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CLASSICAL ABELIAN THEORIES OF MONOPOLES AND DYONS
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Constructing the Lagrangian density for spin-1 generalized
charge (bosonic dyon) in abelian theory, the generalized of
motion has been derived and the gauge invariant and
rotationally symmetric orbital angular momentum of a dyon
moving in the field of other dyon has been constructed and
it has been shown that each dyon carries a residual
angular momentum which leads to chirality quantization
condition.

“NTRODUCTION

he question of existence of monopoles anddyonsgha#isered enormous potential

importance in connection with the issue of quarkfirmment ,magnetic condensation of

vacuum, as possible explanation of CP violation, theierl catalyzing proton decay and in
the structure of black holes and also in the uaffan of gravitation with generalized

electromagnetic fields. In the present paper theggainvariant and consistent classical
theories of Abelian as well as non-Abelian monsmad dyons have been revisited in view
of possible symmetry of Maxwell’s field equationsdait has been shown that the mere
existence of magnetic charge implies the quantinatif electric charge, emphasizing that
there are no theoretical reasons to exclude thstemde of monopoles and dyons.
Constructing the Lagrangian density for spin-1 geliwed charge (bosonic dyon) in abelian
theory, the generalized equation of motion has badsnived and the gauge invariant and
rotationally symmetric orbital angular momentumaadlyon moving in the field of other dyon

has been constructed and it has been shown that éy@n carries a residual angular
momentum which leads to chirality quantization ddod. For each pair of dyons, this

residual angular momentum has been shown to genarahe-dimensional representation of
the pair of four-momenta associated with theseighest to lead to chirality dependent
multiplicity in the eigen values of angular momentaf an Abelian dyon.

eLASSlCAL ABELIAN THEORY OF MONOPOLES

ut is quite surprising, rather disturbing, that tegmmetry between electric and

magnetic fields which led Maxwell to unify theselfls into electromagnetism, does not seem
to be realized in Maxwell’s field equations givenfallows in terms of electric charge density

Jjo and electric current densify PCMO0230211
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div E= jo,
div H=0,
curIE:—Z—I: .. (2.1)
curlH =7+ 9%

at

in rational Gaussian unit systemt (= ¢ = 1) which will be used throughout this woTkese
equations are not symmetrical between electrigity magnetism and also not invariant under
duality transformations.

E - H;
H--E . (22)
Moreover, these equations show that magnetic feeldways transverse to direction of
propagation while electric field has longitudinaingponent also, which is proportional to
electric charge source density.
The lack of symmetry in equations (2.1) led Ditddo put forward the idea of magnetic
monopole as the magnetic analogue of electric eharbis remarkable suggestion of Dirac

revealed the explanation of quantization of eleathiarge and led to natural generalization of
electrodynamics in terms of following equations

divE = j, ,
divH = k,,
cul E= -2 _ % .. (2.3)

curl H = Z—f +7
where j , Jo and k, ko are spatial and temporal parts of electric andrmatg four-current
densitiesj, andk, respectively. These equations may also be wrégen

Ry = ju .. (2.4)

Favw = Ky ... (2.5)
whereFyy is the electromagnetic field tensor afjl is its dual tensor defined as

Fiv = 3 &P ... (2.6)
with g as completely antisymmetric Ricci tensor. Equaiof2.2) and (2.3) are
symmetrical under the duality transformations.

Fw-Fy, Fhy - —Fw .. 2.7
along with

Ju— ki ki= = .. (2.8)
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In Dirac’s theory such a symmetric formalism wadaated quantum mechanically,
where wave function had a non-integral (or pattepehdent) phase factor. His work led to
the profound theoretical consequences of the exist®f magnetic monopole at quantum
level. He demonstrated that a dually symmetric tedetagnetic theory could be quantized
provided the following condition is satisfied fdret electric charge and magnetic charggin
the theory;

eg:%n .. (2.9)

wheren is an integer. It is celebrated Dirac quantizationdition derived by assuming that a
particle has either an electric or a magnetic ahaftpe similar result was obtained by Safia
independently from the very simple considerationctz#ssical electrodynamics by taking
charge and monopole at two different points and maing the angular momentum of the
system about the line joining two points. This dation is given here in very simple manner
by considering a particle of massand electric charge moving in the field

H=g(r/r? ... (2.10)
of monopole of strengtl fixed at the origin. The equation of motion of tha&rticle carrying
electric charge is given by

m =e (¥ x H) .. (2.11)

where magnetic fieldH is spherically symmetric and therefore one careexgome thing
like conservation of angular momentum. Howevelisinot the orbital angular momentum
which is a conserved quantity here. Rather, thee sthange of orbital angular momentum is
given by

d — e = ﬁ_ﬂﬁ g — _E A
a(r xmy)=rxmi = pcll x(f xF) = o (egf) .. (2.12)

whereT is unit vector along”
This result suggests that the conserved total angabmentum should be defined as

L=rxmf —egr (2.13)

where the second term can be interpreted as thieilmation of electromagnetic field and it

may be obtained by integrating the moment of Pagntiector £ x H) over whole space;
Low = [ d?x[% x (E x H)] .. (2.14)

where H is the radial field given by equation (2.8) ahd is the field due to electric charge
at . Thus
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L0 = [d*xE/ (5, - X %) 2
X

= [d3xE’ %(g)&),

I

=-[d*x(0.E) gX, ... (2.15)
integrating by parts.
It gives
Com=-€gT, ... (2.16)
0.E =ed(%-T)

Thus the total conserved angular momentum of tkéersyis the sum of orbital angular
momentum of the particle and the angular momentaunsed by the electromagnetic field. Its
conservation means that the momentum passes bdcfodh between the particle and the
field in the presence of electric and magnetic gbsr The radial component of total angular
momentum given by equation (2.13) is

F.L=-eg

On quantization, we expect the componentd:oto have half integral eigen values (in
the units of#i ) and hence we get
eg=%n .. (2.17)
which is Dirac quantization condition (2.9). It tiato the following inferences.
(i) Mere existence of isolated magnetic charge iegpthe quantization of electric charge.
(i) There are no theoretical reasons which exchieexistence of magnetic charge.

Dirac quantization condition gave rise to lot detature on monopoles but there have
been certain difficulties, which are encountere®irac’s theory. For instance, let us consider
the magnetic field produced by a magnetic monomdleharge g located at origin and

describe it by vector potentia?\. Then we have
H #curl A ... (2.18)

along the line going from monopole to infinity. $ue line, may be curved or planer, is
referred as Dirac string in literature. For theigfnt strings(”). we may write

~ Fxn

A”(r):gT ... (2.19)

r (r—r.n)

where n is the direction vector of strir@”)- On the string we get

[AM] = oo ... (2.20)
and hence in Dirac theory a string of arbitrarypghands at each monopole, the potenﬂal
is singular along the string and a charged partiale never pass through such strings. These
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conditions are referred as Dirac’'s veto which hasrbthe basic cause of troubles in the
development of a consistent theory of magnetic rpoles. Singular electromagnetic
potential is not present in the usual field theand this veto gave rise to difficulties in
scattering of electrons and monopoles. It has kskmwi® that the Hamiltonian for an
electron in the field of monopole is not Hermitia@cause of Dirac veto. Although an attempt
was madé?! to explain the occurrence of string in Dirac’saheby demonstrating that non-
Abelian vortices must contain a single unit of dimed flux absorbed by Dirac monopole at
each end but the string remained the topic ofatsith and controversies since the original
work of Dirac.

The first attempt to construct a theory of monoppfeee from Dirac’s veto, was made by
Mandelstarfi! and Cabbibo and Ferr&?l by developing gauge independent method using
two vector potentials. Wu and Ydhg? introduced fiber bundle method into gauge theories

and reformulated Dirac’s theory to avoid any silagity in /& by dividing the space
surrounding the monopoles into few regions whosgorepotentials are connected through
gauge transformations. In this approach singuléerg@l of Dirac’s theory is replaced by two
potentials. This approach is not useful when weehtos deal with quantum field theory.
Another approach of Kedfl based on idea of Cabbibo and Ferrari, free froma®s veto,
lacks in action principle in the presence of p&ticcarrying both electric and magnetic
charges (dyons).

gLASSlCAL ABELIAN THEORY OF DYONS

he theory of pure monopoles suffers from many partesl like Dirac’s veto and wrong

connection between spin and statistfésThese problems could be solved by considering
electric and magnetic charges on the same paftigien)*>l. Schiwingef*%-18l formulated a
relativistic covariant quantum field theory of pblike particles with either electric or
magnetic charge and sharpelf@dDirac quantization condition as

e =n .. (3.1)
Expanding this quantum field theory of spin — ¥z metie charges to the field associated
with the particles carrying electric and magnetiarges simultaneously, Zwanzigérslowed

that if two particles have magnetic chargesandge in addition to their electric charges
andez with electric and magnetic coupling parameters

a,=€6+ g0
and M, =60~ 0,6 .. (3.2)

respectively, then Hamiltonian possesses the saigketh symmetry as that of pure
Coulmbian problem. He derived the following chitaljuantization condition

M2 =€ 02 —01 6 =%n ... (3.3)
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wheren is an integer. But this theory does not show atimbal invariance when gauge is
massive. Later formulations proposed by Blagojeeic al?!! as an improvement of
Schwinger’s and Zwanzigar's, theories, lack in ldzeinvariance while in another attempt of
Brandtet al?? to maintain it, the use of controversial stringiahles has been made.

A gauge invariant and Lorentz covariant quanturtdfibeory of fields associated with
dyons has been develof&d® in purely group theoretical manner by using twarfo
potentials and assuming the generalized chargesrgized current and generalized four-
potential as complex quantities with their real amdginary parts as electric and magnetic
constituents i.e.

generalized charges e —ig, .. (3.4)
generalized four-currend, = j, — ik, ... (3.5)
and generalized four-potenti} = A, - iB, ... (3.6)

wheree andg are electric and magnetic charges on dyp@andk, are electric and magnetic
four-current densities andA{} and {B,} are the electric and magnetic four-potentials
associated with dyons. Taking the wave functiomassed with generalized fields as

@ =E-iH
The generalized field equations of these fields bayvritten as
Uy =J, .. (37)
and quJ:—i]—i% .. (3.8)

wherej, and ] are the temporal and spatial partsjofdefined by equation (3.5). In the
compact form these equations may be written as

G/Jv,v = J/J
and Gy, =0 .. (3.9)

whereG,, , the generalized field tensor, is given as
Gpv:apvv—avvp (310)

d . . .
andG,, is its dual given as

Gi=%DWwGM .. (3.11)

Equation (3.10) may also be written as
G,=F,-H, . (3.12)
where F,, =0,4, 0,4, .. (3.13)

and H,=0,B-9,B, ... (3.14)
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Then equations (3.9) reduce to the following form

Fy,v =y ... (3.15)

and Hy, =k ... (3.16)

These equations are symmetrical under the duaditystormations

174 uv y7% v

Ju

-k k, -- . (3.17)

In terms of generalized four-potential given by &tipn (3.6), the field equations (3.9)
may be written in the following standard form byngsrelation (3.10);

V.=Ju ... (3.18)
The Lagrangian density for spin-1 generalized chdrg. bosonic dyon) of rest mass,
may be written as follows in the Abelian theory;

L=my =51 Ay~ A2 Ba- B3 28 Au- A Bu- B
+{(aA, = FB,) |, (@B, +£A) k)]
=Ly +L¢ +L .. (3.19)

wherea andp are real positive unimodular parametegs,
bR+ BP=1 ... (3.20)
Lp, Ls andL, are free particle, field and interaction Lagramgiaespectively. The action
integral may be written as

s:jt2 Ldt= S+ §+ § .. (3.21)
i1

Varying the trajectory of particle without changinige field, we get the following
equation of motion

my, =Re (q* Gy) U .. (3.22)

where Re denotes the real part atis thevi" component of four-velocity of dyon. It may
also be written as

m¥, = (eﬁw + gHuv) u” (3223)
H
and w9 ... (3.22b)
Fuv e

An Abelian dyon, moving in the generalized field afiother dyon, carries a residual
angular momentulf! (field contribution) besides its orbital and sgingular moment. If we
consideri™ Abelian dyon moving in the field ¢f dyon (assumed as rest), the gauge invariant
rotationally symmetric orbital angular momentumteeenay be written &5,
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S ~ r
J:rx(p—pijVT)+p1-j? ... (3.23)

where?# is the position vectorj is the linear momentum of" dyon, VT is the transverse
generalized vector potential of the field assodatgth j" dyon and j is the magnetic
coupling parameter defined as

H; =€9; — 64 ... (3.24)

The last term in equation (3.23) is the residuajudar momentum carried by’ dyon
besides its usual orbital angular momentum and-apgular momentum.

jres = H; % ... (3.25)

For each pair of dyons, this residual angular mdomangenerates a one dimensional
representation of the pair of four-momenta assediavith these particles. This is the
subgroup of the Lorentz group which leaves bothr-foomenta invariant. This residual
angular momentum leads to chirality dependent miidity in the eigen values of angular
momentum of an Abelian dy&A.

DiscussIion

Eirac’s quantization condition, given by eqgn. (2,18)ows that the mere existence of

the magnetic charge implies the quantization ottale charge and emphasizes that there
cannot be any theoretical reasons to exclude tisteexxe of monopoles. Equations (3.2) give
the electric and magnetic coupling parametersHersystem of two dyons. Generalized field
equations (3.9) have been constructed for the géped fields associated with Abelian dyons
with the generalized charges defined by equatiof) @s complex quantity with its real and
imaginary parts as electric and magnetic charggseively. The generalized field tensor for
these fields have been constructed in equatiord)3riterms of derivatives of generalized
potential defined by equation (3.6) as a compleangty with its real and imaginary parts as
electric and magnetic constituents. The generalidd tensor has also been constructed as a
complex quantity in equation (3.12) with its reatdamaginary parts as electric and magnetic
constituents satisfying field equations (2.15) é&hd6) in terms of electric and magnetic four-
current densitie, andk, which constitute the generalized four-current dgris equation
(3.5). These field equations are symmetrical untther duality transformations given by
equation (3.17). Lagrangian field density, given dxyyuations (3.19), reproduces the field
equations (3.15) and (3.16) with the variationshwi¢spect to electric and magnetic four-
potentialsA, and B, respectively. This Lagrangian also leads to equatif motion (3.22).
Gauge invariant and rotationally symmetric orbaalgular momentum of an Abelian dyon
moving in the field of another Abelian dyon hasteenstructed in equation (3.23) and it has
been shown that each dyon carries a residual anguwdenentum given by equation (3.25),
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which leads to chirality quantization condltlpqln = E N, wheren is an integer and;us the

magnetic coupling parameter defined by equatio®4(3.For each pair of dyons, this residual
angular momentum generates a one-dimensional eqet®n of the pair of four-momenta
associated with these particles. This residual k@ngonomentum also leads to chirality
dependent multiplicity in the eigen values of amguhomentum of an Abelian dyon. Such a
residual angular momentum has been 8%&ito find the large number of monopole
operators with equal scaling dimensions and a walegye of spins and flavor symmetry
irreducible representations. The electric-magnsyimmetry, established in second and third
sections of this paper has been shéWd, as most fundamental which extends to full
quantum behavior leading monopole to form a quanBose condensate dual to charge
cooper pair condensate in superconductors.
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