FIXED POINT THEOREM IN b-METRIC SPACE WITH DIFFERENT CONTRACTIVE MAPPING

C. SREEDHAR

NBKR Institute of Science and Technology, Vidya Nagar-524413
Andhra Pradesh State, India
RECEIVED : 26 March, 2023
PUBLISHED : 1 May, 2023

In this paper we present the completeness and uniqueness of fixed point on b-metric space which extend the known results of fixed point theorems.
INDEX KEY: Common field point, b-metric space AMS subject classification : $47 \mathrm{H} 10,54 \mathrm{H} 2 \mathrm{~S}$.

Пntroduction

Backhtin introduced the concept of b-metric space in 1989, results on b-metric space were extended by Czerwik [1, 5], Mehmet kir [6], Boriceanu [4], Bota [3] and Pacurer [7].

Some prelminary result

Definition 2.1. Let X be a non-empty set and $s \geq 1$ be the given real number. A mapping $d: X \star X \rightarrow \mathfrak{R}^{+}$is called a b-metric iff
2.1.1 $d(x, y)=0$ if and only if $x=y$
2.1.2 $d(x, y)=d(y, x)$
2.1.3 $d(x, z) \leq s[d(x, y)+d(y, z)]$ for all $x, y, z \in X$ and $s \geq 1$ where s is a real number.

The pair (X, d) is called a b-metric space.
Definition 2.2. A sequence $\left\{x_{n}\right\}$ is called a Cauchy sequence in b-metric space (X, d) if all $\varepsilon>0 d\left(x_{n}, x_{m}\right)<\varepsilon$ for each $m, n \geq n(\varepsilon) \in N$.

Definition 2.3. A sequence $\left\{x_{n}\right\}$ in b-metric space (X, d) is called a convergent sequence if $d\left(x_{n}, x\right)<\varepsilon$ for all $\varepsilon>0$ and $n \geq n(\varepsilon)$ where $n(\varepsilon) \epsilon N$ (Set of natural numbers).

Definition 2.4. b-metric space is said to be complete b-metric space if every Cauchy sequence is convergent.

Main result

Theorem 2.1. Let (X, d) be a complete b-metric space. Let T be a mapping $T: X \rightarrow X$ such that

$$
\begin{equation*}
d(T x, T y) \leq a(d(x, y)+d(x, T y)+b \max \{d(x, T x), d(x, T y), d y(x, T x)\} \tag{1}
\end{equation*}
$$

where $a, b>0$ such that $a(1+2 s)+b<1$ for every $x, y \in X$ and $s \geq 1$. Then T has a unique fixed point.

Proof: Let $x_{0} \in X$ and x_{n} be a sequence in X defined by recursion

$$
\begin{equation*}
x_{n}=T x_{n-1}=T^{n} x_{0} \quad n=1,2,3,4 \tag{2}
\end{equation*}
$$

By (1) and (2) we obtain that

$$
\begin{array}{r}
d\left(x_{n}, x_{n+1}\right) \leq a\left(d\left(x_{n-1}, x_{n}\right)+\operatorname{sa}\left(d\left(x_{n-1}, x_{n}\right)+d\left(x_{n} x_{n+1}\right)\right)+b \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}\right. \\
d\left(x_{n}, x_{n+1}\right) \leq a\left(d\left(x_{n-1}, x_{n}\right)+\operatorname{sa}\left\{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right\}+b M_{1}\right. \\
\text { where } M_{1}=\max d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)
\end{array}
$$

Case 1. If suppose that $M_{1}=d\left(x_{n+1}, x_{n}\right)$ then we have $M_{1}=d\left(x_{n+1}, x_{n}\right)$ then we have

$$
\begin{aligned}
& d\left(x_{n}, x_{n+1}\right) \leq a d\left(x_{n-1}, x_{n}\right)+\text { as } d\left(x_{n-1}, x_{n}\right)+\operatorname{asd}\left(x_{n}, x_{n+1}\right)+b d\left(x_{n+1}, x_{n}\right) \\
& d\left(x_{n}, x_{n+1}\right)(1-a s-b) \leq(a+a s) d\left(x_{n-1}, x_{n}\right) \\
& d\left(x_{n}, x_{n+1}\right) \leq \frac{(a+a s)}{(1-a s-b)} d\left(x_{n-1}, x_{n}\right) \\
& d\left(x_{n}, x_{n+1}\right) \leq k d\left(x_{n-1}, x_{n}\right) \text { where } k=\frac{a+a s}{1-a s-b}<1 \\
& d\left(x_{n}, x_{n+1}\right) \leq k^{2} d\left(x_{n-2}, T_{n-1}\right)
\end{aligned}
$$

Continuing this process we get $d\left(x_{n}, x_{n+1}\right) \leq k^{n} d\left(x_{0}, x_{1}\right)$
Case 2. If suppose $M_{1}=d\left(x_{n-1}, x_{n}\right)$

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & \leq a d\left(x_{n-1}, x_{n}\right)+a s\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right]+b d\left(x_{n-1}, x_{n}\right) \\
(1-a s) d\left(x_{n}, x_{n+1}\right) & \leq(a+a s+b) d\left(x_{n-1}, x_{n}\right) \\
d\left(x_{n}, x_{n+1}\right) & \leq k d\left(x_{n-1}, x_{n}\right) \text { where } k=\frac{(a+a b)}{(1-a s)}<1 \\
d\left(x_{n}, x_{n+1}\right) & \leq k^{2} d\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

Continuing this process we get $d\left(x_{n}, x_{n+1}\right) \leq k^{n} d\left(x_{0}, x_{1}\right)$
Thus T is a contractive mapping. Now we show that $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Let $m, n \in \aleph,(m>n)$

$$
\begin{aligned}
& d\left(x_{n}, x_{m}\right) \leq s\left[d\left(x_{n}, x_{n+1}\right)+d\left(\left(x_{n+1}, x_{m}\right)\right)\right] \\
& d\left(x_{n}, x_{m}\right) \leq s d\left(x_{n}, x_{n+1}\right)+s d\left(x_{n+1}, x_{m}\right) \\
& d\left(x_{n}, x_{m}\right) \leq s\left[d x_{n}, x_{n+1}\right)+s^{2} d\left(\left(x_{n+1}, x_{n+2}\right)+s^{2} d\left(\left(x_{n+2}, x_{m}\right)\right]\right. \\
& d\left(x_{n}, x_{m}\right) \leq s k^{n}\left[d\left(x_{0}, x_{1}\right)\right]+s^{2} k^{n+1} d\left(\left(x_{0}, x_{1}\right)+s^{3} k^{n+2} d\left(\left(x_{0}, x_{1}\right)\right]+\ldots . .\right. \\
& d\left(x_{n}, x_{m}\right) \leq s k^{n}\left[d\left(x_{0}, x_{1}\right)\left[1+s k+s^{2} k^{2}+\ldots .\right]\right.
\end{aligned}
$$

Then $\lim d\left(x_{n}, x_{m}\right)=0$ as $m, n \rightarrow \infty$, since $k<1$

$$
\lim _{x \rightarrow \infty} \frac{s k^{n}}{1-s k} d\left(x_{0}, x_{1}\right)=0
$$

Hence $\left\{x_{n}\right\}$ is a Cauchy sequence in $X .\left\{x_{n}\right\}$ converges to $x \in X$.
Now we show that $x \star$ is a fixed point of T.

$$
\begin{aligned}
& d(x \star, T x \star) \leq s\left[d\left(x \star, x_{n+1}\right)+d\left(x_{n+1}, T x \star\right)\right] \\
& d(x \star, T x \star) \leq s\left[d\left(x \star, x_{n+1}\right)+d\left(T x_{n}, T x \star\right)\right] \\
& d(x \star, T x \star) \leq s\left[d\left(x \star, x_{n+1}\right)+d\left(T x_{n}, T x \star\right)\right] \\
& \leq s\left[d\left(x \star, x_{n+1}\right)\right]+a s d\left(x_{n}, x \star\right)+\operatorname{asd}\left(x_{n}, T x \star\right)+b s \max \left\{d\left(x_{n}, x_{n+1}\right),\right. \\
&\left.d\left(x_{n}, T x \star\right), d\left(x \star, x_{n+1}\right)\right\}
\end{aligned}
$$

```
\(d(x \star, T x \star) \leq s\left[d\left(x \star, x_{n+1}\right)\right]+\operatorname{asd}\left(x_{n}, x \star\right)+\operatorname{asd}\left(x_{n}, T x \star\right)\)
    \(+b s \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, T x \star\right), d\left(x \star, x_{n+1}\right)\right\}\)
    \(d(x \star, T x \star) \leq s\left[d\left(x \star, x_{n+1}\right)\right]+\) as \(d\left(x_{n}, T x \star\right)+b s M_{2}\)
where \(M_{2}=\left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, T x \star\right), d\left(x \star, x_{n+1}\right)\right\}\)
```

Case 1: If $M_{2}=d\left(x_{n}, x_{n+1}\right)$

$$
d(x \star, T x \star) \leq s\left[d\left(x \star, x_{n+1}\right)\right]+\operatorname{asd}\left(x_{n}, x \star\right)+\operatorname{asd}\left(x_{n}, T x \star\right)+b s d\left(x_{n}, x_{n+1}\right)
$$

$$
d(x \star, T x \star) \leq s\left[d\left(x \star, x_{n+1}\right)\right]+\operatorname{as}\left[s d\left(x_{n}, T x \star\right)\right]+\operatorname{as}[s d(x \star, T x \star)]+\operatorname{asd}\left(x_{n}, T x \star\right)
$$

$$
+\operatorname{bsd}\left(x_{n}, x_{n+1}\right)
$$

$$
d(x \star, T x \star) \leq s\left[d\left(x \star, x_{n+1}\right)\right]+a s^{2} d\left(x_{n}, T x \star\right)+a s^{2} d(x \star, T x \star)+\operatorname{asd}\left(x_{n}, T x \star\right)
$$

$$
+b s^{2} d\left(x_{n}, x \star\right)+b s^{2} d\left(x \star, x_{n+1}\right)
$$

$$
\left(1-s^{2} a\right) d(x \star, T x \star) \leq\left(s+s^{2} b\right) d\left(x \star, x_{n+1}\right)+\left(a^{2} s+a s\right) s\left[d\left(x_{n}, x \star\right)\right.
$$

$$
+d(x \star, T x \star)]+b s^{2} d\left(x_{n}, x \star\right)
$$

$$
\left(1-s^{2} a-s^{2} a^{2}-a s^{2}\right) d(x \star, T x \star) \leq\left(s+s^{2} b\right) d\left(x \star, x_{n+1}\right)+\left(a^{2} s^{2}+a s^{2}+b s^{2}\right) d\left(x_{n}, x \star\right)
$$

$$
d\left(x^{*}, T x^{*}\right) \leq \frac{s+s^{2} b}{1-2 a s^{2}-a^{2} s^{2}} d\left(x^{*}, x_{n+1}\right)+\frac{a^{2} s^{2}+a s^{2}+b s^{2}}{1-2 a s^{2}-a^{2} s^{2}} d\left(x_{n}, x^{*}\right)
$$

Taking limit $n \rightarrow \infty$ we get $d(x \star, T x \star)=0$

$$
x \star=T x \star
$$

Therefore $x \star$ is a fixed point of T.
Case 2: Suppose if $M_{2}=d(x \star, T x \star)$

$$
\begin{aligned}
& d(x \star, T x \star) \leq s d\left(x \star, x_{n+1}\right)+s d\left(x_{n+1}, T x \star\right)=s d\left(x \star, x_{n+1}\right)+s d\left(T x_{n}, T x \star\right) \\
& \leq s d\left(x \star, x_{n+1}\right)+s\left[a\left(d\left(x_{n}, x \star\right)+d\left(x_{n}, T x \star\right)\right]+s b d(x \star, T x \star)\right. \\
& d(x \star, T x \star) \leq s d\left(x \star, x_{n+1}\right)+a s d\left(x_{n}, x \star\right)+a s^{2}\left(d\left(x_{n}, x \star\right)+d(x \star, T x \star)\right)+s b d(x \star, T x \star) \\
&\left(1-a s^{2}-s b\right) d(x \star, T x \star) \leq s d\left(x \star, x_{n+1}\right)+\left(a s+a s^{2}\right) d\left(x_{n}, x \star\right)
\end{aligned}
$$

$$
d\left(x^{*}, T x^{*}\right) \leq \frac{s}{1-2 a s^{2}-a^{2} s^{2}} d\left(x^{*}, x_{n+1}\right)+\frac{a s+a s^{2}}{1-2 a s^{2}-s b} d\left(x_{n}, x^{*}\right)
$$

Taking limit as $n \rightarrow \infty$ we get $d(x \star, T x \star)=0$
Therefore

$$
x \star=T x \star
$$

$x \star$ is a fixed point of T.

Case 3 : Suppose if $M_{2}=d\left(x \star, x_{n+1}\right)$

$$
\begin{aligned}
& d(x \star, T x \star) \leq s d\left(x \star, x_{n+1}\right)+s d\left(x_{n+1}, T x \star\right)=s d\left(x \star, x_{n+1}\right)+s d\left(T x_{n}, T x \star\right) \\
& \leq s d\left(x \star, x_{n+1}\right)+s\left[a\left(d\left(x_{n}, x \star\right)+d\left(x_{n}, T x \star\right)\right]+s b d\left(x \star, x_{n+1}\right)\right. \\
& d(x \star, T x \star) \leq(s+s b) d\left(x \star, x_{n+1}\right)+a s d\left(x_{n}, x \star\right)+a s^{2}\left[d\left(x_{n}, x \star\right)+d(x \star, T x \star)\right] \\
&\left(1-s^{2} a\right) d(x \star, T x \star) \leq(s+s b) d\left(x \star, x_{n+1}\right)+\left(a s+a s^{2}\right) d\left(x_{n}, x \star\right) \\
& d\left(x^{*}, T x^{*}\right) \leq \frac{s+s b}{1-a s^{2}} d\left(x^{*}, x_{n+1}\right)+\frac{a s+a s^{2}}{1-a s^{2}} d\left(x_{n}, x^{*}\right)
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$ we get $d(x \star, T x \star)=0$
Therefore $x \star=T x \star$
$x \star$ is a fixed point of T.

Uniqueness of fixed point $^{\text {a }}$

We have to show that $x \star$ is a unique fixed point of T. Assume that x^{\prime} is another fixed point of T. Then we have $T x^{\prime}=x^{\prime}$
and $d\left(x \star, x^{\prime}\right)=d\left(T x \star, T x^{\prime}\right) \leq a\left(d\left(x \star, x^{\prime}\right)+d\left(x \star, T x^{\prime}\right)+b \max \left\{d(x \star, T x \star), d\left(x^{\prime}, T x^{\prime}\right)\right.\right.$,

$$
\left.d\left(x^{\prime}, T x \star\right)\right\}
$$

$$
d\left(x \star, x^{\prime}\right) \leq a\left(d\left(x \star, x^{\prime}\right)+d\left(x \star, x^{\prime}\right)+b \max \left\{d(x \star, x \star), d\left(x^{\prime}, x^{\prime}\right), d\left(x^{\prime}, x \star\right)\right\}\right.
$$

$$
\left.d\left(x \star, x^{\prime}\right) \leq(2 a+b) d\left(x \star, x^{\prime}\right)\right\}
$$

This is a contradiction. Therefore $x \star=x^{\prime}$.
This completes the proof. Hence $x \star$ is the unique fixed point of T.
Example 2.1 : Let $X=[0,1]$ and $d: X \star X \rightarrow[0, \infty)$ is defined by $d(x, y)==\frac{|x-y|}{2}$ and the mapping $T: X \rightarrow X$ defined by $T x=\left\{\begin{array}{lll}\frac{x}{2} & \text { if } & x \neq 0 \\ 0 & \text { if } & x=0\end{array}\right.$

It satisfies the contraction condition

$$
d(T x, T y) \leq a(d(x, y)+d(x, T y)+b \max d(x, T x), d(x, T y), d(y, T x)
$$

for $a=2, b=3$ and $s=\frac{4}{3}$. Then 0 is the fixed point of the mapping T.

References

1. Czerwik, S., Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universities Ostraviensis, 1, 5-11 (1993).
2. Banach, S., Surles operations dans les ensembles abstract et leur application aux equation integrals, Fund. Math., 3, 133-18 (1922).
3. Bota, M., Molnar, A. and Varga, C., On eke land's variational principle in b-metric spaces, Fixed Point Theory, 12, no. 2, 21-28 (2011).
4. Boriceanu, M., Fixed point theory for multivalued generalized contraction on a set with two b-metric, studia, univ Babes, Bolya: Math, Liv (3), 1-14 (2009).
5. Czerwik, S., Non-linear set valued contraction mappings in b-metric spaces. Atti sem math fiq Univ. Modena, 46(2), 263-276 (1998).
6. Kir, Mehmet, Kiziltune, Hukmi, on some well known fixed point theorems in b-metric space, Turkish journal of analysis and number theory, Vol. 1, no. 1, 13-16 (2013).
7. Pacurer, M., Sequences of almost contractions and fixed points in b-metric spaces, Analele University at. de Vest, Timisoara, Seria Mathematics, Informatics, XLVIII, no. 3, 125-137 (2010).
