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Constructing the Lagrangian density for spin-1 generalized 
charge (bosonic dyon) in abelian theory, the generalized of 
motion has been derived and the gauge invariant and 
rotationally symmetric orbital angular momentum of a dyon 
moving in the field of other dyon has been constructed and 
it has been shown that each dyon carries a residual 
angular momentum which leads to chirality quantization 
condition. 
 

IIIINTRODUCTION 

The question of existence of monopoles anddyons has gathered enormous potential 

importance in connection with the issue of quark confinement] ,magnetic condensation of 
vacuum,] as possible explanation of CP violation, their role in catalyzing proton decay and in 
the structure of black holes and also in the unification of gravitation with generalized 
electromagnetic fields. In the present paper the gauge invariant and consistent classical 
theories of Abelian as well as non-Abelian  monoples and dyons have been revisited in view 
of possible symmetry of Maxwell’s field equations and it has been shown that the mere 
existence of magnetic charge implies the quantization of electric charge, emphasizing that 
there are no theoretical reasons to exclude the existence of monopoles and dyons. 
Constructing the Lagrangian density for spin-1 generalized charge (bosonic dyon) in abelian 
theory, the generalized equation of motion has been derived and the gauge invariant and 
rotationally symmetric orbital angular momentum of a dyon moving in the field of other dyon 
has been constructed and it has been shown that each dyon carries a residual angular 
momentum which leads to chirality quantization condition. For each pair of dyons, this 
residual angular momentum has been shown to generate a one-dimensional representation of 
the pair of four-momenta associated with these particles to lead to chirality dependent 
multiplicity in the eigen values of angular momentum of an Abelian dyon. 

CCCCLASSICAL ABELIAN THEORY OF MONOPOLES 

    It is quite surprising, rather disturbing, that the symmetry between electric and 

magnetic fields which led Maxwell to unify these fields into electromagnetism, does not seem 
to be realized in Maxwell’s field equations given as follows in terms of electric charge density  

�� and electric current density �� 
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   div E
r

= 0j , 

   div H
r

= 0, 

          curl E
r

= − �����

�	
 ... (2.1) 

        curl =H
r

�� + ����

�	
 

in rational Gaussian unit system (h  = c = 1) which will be used throughout this work. These 
equations are not symmetrical between electricity and magnetism and also not invariant under 
duality transformations.  

      ... (2.2) 

Moreover, these equations show that magnetic field is always transverse to direction of 
propagation while electric field has longitudinal component also, which is proportional to 
electric charge source density.  

The lack of symmetry in equations (2.1) led Dirac[1,2] to put forward the idea of magnetic 
monopole as the magnetic analogue of electric charge. This remarkable suggestion of Dirac 
revealed the explanation of quantization of electric charge and led to natural generalization of 
electrodynamics in terms of following equations 

       div ��� = �� , 

       div ���� = ��, 

     curl E
r

= − �����

�	
− ��� ... (2.3)  

      ���� ���� = ����

�	
+  �� 

where j
r

, 0j  and 0,k k
r

 are spatial and temporal parts of electric and magnetic four-current 

densities. jµ and kµ respectively. These equations may also be written as  

       Fµν,ν = jµ,  ... (2.4)  

     F*µν,ν = kµ ... (2.5) 

where Fµν is the electromagnetic field tensor and ���
∗  is its dual tensor defined as  

     ���
∗ = �

�
�������� ... (2.6)  

with εµνλρ as completely antisymmetric Ricci tensor. Equations (2.2) and (2.3) are 

symmetrical under the duality transformations.  

     Fµν→���
∗ ,  ���

∗ → – Fµν … (2.7)  

along with  

     jµ→ kµ, kµ→ – jµ ... (2.8) 

;E H

H E

→

→ −

r r

r r
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In Dirac’s theory such a symmetric formalism was obtained quantum mechanically, 
where wave function had a non-integral (or path independent) phase factor. His work led to 
the profound theoretical consequences of the existence of magnetic monopole at quantum 
level. He demonstrated that a dually symmetric electromagnetic theory could be quantized 
provided the following condition is satisfied for the electric charge e and magnetic charge g in 
the theory; 

     eg = 
�

�
 n  ... (2.9)  

where n is an integer. It is celebrated Dirac quantization condition derived by assuming that a 
particle has either an electric or a magnetic charge. The similar result was obtained by Saha[3,4] 
independently from the very simple consideration of classical electrodynamics by taking 
charge and monopole at two different points and computing the angular momentum of the 
system about the line joining two points. This derivation is given here in very simple manner 
by considering a particle of mass m and electric charge e, moving in the field 

     )/( 3rrgH
rv

=  … (2.10) 

of monopole of strength g fixed at the origin. The equation of motion of the particle carrying 
electric charge e is given by 

     ���� =   (��" × ����) ... (2.11)  

where magnetic field H
v

 is spherically symmetric and therefore one can expect some thing 
like conservation of angular momentum. However, it is not the orbital angular momentum 
which is a conserved quantity here. Rather, the rate of change of orbital angular momentum is 
given by 

   )ˆ()()(
3

reg
dt

d
rrr

r

eg
rmrrmr

dt

d =××=×=/× rr
&

rr
&&

rr
&

r
 ... (2.12)                                         

 where r
)

 is unit vector along r
r

 

This result suggests that the conserved total angular momentum should be defined as  

      … (2.13) 

where the second term can be interpreted as the contribution of electromagnetic field and it 

may be obtained by integrating the moment of Poynting vector (��� × ����)  over whole space; 

     %��&' = ( )* +[+� × -��� × ����.] ... (2.14) 

where H
v

 is the radial field given by equation (2.8) and E
v

 is the field due to electric charge 

at r
v

. Thus 

L r mr egr= × −
rv v )
&
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      ... (2.15) 

integrating by parts.       

It gives 

     ,= −
v )
emL eg r   ... (2.16)    

      
Thus the total conserved angular momentum of the system is the sum of orbital angular 

momentum of the particle and the angular momentum caused by the electromagnetic field. Its 
conservation means that the momentum passes back and forth between the particle and the 
field in the presence of electric and magnetic charges. The radial component of total angular 
momentum given by equation (2.13) is 

     egLr −=
))

.  

On quantization, we expect the components of L
v

 to have half integral eigen values (in 

the units of h ) and hence we get 

     eg = ½ n  ... (2.17) 

which is Dirac quantization condition (2.9). It leads to the following inferences. 

(i) Mere existence of isolated magnetic charge implies the quantization of electric charge.  

(ii) There are no theoretical reasons which exclude the existence of magnetic charge.  

Dirac quantization condition gave rise to lot of literature on monopoles but there have 
been certain difficulties, which are encountered in Dirac’s theory. For instance, let us consider 
the magnetic field produced by a magnetic monopole of charge g located at origin and 

describe it by vector potential A
r

. Then we have  

     curl≠
rr

H A  … (2.18) 

along the line going from monopole to infinity. Such a line, may be curved or planer, is 

referred as Dirac string in literature. For the straight string S(n). we may write 

     
r

g
rAn =)(

r

).(

ˆ

nrr

nr
)v

v

−
×

 … (2.19)  

where n
)

 is the direction vector of string S(n). On the string we get 

     [A(n)] = ∞ … (2.20) 

and hence in Dirac theory a string of arbitrary shape ends at each monopole, the potential A
r

 
is singular along the string and a charged particle can never pass through such strings. These 
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conditions are referred as Dirac’s veto which has been the basic cause of troubles in the 
development of a consistent theory of magnetic monopoles. Singular electromagnetic 
potential is not present in the usual field theory and this veto gave rise to difficulties in 
scattering of electrons and monopoles. It has been shown[5,6] that the Hamiltonian for an 
electron in the field of monopole is not Hermitian because of Dirac veto. Although an attempt 
was made[7,8] to explain the occurrence of string in Dirac’s theory by demonstrating that non-
Abelian vortices must contain a single unit of quantized flux absorbed by Dirac monopole at 
each end but the string remained the topic of criticism and controversies since the original 
work of Dirac.  

The first attempt to construct a theory of monopoles, free from Dirac’s veto, was made by 
Mandelstam[9] and Cabbibo and Ferrari[10] by developing gauge independent method using 
two vector potentials. Wu and Yang[11,12] introduced fiber bundle method into gauge theories 

and reformulated Dirac’s theory to avoid any singularity in A
r

 by dividing the space 
surrounding the monopoles into few regions whose vector potentials are connected through 
gauge transformations. In this approach singular potential of Dirac’s theory is replaced by two 
potentials. This approach is not useful when we have to deal with quantum field theory. 
Another approach of Keon[13] based on idea of Cabbibo and Ferrari, free from Dirac’s veto, 
lacks in action principle in the presence of particles carrying both electric and magnetic 
charges (dyons).  

CCCCLASSICAL  ABELIAN THEORY OF DYONS 

The theory of pure monopoles suffers from many paradoxes like Dirac’s veto and wrong 

connection between spin and statistics[14]. These problems could be solved by considering 
electric and magnetic charges on the same particle (dyon)[15]. Schiwinger[16-18] formulated a 
relativistic covariant quantum field theory of point-like particles with either electric or 
magnetic charge and sharpened[19] Dirac quantization condition as  

     eg = n ... (3.1)  

Expanding this quantum field theory of spin – ½ magnetic charges to the field associated 
with the particles carrying electric and magnetic charges simultaneously, Zwanziger[20] slowed 

that if two particles have magnetic charges g1 and g2 in addition to their electric charges e1 

and e2 with electric and magnetic coupling parameters  

      

and      ... (3.2)  

respectively, then Hamiltonian possesses the same higher symmetry as that of pure   
Coulmbian problem. He derived the following chirality quantization condition 

     µ12 = e1 g2 – g1 e2 = ½ n ... (3.3) 

12 1 2 1 2e e g gα = +

12 1 2 1 2e g g eµ = −
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where n is an integer. But this theory does not show a rotational invariance when gauge is 
massive. Later formulations proposed by Blagojevic et al[21] as an improvement of 
Schwinger’s and Zwanzigar’s, theories, lack in Lorentz invariance while in another attempt of 
Brandt et al[22] to maintain it, the use of controversial string variables has been made.  

A gauge invariant and Lorentz covariant quantum field theory of fields associated with 
dyons has been developed[23-25] in purely group theoretical manner by using two four-
potentials and assuming the generalized charge, generalized current and generalized four-
potential as complex quantities with their real and imaginary parts as electric and magnetic 
constituents i.e.  

             generalized charge q = e – ig,  ... (3.4) 

  generalized four-current  Jµ = �� − 0�� ... (3.5) 

and generalized four-potential Vµ = Aµ - iBµ ... (3.6)  

where e and g are electric and magnetic charges on dyon; jµ and kµ are electric and magnetic 
four-current densities and {Aµ} and {Bµ} are the electric and magnetic four-potentials 
associated with dyons. Taking the wave function associated with generalized fields as  

          

The generalized field equations of these fields may be written as  

                                    ... (3.7) 

and     ij i
t

∂ψ∇ × ψ = − −
∂

r
rr

 ... (3.8) 

where 1� and  1�  are the temporal and spatial parts of Jµ defined by equation (3.5). In the 
compact form these equations may be written as  

     µνµν JG =,  

and     0, =dG νµν  ... (3.9)  

where Gµν , the generalized field tensor, is given as  

     Gµν = ∂µ Vν – ∂ν Vµ … (3.10)  

and dGµν  is its dual given as  

     αβ
αβµµ GG v

d
v ∈=

2
1

 ... (3.11) 

Equation (3.10) may also be written as  

     µνµνµν iHFG −=  ... (3.12)  

where    nF A Aµ µ ν ν µ= ∂ − ∂  ... (3.13)  

and     µννµµν BBH ∂−∂=  ... (3.14) 

E iHψ = −
r vr

0. Jψ∇ =r
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Then equations (3.9) reduce to the following form  

     ,F jµν ν µ=  ... (3.15) 

and    ,H kµν ν µ=  ... (3.16) 

These equations are symmetrical under the duality transformations 

     

     ;µνµν HF →   ;µνµν FH −→  

     ;µµ kj →   µµ jk −→    ... (3.17) 

In terms of generalized four-potential given by equation (3.6), the field equations (3.9) 
may be written in the following standard form by using relation (3.10); 

     2� = 1� ... (3.18) 

The Lagrangian density for spin-1 generalized charge (i.e. bosonic dyon) of rest mass mo 
may be written as follows in the Abelian theory;  

  2 2
0 , , , , , , , ,

1
[ {( ) ( ) } 2 {( )( )}

4 ν µ µ ν ν µ µ ν ν µ µ ν ν µ µ ν= − α − − − − β − −L m A A B B A A B B  

{( ) ( ) }]+ − − +A B j B A kµ µ µ µ µ µα β α β  

     = + +p f IL L L  ... (3.19) 

where α and β are real positive unimodular parameters i.e.,  

     |α|2 + |β|2 = 1   ... (3.20) 

LP, Lf and LI are free particle, field and interaction Lagrangians respectively. The action 
integral may be written as  

     
2

1
= = + +∫

t

p f I
t

S Ldt S S S ... (3.21) 

Varying the trajectory of particle without changing the field, we get the following 
equation of motion 

     Re ( * ) ν
µ µν=&&mx q G u  ... (3.22) 

where Re denotes the real part and uv is the vth component of four-velocity of dyon. It may 
also be written as 

      �+�� = ( ��� + 3���) ��    ... (3.22a) 

and      µν

µν
=

H g

F e
 ....  (3.22b) 

An Abelian dyon, moving in the generalized field of another dyon, carries a residual 
angular momentum[26] (field contribution) besides its orbital and spin angular moment. If we 
consider i th Abelian dyon moving in the field of j th dyon (assumed as rest), the gauge invariant 
rotationally symmetric orbital angular momentum vector may be written as[26].  
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     ( )= × − µ + µ
r

r rr r T
ij ij

r
J r p V

r
 ... (3.23) 

where �� is the position vector, 4� is the linear momentum of i th dyon, 2��5 is the transverse 

generalized vector potential of the field associated with j th dyon and µij is the magnetic 
coupling parameter defined as  

     ijjiij gege −=µ  ... (3.24)  

The last term in equation (3.23) is the residual angular momentum carried by i th dyon 
besides its usual orbital angular momentum and spin-angular momentum.  

     
r

r
J ijres

r
r

µ=  … (3.25) 

For each pair of dyons, this residual angular momentum generates a one dimensional 
representation of the pair of four-momenta associated with these particles. This is the 
subgroup of the Lorentz group which leaves both four-momenta invariant. This residual 
angular momentum leads to chirality dependent multiplicity in the eigen values of angular 
momentum of an Abelian dyon[27]. 

DDDDISCUSSION  

Dirac’s quantization condition, given by eqn. (2.15), shows that the mere existence of 

the magnetic charge implies the quantization of electric charge and emphasizes that there 
cannot be any theoretical reasons to exclude the existence of monopoles. Equations (3.2) give 
the electric and magnetic coupling parameters for the system of two dyons. Generalized field 
equations (3.9) have been constructed for the generalized fields associated with Abelian dyons 
with the generalized charges defined by equation (3.4) as complex quantity with its real and 
imaginary parts as electric and magnetic charges respectively. The generalized field tensor for 
these fields have been constructed in equation (3.10) in terms of derivatives of generalized 
potential defined by equation (3.6) as a complex quantity with its real and imaginary parts as 
electric and magnetic constituents. The generalized field tensor has also been constructed as a 
complex quantity in equation (3.12) with its real and imaginary parts as electric and magnetic 
constituents satisfying field equations (2.15) and (2.16) in terms of electric and magnetic four-
current densities jµ and kµ which constitute the generalized four-current density in equation 
(3.5). These field equations are symmetrical under the duality transformations given by 
equation (3.17). Lagrangian field density, given by equations (3.19), reproduces the field 
equations (3.15) and (3.16) with the variations with respect to electric and magnetic four-

potentials Aµ and Bµ respectively. This Lagrangian also leads to equation of motion (3.22). 

Gauge invariant and rotationally symmetric orbital angular momentum of an Abelian dyon 
moving in the field of another Abelian dyon has been constructed in equation (3.23) and it has 
been shown that each dyon carries a residual angular momentum given by equation (3.25), 
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which leads to chirality quantization condition nij 2

1=µ , where n is an integer and µij is the 

magnetic coupling parameter defined by equation (3.24). For each pair of dyons, this residual 
angular momentum generates a one-dimensional representation of the pair of four-momenta 
associated with these particles. This residual angular momentum also leads to chirality 
dependent multiplicity in the eigen values of angular momentum of an Abelian dyon. Such a 
residual angular momentum has been used[28,29] to find the large number of monopole 
operators with equal scaling dimensions and a wide range of spins and flavor symmetry 
irreducible representations. The electric-magnetic symmetry, established in second and third 
sections of this paper has been shown[30-32], as most fundamental which extends to full 
quantum behavior leading monopole to form a quantum Bose condensate dual to charge 
cooper pair condensate in superconductors. 
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