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In this paper, the pseudo differential operator T,
associated with the Bessel type operator is defined on the
space of even Schwartz functions and obtain a singular
integral representation of T,. Further we proved that the
kernel K, satisfies the condition of singular integral
theorem. Finally, it is shown that the pseudo differential
operator is bounded from L, into itself for 1 <p < oo,

when the symbol o belongs to the class Sgb.
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“NTRODUCTION

he theory of pseudo differential type operators inggortance in harmonic analysis

and wavelet analysis. The boundedness propertiéseopseudo differential operator in the
classical harmonic analysis are related to differelass of symbols. Many results were
obtained by using different methods (see [1], [3], [4], [5]) and many applications were
extended to harmonic analysis associated with Begge operator (see [6], [7], [8], [9],
[10]).

In this paper, the pseudo differential operdigis defined on the space of even Schwartz
functions by

T, () = [} 0 (x, O)Fap (1) j#(xt) dpap(t), x 20 - (1)

where®, ,(f) is the Fourier-Bessel type transform fof j, is the normalized Bessel type
function of the first kind with ordex ando a C”* complex valued function d® x R. We say
that ¢ belongs to the class of symbcﬂf,{ p if o is even for each variable and satisfies the
following condition:

A+x)*P|9[d¢o (x, t)] < C.s 1+t)", r,s € N, x, t =0, .. (2)
WhereCr‘S is a constant depending only orands. We show thaf, is a singular integral
operator given by

T () = [ Ko, o6 VIO dita, (1), x 20, x & Supp (f),
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where the kerneKa, 1 is singular neax = y. We have shown thdi, satisfies conditions of
singular integral theorem on,(®). As a consequence, we obtain thatan be extended to a
bounded operator froy, 5 , into itself for 1< p <co.

Throughout this papet; denotes a suitable positive constant not necégssaei same in
each occurrence.

We denote byD,(R), the space of evei® -function onR with compact support and
Se.(R), the space of even Schwartz functionskon

pKELIMlNARY RESULTS AND NOTATIONS

onsider the Bessel type operaByr;, on(Q «) defined by
Bo,b =D} + 2D, = 5 D, (x*™"D,), Dy = =, .. (3)

for a real parametea(- b) >0.

The following initial value problem has a uniquéuion ja-»-1 @
2

Bap(f)(x) = — 22f (%), £(0) = 1,£'(0) = 0,

(see [6]):

whereld € C.
Let u, , be the weighted Lebesgue measure om)@iven by

( )
d,u , b X) = —b— —
a a 117 1 r (a 127+1)

We denotely, qp the spaceLp(R"',dualb and we usel.ll, 5, as a shorthand for
B ||Lp’abfor every 1< p <o,
The Bessel-Fourier type transform is definedfferlLy 5 b by
Fa, s (N)(X) = J§ f(8) jazb-a(x, 1) ditg, (8), x € (0, )
2

For allx, y, ze (0, ), let

a—b-2
{[(+9)?-22] [22-(x-»* 2 .
Wop(x, y, 2) = da, b (yz)ab1 iflx—y| <z<x+y,
0, otherwise
S )
where dop = ——

()
From [6], we have the following product formula:
Jg We,n (s 31 €) jacbos(x2) dita, n(6) = asbs (x2) jacbs(v2), %,y >0, 22 0.
andW p is such that
Jo Wo, p(x, y, 1) dug, p(2) = 1 . (4)

Now the generalized translation operator associafiil the Bessel type operator for a
continuous functioffi on [0,) is defined as
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() ) =ca b [y (4 (x, y, 0) (sin 0)37°71dp,

a—b+1
whereA(x, y, 8) = /x2 +y% — 2xy cosd = |x — ye'®| andcy), = ca-p-1 = al Za_b)
2 VEr(%)
Now we have the following properties from [6]
(1) For a continuous function f on [),
() @) = [y f(2) Wa, 5 (x,y, 2) ditg, ,(2), X, y >0 - (5)
(DFa, 5 (x()) V) = jazb-1(xy) Fo, »(f) (¥) .- (6)

2

forall f € L14p x,y = 0.
Now we recall fundamental singular integral theoffesm ([5], chap.1).

Theorem 2.1. Let K be a measurable function orx{f), x> 0,y > 0, xzy} and T be a
bounded operator froiy, , 5, into itself such that

T (f) @)= Jy K (x ) fO) ditg, (1) X=0, - (7)
for any compactly supporteddin L, , ;, and allx 0 Supp{). If K satisfies
Jacyrs 251K (6 ) =K (2 ¥)ldia (x) < €, - (8)

for all 6 > 0 andy, y€ [0, ) with ly — y'| <3, thenT can be extended to bounded operator
from L, 4 pinto itself for 1 p < 2.

SINGULAR INTEGRAL REPRESENTATION OF T,

un this section we have obtained a singular integadesentation df,. Further we have
shown that the kernéd,; satisfies the condition of singular integral therar

Lemma3.l.lfo € Sg,b, then form € N, we have
(1 + 0B (0(x,0) )] < en(1 + O™ x>0, & >0, .. (9)
whereB;} , =B, ,, 0B, p ... 0B, , andcmis a constant which depends onlyran
Proof. By induction, we know that
B, p (0, (x,9) (&) = 6§a (x, & fol 6§a (x, t&) dt,x =20, £ > 0.
By using (2) and above result we have
(1+x) 1By (0, (x, ) ()] <A4px20,6>0 - (10)
whereAnis depends only om.
On the other side by using induction, we obtain

Bi'y (0, (6,9) (6) = €™ No<i<am@'0f 0 (x, £)X=0,6>0, - (11)
whereg; is a real constant. Finally, again by using (2, yet
EM(L+ )P By, (o, (x, ) (§)] <Bpx=0,E>0.... .. (12)

HereB, depends only on m. Thus from (10) and (12) weiol{&).
Lemma3.2. Letc €S ,. Thenk, is in C” ([0, ») x [0, =)
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and satisfies for ahi, s, meN.

EM(L+ )P B, (0, (x, %) (6)] <B,x>0,2>0,... (13)
whereC depends only on s, m.

Proof. Let n bean elemenb,.(R)such thap (§) =1 for || <1 and n(¢) =0 for
[€] = 2. Now for a functiond (§) = n(&) — n(2§), we have obtained the following partition
of unity,

@) +X2,16z7) =1,¢= 0.
If €S2 ,, then we can have
o(x, §) = Y10 (x, §), x, § = 0,
whereo;(x,§) = o(x,§) 8(z78), ao(x,§) = 0 (x,&) ().
Setkj(x,z) = f0°°aj(x, &) ja_Tb_l(zf) dug, ,(£), for all x,z>0, sinceg;(x, ) has a

compact support.
Now we can obtain

07 05k;(x, z) = [, € 0505(x, &) j$(zf) dia, b($).
Integration by parts gives us
ZT 005k (x, 2) = [ wix, §) j$(zf) dpte, p(§), x 20, 2> 0,
where forx>0,& > 0,
w;(x, §) =& @P9r| £ P*d5g;(x, §)]
=Y _ (r+a—b)... (k+a—b+ 1)(;) gkokasa;(x, ©).
As w; is supported ifiz/ =1, 2/ +1], by using (2), we can obtain
| ofw; (x, §)| < c27im
for all mO N.

But from (11) it is clear that
| G »(w; (x, )| < c27m™,

formO N.

As (D)™ 270705k (x, 2) = [§ B (W (%, #)) (§)jazb-1(2§) dia, (),

2

we can obtain
|27 +2mar a5k, (x, 2)| < ¢2la-b+1-2m) j .. (14)

whereC is a constant independentjof

a—2+1_ By using (14) we conclude that_,kjis aC”-

function on [00) X [0, ). Thus, we have

D™z = Tio [y B p(05(x, ) (§) jazb-1(82) dita, ()

2

Now choosem such thatm >




An International Peer Reviewed Journal of Physigeience
Acta Ciencia Indica, Vol. XLVIII-M, No. 1 to 4 (202 5

= Jy Ba's(g5(x, ) (©) J'a—f—l(fz) dia, ($)
(—D)™z?™k (x, 2).

We can obtain that
ks(x, 2) = }Ozo ki(x, z)
and 0505ky(x, z) = Z;‘;O 070:k;(x,2), for (x, z) € [0, ) X [0, oo].

Now to prove (13), it is sufficient to estimate thst sum. Consider the case&Xk
We can write

S0 0705k (x, D) = X5 . -1 0505k (x, D+ X5 -1 10505k;(x, 2)].
Now using (14) withn > a_:H, the second sum is dominated by

CZ—Zm—r Z;)j 1 2(a—b+1—2m)j < CZ—(a—b+1)—r < CZ—(a—b+1)—r—m_
<z = =

a-b+1
2

For the case> 1 andmeN, we takem > + % in (14), so we have

3}>=0 |6;6;kj(x' Z)l < CZ—r—Zm Z?:o 2(a—b+1—2m)j < CZ—r—Zm < CZ—(a—b+1)—r—m_
Theorem 3.3. Leto € S7 ,, then there exists a continuous function

kg on [0,00) X[0, o) such that fomeN,m > a“;’“

]

lko(x, 2)| < %, x= 0, 2>0, ... (15)
and we have
T,(f) () = [; Ko(x, ¥) ) dita, 5 (), - (16)
for f € S,(R) and xO Suppf) whereK,; is a kernel given on{> 0,y > 0, x£y} by
Ko, y) =cop [] ko(x, A (x, y, 6)) (sin 6)37071, .. (17)

Herecn, is constant which depends only mn

Proof. Putpy, (§) = (—1)™&*M meN.

Let f € Se(R),x = 0 andx ¢ Supp (f). Assume that the complement of its support is

non empty. It is clear thal¢ Supp (z,.(f)). We know that
Fa,o(1()) (§) = B (Fa, b (3—?)) ©.

We can write by using (1) and (6)

T,(f) (x) = f 6 (6 ©) Fap (22(F) (© dite »(©)

0

[ " 20
-] o f)Ba,b(Fa,b<Fa,b(p

Now by integration by parts and using relation (@@, have

(= [ By @ e Ry (E2) © duao®
0

Pm
Letm > % Then from (9), it is clear th&™ , (o (x, *)) € Ly 4 »

m

)) (©) dutg,»(©)
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and T,(F) () = [y Fa (B2 (0 (x, ) () (BL2) dpy, (2)
m

Fo, p(Bg'p (0 (%, %) (2)
pmx)

= C T BT (0 (6 ) () Jambm1(82) ditg, »(2).
2
Now by using (9), we can obtain (15).
Thus, forx > 0 andxOSuppf), we can have

To(f) () =f ke (x, 2) T:(f) dptq, n(2)
0

Hence by the Fubini’'s theorem and a change of b= A(x, y, 6) and by using (5),
(15), we obtain (16). We can also have

Set ky(x, z) =

o0

Ts(x, ¥) =f ke (x, 2) Wo,p (%, ¥, 2) dig,p(2), %, y>0, x#y
0

Theorem 3.4. There exists constants> 0 andA'> 0 such that for als > 0 andy,y >0

with |y -y |< 3, we have
Jxey s 25 Ko (6 ) = Ko(x, ¥)ldpg, »(x) < A .. (18)

and Jx—yis25lKe 00 ) = Ko(v's )ldptg, () < 4, . (19)
whereK, is given by (17).

Proof. Suppose that, y, ¥ = 0 andé > 0 such thaty -y | <8 and [x-y | > &, we get
17).

Now K, (x, ¥) — K (x, ¥)

T rl
=cq p(y — y’)f f a4 (x, y, 0) 0, kg (x, 4 (x, Y, 6)) sin©@=P=1 9 4@ dt
o Jo

wherey, =y’ 4+ t(y — y’). Butas
_ | ye—x cos 6|
|ayA (v ) = Jve—x cos 0)2 +(x sin 0)2 =L

by using (13) witm = 0, we obtain

T 1l
Ks(x, y) —Ky(x, y) =Cly —y| f f 10,ks(x, A (x, y,, 0)] sin@ P~V g do dt
0 0

1 o
=C8 [y [y 10yko(x, 2)| Wo, p(x, Y1, 2)dHg, » (2) dt

=C8 J, J) —rmaWa 5%, Yo D), (2) dt
By using (4) and Fubini’'s theorem, we get

| 1Ko Gt ) = Kot ¥ ditg,5(0)
lx —y| > 28
1 0 1
<[] i Wasto v Ddies () due s de
0 J0 Yx—-y|>26

< 5[ ~dz <A
This shows that (18) is proved.
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Further, using the process as above, we have

' ' 1 . —b—
K,y 2) =Koy, X) = ca sy =¥) [ Jy G (%, yp, O)] sin®>716 db,
whereG (x, y;, 0) = 0xks(ye, 4 (%, ¥, 0)) + 0xA (%, 1, 0) 0ko(ye, 4 (x,y:,0)).
Once again by using (13) with= 1, we obtain

’ ' 1 poo
Ko, 2) =K, (v, x) < ly=y'| [y [, 10:ks(e, 2
+ 10k Ve, 2)|) Wa, b (X, Ye, 2) dptg, p(2)dt

1 o 1
<C8 [y Jy a5 Wa b (%, Ve 2) dltg, p(2) dt.
Now we get

fx_y|>25|Ko'(y! X) _Ko(y,; X)l d#a,b(x)

1 poo foo 1
<08 [ | | cmmmWa sl ve 2 dite y(0) di () de
0 J0 0

<A
which proves (19).

P
-4 -BOUNDEDNESS OF THE OPERATOR T,

un this section we need the following lemmas.

Lemmad4.l. Leto 653' p»» If 0 has compact-support then there exists a constant
C> 0 such that, for alf € S.(R)

ITe(2,ap < Cllfll2,a,b-
Proof. Let

P O = f oG, §) jabes () diap (), A 20
0

by using inversion formula [6], we have
o, &) = [, P &) jab-r (xA) dpap(D), %€ 20,
2
Integrating by parts we get
D)™™ p (4, &) = [ Baty (0 (% ) (%) jazb-r (¥2) ditgp(x);
2
for eachm e N.

It can be noted thaiB}* ,(o(e, £))(X) is bounded uniformly in and has compact

x-support, then fome N, L — x2m| p(A, &)| is bounded uniformly i§ and we have

‘m
sup lo (& O < qrgmr 4 20 .. (20)

wherec,, is constant independent &f We can choose > a_Tb“and then by using (20), we

havep (s, &) € L1, 45, b and by Fubini’s theorem, we can write fa& S (R) andx >0
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To(f) () = J; 0 (%, §) Fa, p(§) jazb-1(x€) dita, 5 (§)

2

= ["TAf) () dutg, (D),
where TA(f) (%) = Jazb=1 (D) Ty () @),

with Ty a0 @) =Jp A &) Fo () © j$(xs‘) ditg, »(§)-
By using (20) and Plancherel formula from [6], vavé

172N, 0, = 1T . 0P, = llo G o) Fan (D]

C;
< Gy Ifll2ap-

2,a,b 2,a,b

Now we can write

fo IT,() (02, » ()

sf f (f IT* ()OI T2 () ()] dua,b(x)> ditay (A1) dpg »(A5).
0 0 0

Now by using Schwartz inequality, we get

f [T () T2 () (®)] dg, »(x) < iy
0
Thus, we obtain

0 1
NTs (2, a6 < Cullfllz, a6 ) oy WHa, (D) = Cllfllzap-

Thus, result is proved.
Lemma 4.2. Let 6 € D,(R) be supported in [-2, 2ko > 3 andn the function defined
onRbyn (x) = 6 (x + xp) + 68(x — xp), then forc €BY ,,, we have

oo (Ollz a0 = Clfllzan fE Se(R) - (21)
whereC is a constant independentigfandno denote the symbol i ,, defined by
no (x,§) = n(x) o (x3).
Proof. It is clear thatno satisfies equation (2) witlsy s independent o, and has

compactx-supportx, —2 < [x|] < x,+ 2, then by Lemma 4.1, there exists a cons@nt
such that

2

ooz, a0 < Clifllz 0,60 € Se(R).
Now we show that the inequality (20) holds withomstantcy, independent o, in order
to confirm that the constaftis independent of,.
Notice thatlg* ,(no (s, £)) (x) can be written as sum of terms of the form

M (x) 930 (x, O
X

From (2), |(1 ﬂ)a_blg’}b(na) (e, &) (x)]is uniformly bounded ir§f andx, forx>1 and

, 1, S, €EN.

m € N. If we design the Fourier-Bessel transforrmef(e, &) by p(e, &) then we have for all

meN
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1224, O < [~ x°+2 By (o (o, §)) (O] dpap(x) < cm,
ML E 0, wherer, is a constant Wh|ch is independent ghrdé. Thus (21) is proved.

Lemma 4.3. Leto €S ,, then there exist a constavit> 0 such that for eack > 3 and
f € S¢(R), we have

LT, () (0 PdapG) < ML ay, 0 - (22)

(1+]x=x0])?

Proof. Letw € D.(R) such thatv(x) =1 in [-2, 2], 0<w(X) <1 and Supp() c[-3, 3].

Forxo> 3, we puip(x) = w(x + xo) + w(x — x,).

Now for f € S¢(R), we can writef = of + (1 —¢@)f = f1 + f2, wheref; supported
in x0 —3 < |x| < xy+ 3, f2 supported outsidex, —2 < |x|<x,+2 and | f1l,|f2] <
[f]. Now we can choosg€ D¢ (R) such thab(x) =1 in [-1, 1] and Supp] c [-2, 2], then
the functionn defined byn(x) = 6(x + xo) + 6(x - x) is supported i, — 2 < |x| < x, +
2andn(X) =1linx, — 1 < |x| < xo + 1, so by the Lemma 4.2, we have

Xo+1

xo+1
f 1Ty () () [Pdpan () = f oo () (O dita »(0)

0—1 xp—1

< f T (£ (O dita »(0)

IA

¢ f Iy QO dita »()
0

IA

Xo+3
c f FCOP dpta, »()

0—3

2 P
< C) T T omg? Har®

If X € [% — 1,% + 1], we havex 0 Supp f2) and by (16), we can write
T, (f2) ) = [, Ko(x, ¥) f2(3) dita, 5(¥)
Forallx € [xy — 1,x, + 1],y € [xo — 2, x5 + 2], we have
Ky G ) = [ g 2) Wo (3, 2) dita,y(@) = | eyt 2) We o 31 2) ditg 1(2)
0 0

By using (15) whem > a;—b + 2, we get

ITe () @I =C J; [ 10| 22252 Dau, ).
Now by Schwartz-inequality, we have

ITe () @I =C [ 1RO 2252 D dy, (2) dug, »(v)

o (oo Wa, b(%, ¥, 2)
=C[, [, IEO? Wd#a,b(z) ditg, p(¥)-
Now we can obtain,

xo+1 IfF)? xo+1
fxoo_l |TO' (fZ) (x) |2dﬂa,b(x) S Cfo 1+ |y- xol)zf foo 1 za—b+2

X Wq p(x, ¥, 2) didg, p(x) ditg, p(2) dpg, p(¥)-
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Now we can obtain by using 4,

Xo+1
[ [, st v 2 ditg @it o2
-1

sf f WWa.b (x, ¥, 2) dltg, p(x) dptg, p(2) < 1.
1 0
Then we find

x o 2
[ Ty (£2(0) Pdiap(0) < €[5 2 ess diap ()
Finally, by writingT,;(f) = T;(f1) + Ts(f2), we can prove (22).

Theorem 4.4. If €S2 ,, then the operatdf, initially defined onS,(R) can be extended
to a bounded operatap , 5, into itself.

Proof. We integrate in (22) w.r.x,, we obtain

L0 (1 dia, () dxo = [ 1T,(F) (@I (2 = 2) dig, ()
+ [ 10 P dut o)
4
I NTo(f) (12 dig, 5 ().

On other side,

2 2
[ [ a2 o= [ [ s duu) an

_ f I Q)P

1+ o dtg, p(¥) dt
= [0 dua s,
Thus, we obtain
LOOITU()‘)(X)I2 dhg, (x) < CCIIf I3 0p-
Now choose) € D,(R) such thah(x) = 1 on [-4, 4]. Then by Lemma 4.2, we get
| T (D@ i ) < [ 1THEOF dit 0 < €
Thus, we have

f T, (NI dita, » () < I 120
0

Finally, by using density &f,(R) in Ly, 5, the theorem is proved.

Theorem 4.5. Leto €S; ,, andT, be the adjoint operator 8. Then for allg € S¢(R)
andy = 0,y ¢ Supp(g), we have

T3(9) ) = [, KsCx, y)g(x) dpg, » (%),
whereK;(y, x) = K;(x, y).
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Proof. Let y(x, y) €C” on R? with compact support and(0, 0) = 1. Leto eSa p, SUch
that

0e(x, &) =a(x, &) y(ex, €é), 0 <e< 1.
Set ke(x, 2) = [ 0c(x, §) ja—Tb—l(Zf) dpte, p(§), X, z20.

It is clear thatog(x, &) = o(x,&) ase —» 0. Now by using the dominated convergence
theoren'l,; can be written as

1) 0 = lim [ [ 60 F0) Japa(63) jampms (69) dite o) e, o)
=0 Jo Jo 2 2

Vf € S,(R).

It is clear thato, € 52 p and satisfies (2) uniformly ia. Proceeding as in the proof of
a-— b+1

above lemma, we have for fixed > ——
(1 +x)] By (0 (% ) (D < i fm
As  (mD)"z*Mk(x, 2) = fo By (0 (x, ) (§) Ja—7b—1(fz) duq, »($),

we have

| ko 2) <om

Jam’ x>0, z>0.

Now by dominated convergence theorem, we have
ke(x,z) > kgs(x,z)ase > 0,x >0,z > 0.
Now we can write

f 90 500 @ dita, »(x)
0

im [ F0)| | 000 @G D) japa () Japa (69)

X dtg, p(X) dpg, »(§) dpg, s (),
forall f,g € So(R).

Asgrm [ g(x) o, (x, &) Jazbos(x%) dha, »(¥)
=/ Jazb=2 (%) ditg, (),

. —-b+1
we can obtain fom > 2 S

[Bg pg(oe(e, ) ()] <
Thus, we can obtain,
| f 96) 0% (5, ©) Jambo1 () dit o) | < (5

where ¢, is a constant independent ef Now by using dominated convergence theorem,
Fubini’s theorem and the product formula, we cavetfary = 0,y Supp(g),

_m ,x>0,&=0.
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@) = lim [ [ 000 @G D) Jasa () Jaba () dit, o, )

= lim [ [7 900 ke(x, 2) Wo,5(x, ¥, 2) ditg, 5(2) dite, 5(x)
Jo 15 9() Ko(x, 2) Wo, p(x, ¥, 2) ditg, (%) ditg, (2)

= Jy KoCx, 2) g(x) dptg, p(%)-
This proves (23).

Theorem 4.6. Leto € Sy ,, thenT, can be extended to a bounded operator ftgm),

into itself forl < p < co.

Proof. By density and from Theorem 3.3, the singulargraérepresentation @f; can be

extended td.,, q . Now by using Theorem 3.4 and Theorem 4.4, we lodecthatl,; satisfies
the conditions (7) and (8) of Theorem 2.1.

Now we can deduce thd} is bounded in., 4 p-norm forl < p < 2. Further by using

(19) and (23), we can apply the Theorem (2.1JtoBy duality, T, can be extended to a
bounded operator froty, , , into itself forl < p < eo. Thus, the theorem is proved.
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