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In this paper it has  been shown that topologically a non-
Abelian gauge theory is equivalent to a set of Abelian 
gauge theories supplemented by monopoles which 
undergo condensation which leads to confinement and 
incorporates a dual superconductivity model of the QCD 
vacuum where the Higgs field plays the role of a regulator 
only. 

IIIINTRODUCTION 

With the development of non-Abelian gauge theories, Dirac monopole[1,2] has mutated 
in another way as we have to take into account not only electromagnetic U(1) gauge group but 
also the color gauge group SU(3)C describing strong interaction. At energy around 100 GeV 
electromagnetism merges in the electroweak interaction with the gauge group SU(2) XU(1). 
These gauge theories still have monopoles of Dirac type, but the ordinary magnetic fields of 
the monopoles, in general, will be accompanied by color magnetic or magneto weak fields.[3-6] 
The results of usual gauge group U(1) may be generalized to an ordinary gauge group H when 
potentials are defined in the Lie algebra of H, i.e.,  

     ,a
atBB µµ =  ... (1) 

where ta are generators of H. To avoid unnecessary factors of i, the ta are taken to be anti-
Hermitian and the coupling derivative is  

     Dµ = ∂µ – Bµ ... (2) 
where the minimal coupling has been absorbed into Bµ. Each matter field belongs to some 
unitary representation of H and the potential acts on it according to this representation of the 
generator ta. When one specializes again to the case H = U(1), one has to reintroduce the 

factor ig to make contact with the old notation. Topologically, the most important difference 
between a non-Abelian gauge theory and a set of Abelian (QED type) gauge fields is the 
compactness of the non-Abelian gauge group H. Thus in QCD, because SU(3) is compact, the 
color electric charges defined with respect to any maximal Abelian subgroup are quantized. It 
implies that we can write down gauge field configurations that asymptotically look like 
magnetic monopole of any chosen Abelian direction. The spherically symmetric monopoles 
have the magnetic field. 
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where Qa is a generator of H. They can be considered as U(1) monopoles where U(1) is the 

subgroup of H generated by Qa.       

In a realistic theory with electromagnetic and quark matter fields, Qa may be diagonalized 
by a global gauge transformation and thus the solution of quantization condition  

     exp (2πQ) =1,  ... (4)  
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may be written as  

     Q = i(mQe + n��� +�′��
� ) ... (5)  

where Qe is the electric U(1) generator normalized to unity, ��� acts on the color states of the 
quark fields as the diagonal matrix – dia g (– 1/3, – 1/3, 2/3) and �′� acts as (1, – 1, 0). 
Moreover, the integers m and n have to satisfy additional condition  

     m + n = 0 mod 3  ... (6) 
Taking into account the existence of quarks we find that for monopole with ordinary 

magnetic charge only, m must be multiple of 3. The monopoles with m = 1 are possible but 
they must have a color magnetic field in addition.  

For non-Abelian H, the spherically symmetric ansatz (3) can only be valid for a limited 
range of distances. The confinement of color electric charge corresponds to the screening of 
color magnetic charge[7]. In particular, for distances beyond 1 Fm the energy of the color 
magnetic field drops exponentially and not as r–2 as one would obtain from equation (3). This 
means that beyond 1 Fm one can neglect the difference between realistic monopoles and 
Dirac ones. Thus there are monopole field configurations in any non-Abelian gauge theory. 
To prove the phase structure of the theory, we can add a scalar field (i.e., Higg’s field) in the 
adjoint representation so long as this does not change the nature of flow of the coupling 
constant with energy. For asymptotically free theories, the low energy behavior is dominated 
by the Abelian monopoles of zero mass which are almost point-like. The interaction of point- 
like monopoles with gluons and charged particles can be studied as a dual analog of point-like 
charged particle interactions. It leads to condensation of monopole[8]. Topologically, a non-
Abelian gauge theory is equivalent to a set of Abelian gauge theories supplemented by 
monopoles which undergo condensation. This condensation leads to confinement[9]. The 
scalar fields (i.e. Higg’s fields) have all decoupled by now and hence this field φ plays a role 
of a regulator only. This theory also has massless gluons denoted by Aµ, charged massive 
gluons Wµ and monopoles which are coupled minimally to massles Bµ and electrically 
charged particle Wµ. These Abelian monopoles play the key role in the dual superconductor 
model[10-15] of the QCD vacuum. Thus spontaneously broken non-Abelian gauge theories 
support a classical solution which is asymptotically equivalent to a monopole magnetic field 
and also leads to charge quantization.  
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