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%TRODUCTION

0 reach such a consistent theory which containgjttemtum field theory of particle

physics and Einstein’s theory of gravitation asitiing cases, one may proceed in the
following way: Standard quantum field theory jughéres effects of gravity. This is justified
in many cases due to the weakness of gravitatioietactions at the presently accessible
scales. In a first step beyond this approximatioe may consider an external gravitational
field which is not influenced by the quantum fielddere one may think of sources of
gravitational fields which are not influenced by tQuantum fields under consideration, as
high energy experiments in the gravitational fielflthe earth or quantum fields in the
gravitational field of dark matter and dark energliis approach amounts to the treatment of
guantum field theory on curved spacetimes. Thelprolof quantization in curved spacetimes
is now clearly visible. In Minkowski spacetime theis a large group of symmetries that
enforces a particular choice of vacuum by demandigvacuum to be invariant. Such a
criterion is absent for a general spacetiike ¢). We therefore do not know which state to
choose as the vacuum. One might hope that thereliffeprescriptions might be unitarily
equivalent such that it doesn’t matter which state takes to define the theory. Sadly this is
not the case: The Stone-Von Neumann theorem ismgel valid for systems with an infinite
amount of degrees of freedom. This means that rilgiiaequivalent representations of the
canonical commutation relations will arise, andsitnot clear which equivalence concept
representations is the physical one. In the sesention of this chapter we review the notions
of Cauchy surfaces and global hyperbolicity. Theegel collection of spacetimes is too large
for quantum field theory, since the notion of caiixgds important to the setup of the theory.
The demand of global hyperbolicity is that spaceti® causally similar to flat space on a
global scale. In the third section we briefly reviehe generalization of the classical phase-
space to such a background. The fourth sectioneistéd to defining the concepts of
observers and reference frames. In considering wdtatobservers might play in QFT it is
important to have a mathematically rigorous notwdrobserver. We pose a construction of a
local reference frame corresponding to a geoddsserver. The fifth section is allocated to
the question when two different choices of p givee rto unitarily equivalent QFT’s.
Sufficient and necessary conditions that are ne¢al@msure that two theories are equivalent
are presented and their proofs sketched. From thi existence of inequivalent
representations can also be seen as these re-gui®rre not satisfied in general. The last
two sections of this chapter are allocated to atglesiew of the Unruh- effect as an example
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of what can happen in QFT in general spacetimébdiadh it is set in flat spacetime). First
we review the connection between modes with redpeatertial time and ones with respect to
accelerated time. This leads to the result thatMitkowski vacuum is a thermal state with
respect to the Rindler-quantization. After this iweestigate the reality of this thermal bath by
coupling the system to a model particle detectdnickv sheds some light on the interpretation
of QFT as a theory of particles.

¢LOBAL HYPERBOLICITY AND SPACE-TIME SPLITS

Eince we already did a lot of the work involved hetquantization of the free scalar

field the rest of the task is now fairly straightfi@rd. As a first task we need to generalize the
classical space of solutions to more general spacewder to do this we need to single out
some spacetimes that are sufficiently nice fonmthge-equation to have solutions.

Let (M, g0 be some four-dimensional spacetime with metrgnaiure (-, +, +, +).
Throughout this thesis we will assume spacetimédaime-oriented: a global choice for
‘future-pointing’ has been made. The metric tengas abstractly defined as a map sending
two vector-fields to a smooth, real function oncgiane. In terms of components this is given
by the contraction of indices :

9(X, Y) () =guv (X) Xu
) Yv (X), whereX and Y are vector fields ande M.
For each space like subsx M we can define the time like future of the set as
I+ ={xeM|

There is a future pointing time like curve connegto x}.

We likewise define the time like past 8f By causal we will always mean: time like or
light like. Hence we also define the causal pastfuil + (S of S as the sets of all points
causally connected t8in the past/future. These sets are usually ingéepras all events that
can be influenced by events 8 since light-signals travel along light like patfelated to
this is the definition of the domain of dependentéhe setS. This is the set of events that is
completely and uniquely influenced ByWe define it as:

D + (9§ = {x € M | every past-pointing causal curve without
past endpoint through x interse&swith D — (S) defined similarly
and D(=D+@©QuUD-(9.

We see that any information reaching a poinDir (S) must also register o8 and any
information leaving a point iD — (S also does. Concretely: If we know what happen§on
we can infer all that happensih(S). We exclude curves with a past endpoint sincevast
to prevent points from falling outside B{S) simply because we stopped the curves through
before hittingS. The extra demand that we will put on our spacesiris that some closed
surfaceX exists that is large enough to capture all thaipkas inM. Concretely, we call a
smooth, closed, achronal sete M a Cauchy surface B (£) = M. It follows that every
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inextendible causal curve M hits X exactly once. We call a spacetime Figure 3.1: [€fte
figure shows the timelike past/future of the closetl S. The causal past/future (S) is the
union of the en-closed volume with the dashed bariad. The right figure shows the
past/future domain of dependenceSoiNote that these sets are always contained witien
causal past/future, but are in general a lot smalle

A classic theorem by Geroch (Geroch, 1970) stated on a globally hyperbolic
spacetime we can always find a global time-functiena smooth function increasing on any
future directed curve whose gradient is nowhere.zBvery surface of constant 'time’ will
then be a Cauchy surface. As such the topology lobbadly hyperbolic spacetimes is
particularly simple, it is homeomorphic Bx X for some 3-manifol&. A proof of this fact
can be found in proposltion (Hawking and Ellis, 397

This implies that a globally hyperbolic spacetindmits a foliation. A foliation is a
global decomposition of spacetime into space amtk.tiConcretely, it is a collection of
smooth hyper surfaced (which all have the same topology) labeled bymgetcoordinate t
such that th&t's together cover the entire manifold, whilst natdifferent surfaces intersect.
We can define a time function at a point by lookaigvhich uniquet the point is part of. We

can find coordinates adapted to the foliation dievics. If we choose spatial coordinates}{

on (a patch ofkt fori = 1, 2, 3 then{ x;} forms a coordinate chart fovi. This gives a basis
for the tangent spacedt, di}. The vector fieldot connects the different slices of the foliation,
but is in general not normal to the hypersurfaterhis is because transport along this vector
does not necessarily leave the spatial coordinatesiant. Hence we can decompose it into
parts that are normal and tangential to
Xtot=aN+p

Here N is the future-directed unit normal . We call o the lapse of the coordinate
system, which is a scalar. The tangential fait called the shift and is a spacelike vector.
Loosely speaking the lapse indicates how far awagighbouring hypersurface of constant
time is, and the shift indicates how far one hastwe the coordinates around in going to this
surface. A straightforward calculation of the mettomponents in this coordinate chart gives:

guv = —az + (B +iB)/ ip;

B/hij
wherehjj is the spatial metric induced on the tangent spéi by g in the coordinatesx}.
The inverse metric can then be calculated:

W= (=10 2B +jla2 —Bia2 h + ij —ipja2))
The purpose of this formalism is to split spacetim® space and time separately. The
covariant picture of space and time being the senmeathematically elegant but often not
very practical in calculations. Choosing a Cauchyface, a lapse and a shift effectively
unravels the union of space and time. If coordmatee chosen such th@tvanishes, the

spacetime metric takes a form where space andammeot mixed at all. It should be clear
that these choices are not unique: We can sliceesipze in many different ways, and when
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we have done so there are many different choicesgafise and shift that are available. As
such, no dependence of physical observables oa tiesces is allowed.

¢ENERALIZATION OF THE CLASSICAL PHASE SPACE

e now continue to the covariant generalizationhef ¢lassical field system. Clearly

we should swap out the partial derivatives for c@rd derivatives in order to obtain a
covariant equation. In fact, it is only because pesed the Klein-Gordon equation in
Cartesian coordinates that we did not need to dbedore, because in the flat case the of
Christoffel symbols vanish and covariant and phd@ivatives are the same. From this point
onward, we will always use the symbdl to denote covariant derivatives, and the KG-
equation becomes 1.
@uvVpYy —m?) ¢ = (2 -1P) ¢ = 0

where the d’Alembertian operator is defined by 2g@VuVv. We have the following
theorem, originally due to Leray :

Theorem. Let M, g) be a globally hyperbolic spacetime with CauchsfeezeX and letN
be the normal vector tB. If ¢ andn are two smooth functions dh supported within some
compact subset K then there is a unique smoothiaoly to the KG-equation such that
v | =¢ and NWuy | £ ==. This solution has compact support on any othercga surface
and is supported id + (K) N J — (K). Furthermore, if we vary the initial conditionstside of
some closed subs8iof X then the solution remain unchanged withi{s).
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For a proof of this theorem we refer of (Hawkingdagllis, 1973) of (Wald, 1984). A
self-contained treatment of wave equations in alirgpacetimes can be found in (Bar,
Ginoux, and Pfaffle, 2007).The theorem above stttasin a globally hyperbolic spacetime
solutions to the KG equation are uniquely charazter by their footprint on a Cauchy
surface, and that this information is enough toomnstruct the solution. The propagation of
information is causal The potential term admitsesvierm of the right physical dimensions,
namely some constant times the Ricci scalar. Thisften added with prefactor , since this
renders the equation conformally invariant. Thilbwas many interesting examples to be
explicitly calculated in conformally flatspacetimé&8e will not add it here, for the reason that
it adds little to the discussion and we see noamas introduce some extra coupling to
gravity on top of changing the background metricat@urved one in the sense that was
discussed above. In the previous chapter we destsblutions to the KG-equation by the
initial data they have at= 0. Clearly the sdt= 0 is a 3-surface in Minkowski space that hits
every causal curve exactly once, and hence it Baachy surface. The theorem above
generalizes this: In a globally hyperbolic spacetine pick some Cauchy surfatend set
V=Cwc (X) M Cwc () consisting of pairsg, ) of smooth functions of compact support
on X. From the above theorem it follows that it is moportant whichE we take: If we take
some compactly supported smooth initial conditimms one Cauchy surface, it uniquely
hinfers smooth compactly supported data on anyroffiee symplectic form is generalized to

o (9%, 1), (9% 1) = Z= (n'9? -~ n%p*) Vhdx
By the theorem above, there is a one-to-one cooregnce betweex and solutions to
the wave equation. If we make this identificaticetieeeny and ¢, ©r) the symplectic form
reads
o(whv)=2
Syt - Vpy?) dzp
Here d=p =Npvhd 3x

is the surface measure Bf whereNu is the future pointing normal vector ¥oandh is the
determinant of the spatial metric. We can use Gatissorem to see that this does not depend
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on the Cauchy-surface that is used: Suppose we Siaw? Cauchy surfaces and denote the
volume enclosed b, then Gauss’s theorem gives us the equality:

olyh vd) = oAy, vP) = ZQvp(yt  DOuy?) = ZQyH(m? - mP)y? = 0

This gives us two equivalent ways of looking at th&ssical phase space. These con-
structions use 3 dimensional test-functions to sniea quantum field such that it is well-
defined. An equivalent construction is to use 4ligional test functions, an we will
sometimes also take this viewpoint. Thus, lookhat $pace of 4-dimensional test functions
Co 0

(M) of smooth functions of compact support on spawetiThis construction makes use
of the fact that for

fECxoO0

(M) we can solve the Klein-Gordon equation with seurcThe retarded and advanced
solutions are defined by

(2 -m?) R =f, (2 —nP) As =T,
whereRs = 0 outside of the future of the supportfofindAs = 0 outside of the past of the

support. ThenA — R) f = Ef is a solution to the homogeneous wave equatioighutegisters
compactly on any Cauchy-surface because the suppbid compact. Hence we find thats
a map ofCeo.

oM — V.

One can show (Wald, 1995) that this map is subjectind that its kernel is exactly the
image of (2 #?). Hence we find/ ~ = C oo ¢(M)/(2 =) C oo ¢ (M) .

The interpretation of a reference frame is thatejppresents a collection of fictitious
observers that can work together in order to estalion-local measurements. A reference
frame is called synchronizable if functionandh on M exist such thaX = — hJt, and we call
it proper time synchronizable if we can chodse 1. These reference frames allow the
different observers in the frame to synchronizertbecks 4 and define surfaces of constant
timet. This effects a spacetime split: The observersaghat the surfaces of constant t form
space and global time is equal to each observerseptime. This is the best case scenario,
but we are not guaranteed the existence of a urgtpleal synchronizable reference frame
containingy. Clearly the concept of a reference frame is dalmotion: Vector fields are
defined on the whole of spacetime and are sendititbe global properties of the manifold.
As such it would be too optimistic to expect aneyler to induce a unique reference frame
that he is one of the observers of. In generalkthél be many different ref- erence frames
that extrapolate a single obseryeiTo restrict this choice, we can ask for somesdon to be
satisfied which implements the idea that the refeeeframe 'behaves like the obseryer~or
example, since will be looking at geodesic obseritawould be natural to ask for a reference
frame which is geodesic 5. However, because grasitgttractive, geodesics are likely to
cross and such a reference frame will not existrig realistic model. The problem is that,
while there are many extensions of a single obsaova reference frame, there are in general
no global extensions with nice properties. We dawever, locally define reference frames
around the worldline of the observer. While thigslmot yield the full notion of a reference
frame, we would argue that this notion is unphysigarealistic observer can not measure
anything that has a large spatial separation frasnolwn worldline. Cooperation between
multiple observers can increase the range of meammnts that can be performed, but this
would always require different observers to commatad to compare their findings. This can
only be done meaningfully if the different obses/ean synchronize their clocks, since then
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they can compare their measurements with an agreeimevhen they were made. There are
schemes for synchronizing clocks between obsensrsh as the radar method. These
methods are, however, not globally applicable vezefore take the viewpoint that a realistic
reference frame should always be locally definedsame open set insidd which contains
part of y. This corresponds to the idea that the observaibie to operate some spatially
extended apparatus to perform measurements awawytfre exact position of his worldline,
and that he could communicate with other obserwdrieh are close. Finally in this paper
theoretical study of different type and generatdrspacetime curved in mikokshi and other
Hilbert space and multiple dimensional vectors spiae curved.
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