 	     ... (2.9) 

with      �′	 = �	 cos  + �	 sin   

and      �′	 = −�	 sin  + �	 cos   

where         1tan
g

e
−  δ =  
 

 ... (2.10) 

Using the Lagrangian density given by eqn. (2.6) the electric and magnetic fields of 
dyons may be calculated by imposing the Julia- Zee ansatz[34]: 
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2

( ) 1
( ) j

ia aij
K r

V r
q r

−= ε r
 

     0 2

( )
( )a a

J r
V r

q r
= r

 

     
2

( )
( )a a

H r
r

q r
ϕ = r

 ... (2.11) 

where the functions K(r), J(r) and H(r) satisfy the following equations 

     

2 2

2 2

2 2 2 2

( ) 2

( ) 2

( ) ( 1) ( )

r H r HK

r J r JK

r K r K K K H J

′′ =

′′ =

′′ = − + −

 ... (2.12) 

A solution of these equations may be written as follows : 

     ( ) ( ); ( ) ( ); ( )
sinh

Cr
J r r H r r K r

Cr
= αϕ = βϕ =  

where                      2 2 1β − α =  

and     ( ) ( )coth 1r C r Crφ = −  ... (2.13) 

In the Prasad-Sommer field limit[35] 

     ( ) 0;V ϕ =  

but            0v = 〈ϕ〉 ≠  ... (2.14) 

In this limit the dyons have lowest possible energy for given electric and magnetic 
charges e and g respectively. Thus we get the following expression for dyonic mass 

     
1

2 2 2( )M v e g v q= + =  ... (2.15) 

where the electric and magnetic fields associated with dyons obey the first order equations 

           
0 0 0 ( ) sin ,

( ) cos

a a i a abc a
i i ib c i

a jka a
i ijk i

E G V q V V D

B G D

= = ∂ + ε = ϕ α

= ε = ϕ α
 

and     0( ) 0aD ϕ =  

where              1tan
e

g
−α =  ... (2.16) 

In these equations i and 0 indicate space and time directions and a is an SU(2) vector 
index. These electric and magnetic fields associated with dyons are non-Abelian in nature 
having external as well as internal components. Using Gauss’s law and these expressions for 
fields, we have the following expressions for electric and magnetic charges on dyon: 
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     � = �
$ % &' ()*(∅�-* ) ; 

     � = �
/$ % &' (0*12)*(∅�12 )   ... (2.17) 

In the case of pure monopole �- and α given by relation (2.16) vanishes and the eqns. 
(2.16) reduce to  

      3* = 0;  
      �* = 6*∅   ... (2.18) 

and eqn. (2.14) give the static energy which follows the Bogomol’nyi bond: 

                 �(∅) ≥ |9|   ... (2.19) 

where k is the monopole number given by  

      9 =  % &' ( )*  :;(�*∅)   ... (2.20) 

Condition (2.14) does not allow static dyonic solution but in this case the dyons emerge 
as time dependent solution and the ansatz given by eqn. (2.11) reduces to Prasad- 
Sommerfield  condition  (2.14) and then the solution of Bogomol’nyi equation (2.18) give 
Bogomol’ny-Prasad-Sommerfield  (BPS) monopole as a static spherically symmetric solution 
with smooth field and finite mass. The Bogomol’nyi equation (2.18) is equivalent to the self- 

duality equation of pure Yang-Mills in <= space restricted to be translationally invariant in 

one direction. Let us construct a connection on <= that is invariant in the (- direction via 

      >* = �*;   >- = ∅   ... (2.21) 

If  ?	�




�  is the field strength corresponding to >	




� in SU(2) theory, then the self- duality 

equation 

      ?	�




� = �
/ 0	�@A?@A






�    ... (2.22) 

is equivalent to Bogomol’nyi equation (2.18). Introducing covariant derivative 6	, given 

by eqn. (2.6), on <= with �	


� replaced by >	




� for e = 0, we may write Gauss’s law as 

      6	>	 C





� = 0  ... (2.23) 

It follows from this relation that BPS monopoles are topological solitons in a Yang-Mills 
gauge theoryin three space dimensions. Such a monopole has four collective coordinates 
which include three position coordinates and a phase angle. When these four coordinates are 
time dependent, the monopole acquires momentum and electric charge and hence becomes a 
moving dyon.  It is equivalent to Abelian projection (Abelian Higgs Model).  

In the Abelian projection, the fields given by eqns. (2.16)  reduce to the following form in 
the asymptotic limit; 

   
4 3

3 2
( ) ( ) ( ) ( ) ;a a a

j j j
b c

E r r r r
q r q r

= − −r r r r
 

   
4

( ) ( )a
ja

j

r r
B

q r
= −

r r

 ... (2.24) 
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where b and c are positive constants having the dimensions of charge and mass respectively 

For vanishing c (i.e., vanishing mass) these fields corresponds to point-like mass-less 

dyons with electric charge 
'D
|E| and magnetic charge 

�
|E|. Then the generalized charge of the 

dyon may be written as  

      � = �
|E|  ( 3H − �)  ... (2.25) 

Thus non-Abelian dyons give rise to the Abelian dyons in the Abelian projection. The 
infra-red properties of QCD in the Abelian projection can be described in the Abelian Higgs 
Model (AHM) [2] in which dyons are condensed. In this model the relevant degrees of freedom 

are two massive gluons W ±
µ , a U(1) gluon (associated with generalized field �	) and a dyon 

which we take to be scalar represented by complex field .ϕ  Then the Lagrangian (2.6) reduces 

to 

 
2 2 2 21 1

( , , ) ( ) ( )
4 2dyonL A B G G ieA igB vµν

µ µ µν µ µ µϕ = − + ∂ − − ϕ + η ϕ −  ... (2.26)  

In terms of this Lagrangian, the partition function in the Euclidean space-time may be 
written as 

   4exp{ ( , , )}dyon dyonZ DA DB D d xL A Bµ µ µ µ= ϕ − ϕ∫ ∫  ... (2.27) 

Applying the transformation (2.9) and integrating over the field Aµ′ , this partition 

function reduces to the following form in Abelian Higgs Model AHM; 

      4exp{ ( , )}dyon AHMZ DB D d xL Bµ µ′ ′= ϕ − ϕ∫ ∫  

with  
2 2 2 21 1

( , ) ( ) ( )
4 2AHML B H H igB vµν

µ µν µ µ′ ′ ′ ′ϕ = − + ∂ − ϕ + η ϕ −  ... (2.28) 

where the Higgs field φ has the magnetic charge 

       g q=  

and          H B Bµν µ ν ν µ′ ′ ′= ∂ − ∂  ... (2.29) 

This model (AHM) incorporates dual superconductivity and hence confinement as the 
consequence of dyonic condensation since the Higgs type mechanism arises here. With the 

first of conditions (2.29), the field �′	of equation (2.28) is the dual gauge field and φ carries 

the magnetic charge.  

In equation (2.28)  �′	 is the dual gauge field where φ carries magnetic charge given by  

first of equations (2.29). Thus the Lagrangian LAHM, given by equation (2.28), provides the 
effective model of QCD vacuum. If we set e = 0 in this model then monopoles are condensed 
with the magnetic charge of the Higg’s field given as follows from first of  equations (2.29). 

     g g=  
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and    H H B Bµν µν µ ν ν µ′ = = ∂ − ∂  ... (2.30) 

In this case equations (2.28) and (2.30) give only an effective theory valid for energies 
less than some scale typical of the monopole size, equivalently the mass M of the massive 

gluon W ±
µ . Then the Lagrangian (2.28) carries with it a physical cut off ≈ M. Then this theory 

incorporates the following inferences: 

(i) 
4

1
A

k
- propagator for gluon is dual equivalent to the statement that the gluon is 

propagating in a chromagnetic superconductor.  

(ii) The transition from <0 | φ | 0> = 0  to <0 | φ | 0> ≠ 0  

is first order and leads, in an analogy with the Higg’s- Ginsburg – Landau theory of 
superconductivity, to the vacuum becoming a chromo-magnetic superconductor.  

The vacuum of gluodymanics behaves as dual superconductor and the key role in dual 
superconductor model of Abelian Higgs mechanism, presented here with, is played by 
Abelian monopoles. For the self dual fields, the Abelian monopoles become Abelian dyons.  

The infrared properties of QCD in the Abelian projection can be described by the Abelian 
Higgs model [AHM] in which dyons are condensed. The conjecture, that the dual Meissner 
effect is the color confinement mechanism, is realized if we perform Abelian projection in the 
maximal gauge where the Abelian component of the gluon field and Abelian monopoles are 
found to be dominant. Then the Abelian electric field is squeezed by solenoidal monopole 
current. Monopole condensation is confirmed by the energy-entropy balance of the monopole 
trajectories and by evaluation of the monopole  operator. All these facts support the conjecture 
that color confinement is due to the dual Meissner effect caused by the dyonic condensation. 

DDDDYONIC CONDENSATION IN SU(3) GAUGE THEORY 

In the presence of dyons, the presence of second potential through the eqn. (2.5a) is 

actually compensated by an enlargement of the group of gauge transformations from SU(2) to 
SU(3). It is well known that SU(3) gauge symmetry, spontaneously broken by an octet Higg’s 
filed, exhibits SU(2)X U(1) symmetry with the non-zero expectation value of Higg’s field. As 
per general topological argument [36], the very presence of U(1) factor in the unbroken gauge 
group guarantees the existence of smooth, finite energy, stable solution with quantized 
magnetic charge and chirality quantized dyons. In pure SU(2) gauge theory without Higg’s 
field, the monopole field is unstable while the effect of adding Higg’s field in SU(2) is to 
establish a U(1) gauge symmetry at large distance, reproducing the  topology which stabilizes 
monopoles and dyons in ordinary electrodynamics by permitting them to have a finite size 
finite mass as given by eqn (2.15). In the internal two-dimensional complex space introduced 

at each point of Minkowski space-time, the charged field described by � through eqn.(2.1) in 
SU(2) is replaced by  
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     �� = expL�M-(()N  �   ... (3.1) 

in �O(2) × O(1) , where M-(() is a phase factor. Then the basic spinors of internal space are 

acted upon by the following element  � S (()of SU(3): 

     �T(() = �(() exp L−�Λ-(()N  ... (3.2) 

where �(()is a local group element of SU(2). Under this gauge transformation the generalized 

four-potential �	


�,  given by eqn. (2.3), and the generalized field tensor associated with Abelian 

dyons as given by eqn (2.2) , transform as follows : 

      �′	 = ����	� − ���)	�  ... (3.3) 

and      �′	� = ����	� �   ... (3.4) 

where �	�  and �	 satisfying eqns. (2.2) and (2.3) respectively, are coupled by eqn. (2.4) in 

SU(3) theory also where the operators  � are eight generators of  SU(3) group and indices 

      V, H, W = 1,2, … . .8 

In SU(3) theory, relation (2.8) may be generalized into  the following form : 

      �	�





� =  )��	


� − )	��


� +  |�|[�	


�,��


�] ... (3.5) 

where →is denoted in the internal space of gauge group SU(3).  This relation may also be 

written as 

      �	� = �′	� + 0DZ�D	�Z�  ... (3.6) 

with 0DZ as structure constant of internal gauge group SU(3) and 

      �′	� = )��	 − )	�� ... (3.7) 

Applying the operator  6� given by equation (2.6) on eqn.(3.6), we get 

      6��	� = )��′	� + |�|0DZ�D��′Z	� = [	   ... (3.8) 

where [	 are the components of generalized non-Abelian four-current [�	 in eight dimensional 

internal space of Gauge group SU(3). This equation may also be written as  

      [	 =  \′	 + |�|0DZ�D��′Z	�    ... (3.9) 

where     ]′	



� = ]	


� − �9	



� =     )��′


�	�        ... (3.10) 

with  ]	


� and 9
�	 as electric and magnetic four currents, is the generalized four current 

associated with dyon in the Abelian Higgs Model (after Abelianization). 

 Equation (3.8) is manifestly conserved equation since  

     6	[�	 = 0   ... (3.11) 

but     )	[�	 ≠ 0  ... (3.12) 

On the other hand equation (3.10) gives 

     )	]′

�	 = 0  ... (3.13) 

which is usual Noetherian conservation lawof the Noetherian current  ]′

�	. These equation 

show that while Noetherian current ]′

�	 of Abelian model is conserved in strict sense, the 
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generalized non-Abelian current [�	 in SU(3) theory is not so but satisfy generalized 

conservation law (manifestly conserved equation)  when ordinary derivative is replaced by the 
covariant derivative as shown by equation (3.11). 

In the Abelian Higg With the development of non-Abelian gauge theories, Dirac 
monopole has mutated in another way as we have to take into account not only 
electromagnetic U(1) gauge group but also the color gauge group SU(3)C describing strong 
interaction. At energy around 100 GeV electromagnetism merges in the electroweak 
interaction with the gauge group SU(2) XU(1). These gauge theories still have monopoles of 
Dirac type, but the ordinary magnetic fields of the monopoles, in general, will be 
accompanied by color magnetic or magneto-weak fields. Topologically, the most important 
difference between a non-Abelian gauge theory and a set of Abelian (QED type) gauge fields 
is the compactness of the non-Abelian gauge group. Thus in QCD, because SU(3) is compact, 
the color electric charges defined with respect to any maximal Abelian subgroup are 
quantized. It implies that we can write down gauge field configurations that asymptotically 
look like magnetic monopole of any chosen Abelian direction. The confinement of color 
electric charge corresponds to the screening of color magnetic charge. In particular, for 
distances beyond 1 Fm the energy of the color magnetic field drops exponentially. This means 
that beyond 1 Fm one can neglect the difference between realistic monopoles and Dirac ones. 
Thus there are monopole field configurations in any non-Abelian gauge theory. To prove the 
phase structure of the theory, we can add a scalar field (i.e. Higg’s field) in the adjoint 
representation so long as this does not change the nature of flow of the coupling constant with 
energy. For asymptotically free theories, the low energy behavior is dominated by the Abelian 
monopoles of zero mass which are almost point-like. The interaction of point- like monopoles 
with gluons and charged particles can be studied as a dual analog of point-like charged 
particle interactions. It leads to condensation of monopole[16]. Topologically, a non-Abelian 
gauge theory is equivalent to a set of Abelian gauge theories supplemented by monopoles 
which undergo condensation. This condensation leads to confinement. The scalar fields (i.e. 

Higg’s fields) have all decoupled by now and hence this field φ plays a role of a regulator 

only. This theory also has massless gluons denoted by Aµ, charged massive gluons Wµ and 

monopoles which are coupled minimally to massles Bµ and electrically charged particle Wµ. 

These Abelian monopoles play the key role in the dual superconductor model of the QCD 

vacuum. In this process of Abelianization (i.e., the Abelian projection) the quark are 
electrically charged particles and if the monopoles are condensed the dual Abrikosov string 
carrying the electric flux is formed between quarks and antiquark. Due to a non- zero string 
tension the quarks are confined by the linear potential. For the self dual fields the Abelian 

monopoles become Abelian dyons[19]. These dyons are coupled minimally to the massless Vµ 

given by equation (2.3) and electrically charged particles Wµ. In QCD for low energy the 
dyons interactions are saturated by duality. Thus the infrared properties of the QCD in the 
Abelian projection can be described by the Abelian Higgs Model (AHM) where dyons are 
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condensed leading to confinement. As such, the non-Abelian confinement of dyonic charge is 
related to linear Abelian theory in a dyonic superconductor.  

The non-Abelian dyonic field Lagrangian of SU(3) gauge theory also reduces to the 
similar form as given by eqn. (2.26)  and the condensation of dyon  takes place through the 
process of Abelian Higgs Mechanism. 

DDDDUAL SUPERCONDUCTIVITY DUE TO DYONIC CONDENSATION 

s model developed in the previous section in terms of magnetic gauge, defined by 

equation (2.29), ��	 is the dual gauge field with mass  of dual gauge boson (vector mode) 

given by 

      _` =  |�|a, ... (4.1) 

which is the the same as the mass of dyon given by eqn. (2.15), and b is the dyonic field 

(scalar mode) with mass given by 

      _c = d(8e) a    ... (4.2) 

where η is a constant introduced in eqn. (2.8). In terms of these two mass scales we may get 
the coherence length and the penetration length in the following manner: 

      f = �
gh =  �

d(ij) $  (Coherence length) ... (4.3) 

      k = �
gl =  �

|E|$  (Penetration Length) ... (4.4) 

The region in the phase space, where  

      f = k, ... (4.5) 

constitutes the border between type-I and type-II superconductors. Thus the superconductivity 
provides  a model for actual confinement mechanism where the color confinement is due to 
the generalized Meissner effect caused by dyonic condensation , where dyonic electric charge 

produces the screening effect for Aµ-propagator and anti-screening effect for Bµ-propagator, 

while the dyonic magnetic charge produces screening effect for Bµ-propagator and anti-

screening effect for  Aµ-propagator. The dyonically condensed vacuum is characterized by the 

presence of two massive modes where the mass Mφ  of scalar mode given by eqn. (3.3) 

determines how fast the perturbation vacuum around a colored source reaches the 

condensation and the mass _` of vector mode, given by eqn. (3.1) determines the penetration 
length of the colored flux. 

DDDDISCUSSION 

The gauge depended part of the Lagrangian density, given by eqn. (2.6) for the fields 

associated with the non-Abelian dyons in the minimal gauge theory, is invariant under the 
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linear transformation (2.9). Equations (2.12) and (2.13) demonstrate that the non-Abelian 
dyons give rise to Abelian dyons in the Abelian projection (Abelianization). It follows from 
equation (2.23) that BPS monopoles are topological solitons in a Yang-Mills gauge theory in 
three space dimensions. Such a monopole has four collective coordinates which include three 
position coordinates and a phase angle. When these four coordinates are time dependent, the 
monopole acquires momentum and electric charge and hence becomes a moving dyon.  It is 
equivalent to Abelian projection (Abelian Higgs Model).  The infrared properties of QCD in 
this Abelian projection can be described by the Abelian Higgs model with Lagrangian density 
given by eqn. (2.26) in which dyons are condensed. In this model the partition function in the 
Euclidean space-time is given by the first part of eqns. (2.26). This model incorporates dual 
superconductivity and confinement as the consequence of dyonic condensation. Equation 
(4.3) gives the Coherence length as the inverse of mass of dyonicfield (scalar mode) and the 
eqn. (4.4) gives the penetration length as the inverse of mass of dual gauge boson (vector 
mode). The former length (i.e. coherence length) determines how fast the perturbation vacuum 
around a colored source reaches the condensation and the later one (penetration length)  gives 
the depth of penetration of colored flux as the consequence of dyonic condensation.Equation 
(4.5) constitutes the border between  type-I and type-II  superconductors.  Thus the 
superconductivity provides a model for actual confinement mechanism where the color 
confinement is due to the generalized Meissner effect caused by dyonic condensation. On the 
similar lines, it has been, very recently, demonstrated[37] that in the background of a strong 
magnetic field the electroweak sector of vacuum experiences two consecutive crossover 
transitions associated with zero temperature dynamics of W-bosons and the scalar Higgs 
particle respectively, where above the first cross over, the presence of W and Z condensate 
supports the existence of exotic superconductivity and second transition restores the 
electroweak symmetry. Color confinement (and resulting Superconductivity), Chiral 
symmetry breaking and Catalytic effect induced by monople condensation have also been 
discussed[38] recently. 
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