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In this paper, the pseudo differential operator �σ 
associated with the Bessel type operator is defined on the 
space of even Schwartz functions and obtain a singular 
integral representation of �σ. Further we proved that the 
kernel �σ satisfies the condition of singular integral 
theorem. Finally, it is shown that the pseudo differential 
operator is bounded from ��,�,� into itself for 1 < � < ∞, 

when the symbol σ belongs to the class 
�,�0 . 
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IIIINTRODUCTION 

The theory of pseudo differential type operators has importance in harmonic analysis 

and wavelet analysis. The boundedness properties of the pseudo differential operator in the 
classical harmonic analysis are related to different class of symbols. Many results were 
obtained by using different methods (see [1], [2], [3], [4], [5]) and many applications were 
extended to harmonic analysis associated with Bessel type operator (see [6], [7], [8], [9], 
[10]). 

In this paper, the pseudo differential operator Tσ is defined on the space of even Schwartz 
functions by ��(�)(�) = � �(�,  �)��,�(�)(�) ������� (��) ���,�(�)∞ ,  � ≥ 0 ... (1) 

where Φ�,�(�) is the Fourier-Bessel type transform of �, �" is the normalized Bessel type 

function of the first kind with order λ and σ a C∞ complex valued function of R × R. We say 

that σ belongs to the class of symbols 
�, �  if σ is even for each variable and satisfies the 
following condition: 

  (1 + �)�%�| '()'*�� (�,  �)|   ≤   ,), - (1 + �)%) ,  .,  /  ∈  1,  �,  �  ≥  0,   ... (2) 

where ,., / is a constant depending only on r and s. We show that �� is a singular integral 

operator given by 

  ��(�)(�) = � ��, �(�,  2)�(2) ���, �(2)∞ ,  �  ≥ 0,  � ∉  
4�� (�), 
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where the kernel Ka, b is singular near x = y. We have shown that �� satisfies conditions of 
singular integral theorem on (0, ∞). As a consequence, we obtain that �� can be extended to a 
bounded operator from ��,�,� into itself for 1 < p <∞. 

Throughout this paper, , denotes a suitable positive constant not necessarily the same in 
each occurrence. 

We denote by 56(7), the space of even ,∞ -function on 7 with compact support and 
6(7), the space of even Schwartz functions on 7. 

PPPPRELIMINARY RESULTS AND NOTATIONS 

Consider the Bessel type operator 9�,� on(0, ∞) defined by 

   9�, � = 5*: + �%�* 5* = ;*��� 5*(��%�5*), 5* ≡ ==*, ... (3) 

for a real parameter (a − b) >0. 

The following initial value problem has a unique solution �����>�  (") (see [6]): 

     9�,�(� )(�) =  − @2� (�), �(0) = 1, �′(0) = 0, 

where @ ∈ ,. 

Let ��, � be the weighted Lebesgue measure on [0, ∞) given by 

     ���, �(�) = *���
:����>>  C D���E>� F 

We denote ��,�,� the space �G(7+, �μ�,� and we use ǁ. ǁ�,�,� as a shorthand for ‖. L‖MN,�,�for every 1 ≤ p <∞. 

The Bessel-Fourier type transform is defined for f ∈ L1,a,b by 

   ��, �(�)(�) = � �(�) �����>� (�,  �) ���, �(�)∞ ,  �  ∈   (0,  ∞) 

For all x, y, z ∈ (0, ∞), let 

 O�, �(�,  2,  P) = Q��, � {[(*TU)�%V�] [V�%(*%U)�]}������(*UV)����>  if |� − 2|   < P < � + 2,0,                                                        otherwiseL 
where   ��, � = :b��E�� cdD���E>� Fe�

√g d D���E>� F  

From [6], we have the following product formula: 

  � O�, �(�,  2,  �) �����>� (�P) ���, �(�)∞ = �����>� (�P) �����>� (2P),  �, 2 > 0,  P ≥ 0. 
and O�,� is such that 

     � O�, �(�,  2,  �) ���, �(P)∞ = 1 ... (4) 

Now the generalized translation operator associated with the Bessel type operator for a 
continuous function f on [0, ∞) is defined as 
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   i*(�) (2) = j�, � � �(k (�,  2,  l) (/mn   l)�%�%;�lg , 
where k(�,  2,  l) = o�: + 2: − 2�2 jp/l =   |� − 26qr| and j�� = j����>� = dD���E>� F

√g dD���� F. 
Now we have the following properties from [6] 

(1) For a continuous function f on [0, ∞), 

   i*(�) (2) = � �(P) O�, �(�, 2,  P) ���, �(P)∞ ,  �,  2 > 0 ... (5) 

(2)��, �(i*(�)) (2) = �����>� (�2) ��, �(�) (2) ... (6) 

for all � ∈ �1,�,�, �, 2 ≥  0. 

Now we recall fundamental singular integral theorem from ([5], chap.1). 

Theorem 2.1. Let K be a measurable function on {(x, y), x ≥ 0, y ≥ 0, x≠y} and T be a 
bounded operator from �2,�,� into itself such that 

   � (�) (�) = � � (�,  2) �(2) ���, �(2)∞ ,x ≥ 0, ... (7) 

for any compactly supported f  in �2,�,� and all x ∉ Supp(f). If K satisfies 

   � |� (�,  2)  − � (�,  2′)|���, �(�)|*%U| s :t ≤  ,, ... (8) 

for all δ > 0 and y, y′∈ [0, ∞) with |y − y′| ≤δ, then T can be extended to bounded operator 
from �G,�,�into itself for 1 <p ≤ 2. 

SSSSINGULAR INTEGRAL REPRESENTATION OF uv 

In this section we have obtained a singular integral representation of ��. Further we have 

shown that the kernel �� satisfies the condition of singular integral theorem. 

Lemma 3.1. If � ∈ 
�,�0 , then for w ∈ N, we have (1 +  �)�−�| 9�,�w  (�(�,•)) (y)|  ≤  jw(1 +  y)− 2w, � ≥  0, y >  0, ... (9) 

where 9�, �z = 9�, � o 9�, � . . .. o 9�, � and cm is a constant which depends only on m. 

Proof. By induction, we know that 

   9�, � (�, (�, •)) (y) = '{:� (�,  y) � '{:� (�,  �y) ��; , � ≥ 0,  y > 0. 
By using (2) and above result we have 

   (1 + �)�%�|9�, �|  (�, (�, •)) (y)|   ≤ }| ,x ≥ 0, ξ> 0 ... (10) 

where Am is depends only on m. 

On the other side by using induction, we obtain 

  9�, �|  (�, (�, •)) (y)   =   y%:| ∑ �qyq'{q  � (�,  y)  � q � :z ,x ≥ 0, ξ > 0, ... (11) 

where ai is a real constant. Finally, again by using (2), we get 

   y:z(1 + �)�%�|9�, �|  (�, (�, •)) (y)|   ≤ 9| ,x ≥ 0, ξ > 0....  ... (12) 

Here Bm depends only on m. Thus from (10) and (12) we obtain (9). 

Lemma 3.2. Let σ ∈
�, � . Then �� is in C
∞

 ([0, ∞) × [0, ∞))  
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and satisfies for all r, s, m∈N. 

   y:z(1 + �)�%�|9�, �|  (�, (�, •)) (y)|   ≤ 9| ,x ≥ 0, z> 0,....  (13) 

where C depends only on r, s, m. 

Proof. Let η bean element 5�(7)such that� (y) = 1 for  |y| < 1  and  �(y) = 0 for |y| ≥  2. Now for a function �(y) = �(y) − �(2y), we have obtained the following partition 
of unity, 

     �(y) + ∑ �(P%�y)∞��; = 1,  y ≥  0. 
If σ ∈
�, � , then we can have 

     �(�,  y) =   ∑ �� (�,  y)∞��; ,  �, y  ≥  0, 
where ��(�, y)  =  �(�, y) �(P−�y), �0(�, y) = � (�, y) �(y). 

Set ��(�, P)  =  � ��(�,  y) �����>� (Py) ���, �(y)� , for all �, P ≥ 0, since ��(�, •) has a 

compact support. 

Now we can obtain 

   'V*'*-��(�,  P) = � y)'*-��(�,  y) �����>� (Py) ���, �(y)∞ . 
Integration by parts gives us 

   P)'V)'*-��(�,  P) = � ��(�,  y) �����>� (Py) ���, �(y)∞ ,  � ≥ 0,  P > 0, 

where for x ≥ 0, ξ > 0, 

   ��(�,  y) = y%(�%�)'{)| y(�%�T))'*-��(�,  y)] 
     = ∑ (. + � − �) . . .  (� + � − � + 1) D.�F y�'{�'*-��(�,  y))� �  . 

As �� is supported in [P�−1, P�+1], by using (2), we can obtain 

     | '{z�� (�,  y)|   ≤  ,2%�| 

for all m ∈ N. 

But from (11) it is clear that 

     | ��, �z (�� (�, •))|   ≤  ,2%:�|, 

for m ∈ N. 

As (−1)| P)T:|'V)'*-��(�,  P) = � 9�, �| (�� (�, •)) (y)�����>� (Py) ���, �(y)∞ , 
we can obtain 

   |P)T:|'V)'*-��(�,  P)| ≤ ,2(�%�T;%:|) �, ... (14) 

where C is a constant independent of j. 

Now choose m such that w > �%�T;: . By using (14) we conclude that ∑ ��∞�� is a C∞-

function on [0, ∞) × [0, ∞). Thus, we have 

   (−1)|P:| =   ∑ � 9�, �| (��(�, •)) (y) �����>� (yP) ���, �(y)∞ ∞��  
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     =   � 9�, �| (��(�, •)) (y) �����>� (yP) ���, �(y)∞  

     =   (−1)|P:|��(�,  P). 
We can obtain that 

   ��(�,  P) =   ∑ ��(�,  P)∞��  

and              'V)'*-��(�,  P) =   ∑ 'V)'*-��(�, P),���   for  (�,  P) ∈ [0,  ∞) ×   [0,  ∞]. 
Now to prove (13), it is sufficient to estimate the last sum. Consider the case 0 <z≤1. 

We can write 

  ∑ |'V)'*-��(�,  P)|∞�� = ∑ |'V)'*-��(�,  P)|∞:� � V�> +   ∑ |'V)'*-��(�,  P)|∞:q s V�> . 

Now using (14) with  n > �%�T;: , the second sum is dominated by 

   ,P%:|%) ∑ 2(�%�T;%:|) �∞:� � V�> ≤ ,P%(�%�T;)%) ≤ ,P%(�%�T;)%)%|. 

For the case z> 1 and m∈N, we take w > �%�T;: + z: in (14), so we have 

 ∑ |'V)'*-��(�,  P)|∞� � ≤ ,P%)%:| ∑ 2(�%�T;%:|) �∞� � ≤ ,P%)%:| ≤ ,P%(�%�T;)%)%|. 

Theorem 3.3. Let � ∈ 
�, � , then there exists a continuous function  

   �� on [0, ∞) ×[0, ∞) such that for m∈N,w > �%�T;: , 
     |��(�,  P)|   ≤   ��V�� ,   � ≥  0,  P > 0, ... (15) 

and we have 

   ��(�) (�) = � ��(�,  2) �(2) ���, �(2)∞ , ... (16) 

for � ∈ 
6(7)  and  x∉ Supp(f) where �� is  a  kernel  given  on{x ≥ 0, y  ≥ 0, x≠y} by 

   ��(�,  2) = j�, � � ��(�,  k (�,  2,  l)) (/mn   l)�%�%;g . ... (17) 

Here cm is constant which depends only on m. 

Proof. Put �w(y)  =  (−1)wy2w,  m∈N. 

Let � ∈ 
6(7), � ≥  0 and � ∉ 
4�� (�). Assume that the complement of its support is 
non empty. It is clear that  0∉ 
4�� (i�(�)). We know that 

��, �(i*(�)) (y) = 9�, �| c��, � D��(�)�� Fe (y). 

We can write by using (1) and (6) 

��(�) (�) = � � (�,  y) ��, � �i*(�)� (y) ���, �(y)∞

  

                                               = � � (�,  y) 9�, �|  (��, � ���, � �i*(�)�| �� (y) ���, �(y)∞

  

Now by integration by parts and using relation (3), we have 

��(�) (�) = � 9�, �|  (� (�, •)) ��, �  �i*(�)�| � (y) ���, �(y)∞

  

Let w > �%�T;: . Then from (9), it is clear that 9�, �| (� (�, •)) ∈ �;, �, � 
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and   ��(�) (�) = � ��, �(9�, �|  (� (�, •)) (P) D��(�) (V)��(V) F  ���, �(P)∞  

Set  ��(�,  P) = ��, �(��, ��  (� (*, •)) (V)��(*)  

                          = (%;)�
V�� � 9�, �|  (� (�, •)) (y) �����>� (yP) ���, �(P)∞ . 

Now by using (9), we can obtain (15). 

Thus, for x ≥ 0 and x∉Supp(f), we can have 

��(�) (�) = � ��(�,  P) i*(�) ���, �(P)∞

  

Hence by the Fubini’s theorem and a change of variable z = ∆(x, y, θ) and by using (5), 
(15), we obtain (16). We can also have 

��(�,  2) = � �� (�,  P) O�, � (�,  2,  P) ���, �(P)∞

 ,       �,  2 > 0,  � ≠ 2 

Theorem 3.4. There exists constants A> 0 and A′> 0 such that for all δ > 0 and y, y′ ≥ 0 
with | y − y′ | ≤ δ, we have 

   � |�� (�,  2) − ��(�, 2 ′)|���, �(�)| * % U | s :t ≤ } ... (18) 

and    � |�� (2,  �) − ��(2 ′,  �)|���, �(�)| * % U | s :t ≤ }′, ... (19) 

where �� is given by (17). 

Proof. Suppose that x, y, y′ ≥ 0 and δ > 0 such that | y – y′ | ≤δ and | x– y | > 2δ, we get 
(17). 

Now ��(�,  2)   − ��(�, 2 ′) 

           = j�, �(2 − 2′) � � 'Uk (�, 2( ,  l) 'V �� (�,  k (�, 2( ,  l)) /mn(�%�%;) l �l;
 ��g

  

where 2�  = 2′ +  � (2 −  2′). But as 

  |'Uk (�, 2( ,  l)|   = | U�%* ��-  r|o(U�%* ��- r)�T(* -qz r)� ≤ 1, 
by using (13) with n = 0, we obtain 

��(�,  2)  − ��(�, 2 ′) = ,|2 − 2 ′| � � |'U��(�,  k (�, 2( ,  l)| /mn(�%�%;) l  �l;
  ��g

  

     = ,�  � � |'U��(�,  P)| O�, �(�, 2( ,  P)���, � (P)∞ ; �� 

     = ,�  � � ;V���E� O�, �(�, 2( ,  P)���, � (P)∞  ��;  

By using (4) and Fubini’s theorem, we get 

� |��(�,  2)   − ��(�, 2′)| ���, �(�)|* % U| s :t
≤   � � � 1P�%�T: O�, �(�, 2( ,  P)���, � (�)|* % U| s :t  ���, �(P)∞

  ��;
  

     ≤  ,� � ;V� �P∞   ≤ }. 

This shows that (18) is proved. 
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Further, using the process as above, we have 

   ��(2,  P)   − ��(2′,  �) = j�, �(2 − 2 ′) � � � (�, 2( ,  l)| /mn�%�%; l;  �lg , 
where �(�, 2( ,  l) = '*��(2( ,  k (�, 2( , l)) + '*k (�, 2( , l) 'V��(2( ,  k (�, 2( , l)). 

Once again by using (13) with n = 1, we obtain 

 ��(2,  P)   − ��(2 ′,  �) ≤   |2 − 2′| � � |'*��(2( ,  P)|∞  ;  + |'V�� (2( ,  P)|) O�, � (�, 2( ,  P) ���, �(P)�� 

     ≤ ,�  � � ;V���E� O�, � (�, 2( ,  P) ���, �(P)∞ ��; . 
Now we get 

  �  ��(2,  �)   − ��(2 ′,  �)  ���, �(�)|* % U| s :t  

                                                 ≤  ,�  � � � 1P�%�T: O�, �(�, 2( ,  P) ���, �(�)∞

 ���, �(P)∞

 ��;
  

     ≤ }′ 
which proves (19). 

LLLL
 p

-BOUNDEDNESS OF THE OPERATOR Tσ 

In this section we need the following lemmas. 

 

Lemma 4.1. Let σ ∈
�, � , If σ has compact x-support then there exists a constant 

C> 0 such that, for all � ∈ 
6(7) 

‖��(�)‖2,�,� ≤ ,‖�‖2,�,�. 
Proof. Let 

� (@,  y) = � �(�,  y) ��%�%;:  (�@) ���,�(�)∞

 
,     @, y  ≥ 0, 

by using inversion formula [6], we have 

   �(@,  y) = � �(@,  y) �����>
�

 (�@) ���,�(@)∞

 ,    �, y  ≥ 0, 
Integrating by parts we get 

   (−1)|@:| � (@,  y) = � 9�, �|  (� (•,  y)) (�) �����>
�

 (�@) ���,�(�)∞

 ; 
for each m ∈ N. 

It can be noted that  9�, �| (σ(•, ξ))(x)  is  bounded  uniformly  in  ξ  and  has  compact      

x-support, then for m ∈ N, λ → λ2m | ρ(λ, ξ)| is bounded uniformly in ξ and we have 

  /4�{¢   |� (@,  y)|   ≤   ��
(;T"�)� ,  @  ≥ 0. ... (20) 

where j| is constant independent of ξ. We can choose m > 
�%�T;

: and then by using (20), we 

have ρ (•, ξ) ∈ L1, a, b  and by Fubini’s theorem, we can write for f ∈ Se (R) and x ≥ 0 
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   ��(�) (�) = � � (�,  y) ��, �(y) �����>� (�y) ���, �(y)∞  

     = � �"(�) (�) ���, �(@)∞ , 

where  �"(�) (�) = �����>� (�@) �� (", •)(�) (�), 

with           �� (", •)(�) (�) = � � (@,  y) ��, �(�) (y) �����>� (�y) ���, �(y)∞ . 

By using (20) and Plancherel formula from [6], we have 

  £�"(�)£:,�,� ≤   £�� (", •)(�)£:,�,� = £� (@, •) ��, �(�)£:,�,� 

     ≤ ��(;T"�)� ‖�‖:,�,�. 

Now we can write 

� |��(�) (�)|:���, �(�)∞

 
≤ � � c� |�">(�)(�)|| �"�(�)(�)| ���, �(�)∞

 
e ���,�(@;)∞

 
 ���, �(@:).∞

 
 

Now by using Schwartz inequality, we get 

� |�">(�) (�)||�"�(�)(�)| ���, �(�)∞

 
≤ j|:   1

(1 + @;:)| (1 + @::)| ||�||:, �, � : . 
Thus, we obtain 

  ||��(�)||:, �, � ≤ ,|||�||:, �, � � ;
(;T">�)�  ���, �(@)∞

; ≤  ,||�||:, �, � . 
Thus, result is proved. 

Lemma 4.2. Let l ∈ 56(7) be supported in [−2, 2], �0 > 3 and � the function defined 
on R by � (�)  =  l (� + �0) + l(� − �0), then for σ ∈9�, � , we have 

   ||�¥�(�)||:, �, �   ≤  ,||�||:, �, �,    � ∈   
�(7) ... (21) 

where C is a constant independent of x0 and �� denote the symbol in 
�, � , defined by 

     �� (�, y)  =  � (�) � (�, y). 
Proof. It is clear that �� satisfies equation (2) with Cr,s independent of x0 and has 

compact �-support � − 2 ≤   |�|   ≤   � + 2, then by Lemma 4.1, there exists a constant C 
such that 

   ||�¥�(�)||:, �, �   ≤  ,||�||:, �, �,    � ∈   
�(R). 

Now we show that the inequality (20) holds with a constant cm independent of x0 in order 
to confirm that the constant C is independent of x0. 

Notice that ��, �| (�� (•,  y)) (�) can be written as sum of terms of the form 

     
¥(¦)(*) §�̈� (*, {)

* ,  .,  /, ∈ N. 

From (2), |(1 + x)a−b��, �| (��) (•,  y) (�)|is uniformly bounded in ξ  and x0  for x ≥ 1 and 

m ∈ N.  If we design the Fourier-Bessel transform of ησ (•, ξ) by ρ(•, ξ) then we have for all   

m ∈ N 
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   |@:|�(@,  y)|   ≤   � |9�, �|  (�� (•,  y)) (�)| ���,�(�)*©T:*©%: ≤ j| , 
λ, ξ 0, where j| is a constant which is independent of x0 and ξ. Thus (21) is proved. 

Lemma 4.3. Let σ ∈
�, � , then there exist a constant M > 0 such that for each x0 > 3 and � ∈ 
6(7), we have 

   � |�� (�) (�) |:���,�(�)*©T;*©%; ≤  ª � |�(*)|�
(;T|*%*©|)�  ���, �(�)∞  ... (22) 

Proof. Let � ∈ 56(7) such that w(x) = 1 in [−2, 2], 0 ≤ w(x) ≤ 1 and Supp(w) ⊂[−3, 3]. 

For x0 > 3, we put ¬(�) = �(� + � ) + �(� − � ). 

Now for � ∈ 
6(7), we can write � =  ¬� + (1 − ¬)� = �1 + �2, where f1 supported 
in �0 − 3 ≤ |�| ≤  � + 3, �2 supported outside  � − 2 ≤ | � | ≤ � + 2  and  | �1|, |�2| ≤ |�|.  Now we can choose θ ∈ De (R) such that θ(x) =1 in [−1, 1] and Supp(θ) ⊂ [−2, 2], then 

the function η defined by �(�) = l(� + � ) + l(� – � ) is supported in � − 2 ≤ |�| ≤ � +2 and η(x) = 1 in � − 1 ≤ |�| ≤ � + 1, so by the Lemma 4.2, we have 

 � |�� (�;) (�) |:���,�(�)*©T;
*©%; = � |�¥�(�;) (�)|: ���, �(�)*©T;

*©%;  

≤    � |�¥�(�;) (�)|: ���, �(�)∞

  

≤   ,  � |�; (�)|: ���, �(�)∞

      
≤   ,   � |�(�)|: ���, �(�)*©T®

*©%®  

        ≤   , � |� (�)|:(1  +  |� − � |):  ���, �(�)∞

  

If x ∈ [x0 − 1, x0 + 1], we have x ∉ Supp (f2) and by (16), we can write 

   �� (�:) (�) = � ��(�,  2) �:(2) ���, �(2)∞  

For all � ∈ [� − 1, � + 1], 2 ∉ [� − 2, � + 2], we have 

�� (�,  2) = � ��(�,  P) O�, �(�,  2,  P) ���, �(P)∞

 = � ��(�,  P) O�, �(�,  2,  P) ���, �(P)∞

  

By using (15) when w > �%�: + 2, we get 

|�� (�:) (�)|   = , � � |�:(2)|  ¯�, �(*, U, V)V���E° ���, �(2)∞;∞ . 

Now by Schwartz-inequality, we have 

  |�� (�:) (�)|   = , � � |�:(2)|:  ¯�, �(*, U, V)V���E° ���, �(P) ���, �(2)∞;∞  

     = , � � |�:(2)|:   ¯�, �(*, U, V)(;T |U%*©|)�V���E� ���, �(P) ∞; ���, �(2)∞ . 

Now we can obtain, 

  � |�� (�:) (�) |:���,�(�)*©T;*©%; ≤ , � |�(U)|�
(;T |U%*©|)� � � ;V���E�*©T;*©%;∞;∞  

×   O�, �(�,  2,  P) ���, �(�) ���, �(P) ���, �(2). 



An International Peer Reviewed Journal of Physical Science 

10 Acta Ciencia Indica, Vol. XLVIII-M, No. 1 to 4 (2022) 

Now we can obtain by using (4), 

� � 1��%�T: O�, � (�,  2,  P) ���, �(�)*©T;
*©%; ���, �(P)∞

;  

≤ � � 1P�%�T: O�, � (�,  2,  P) ���, �(�)∞

 ���, �(P)∞

; ≤ 1. 
Then we find 

� |�� (�:(�)) |:���,�(�)*©T;*©%; ≤ , � |�(U)|�
(;T |U%*©|)� ���,�(2)∞ . 

Finally, by writing ��(�) = ��(�1) + ��(�2), we can prove (22). 

Theorem 4.4. If σ ∈ 
�, � , then the operator �� initially defined on 
6(7) can be extended 
to a bounded operator �2,�,� into itself. 

Proof. We integrate in (22) w.r.t  � , we obtain 

  � � |��(�) (�)|: ���, �(�)*©T;*©%; �� ∞; = � |��(�) (�)|: (� − 2) ���, �(�)±:  

                                                               + � |��(�) (�)|: ���, �(�)∞

±  

     ≥    � |��(�) (�)|: ���, �(�)∞± . 

On other side, 

� � |�(2)|:(1 +  |2 − � |):  ���, �(2)�� 
∞

 
∞

® ≤ � � |�(2)|:1 +   (2 − � ):  ���, �(2)∞

  �� 
∞

% ∞  

= � � |�(2)|:1 +  �:  ���, �(2)∞

 ��∞

% ∞  

   = ²  � |�(2)|: ���, �(2).g
  

Thus, we obtain 

� |��(�)(�)|: ���, �(�)∞

± ≤ ,,‖�‖:,�,�: . 
Now choose � ∈ 56(7) such that �(�) = 1 on [−4, 4]. Then by Lemma 4.2, we get 

� |��(�)(�)|: ���, �(�)±
 

≤ � |��(�)(�)|: ���, �(�)∞

 
≤ ,‖�‖:,�,�: . 

Thus, we have 

� |��(�)(�)|: ���, �(�)∞

 
≤ ‖�‖:,�,�: . 

Finally, by using density of 
6(7) in �2,�,�, the theorem is proved. 

Theorem 4.5.  Let σ ∈
�, � , and ��∗ be the adjoint operator of ��. Then for all ́ ∈ 
6(7)  
and  2 ≥  0, 2 ∉ 
4��(´), we have 

     ��∗(´) (2) = � ��∗(�,  2)´(�) ���, �(�)�
 , 

where ��∗(2,  �) = ��(�,  2). 
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Proof. Let γ(x, y) ∈C
∞ on 72 with compact support and γ (0, 0) = 1. Let σ ∈
�, � , such 

that �є(�, y) = �(�, y) ¶(·�, ·y), 0 < · <  1. 

Set    �¸(�,  P) = � �¸(�,  y) �����>� (Py) ���, �(y)� ,    �,  P ≥ 0. 
It is clear that �є(�, y) → �(�, y) as · → 0. Now by using the dominated convergence 

theorem �� can be written as 

��(�) (�) = �mw¸ →   � � �¸(�,  y)�(2) ��%�%;: (y�) ��%�%;:  (y2) ���, �(y)�
 ���, �(2)�

 ,   
                                                                                                                                         ∀� ∈ 
�(7). 

It is clear that �є ∈ 
�, �  and satisfies (2) uniformly in ϵ. Proceeding as in the proof of 

above lemma, we have for fixed w > �%�T;: , 
   (1 + �)�%�| 9�, �|  (�¸ (�, •)) (y)|   ≤ ¼�(;T{)��. 
As (−1)|P:|�¸(�,  P) = � 9�, �| (�¸ (�, •)) (y) �����>� (yP) ���, �(y)� , 

we have 

| �¸(�,  P)   ≤ 9|P:| ,    � ≥  0,  P > 0. 
Now by dominated convergence theorem, we have 

     �є(�, P)→ ��(�, P) as · → 0, � ≥ 0, P >  0. 

Now we can write 

� ´(�) ��(�) (�) ���, �(�)�
 = �mw¸ →   � �(2) � � ´(�) �¸(�,  y) ��%�%;: (�y) ��%�%;: (2y)�

 
�

 
�

   
 ×  ���, �(�) ���, �(y) ���, �(2), 

for all �, ´ ∈ 
6(7). 

As y:| � ´(�) �¸ (�,  y) �����>� (�y) ���, �(�)�  

     = �   �����>� (�y) ���, �(�)∞ , 

we can obtain for w > �%�T;: , 
|9�, �| ´(�¸(•, y)(�)| ≤ j|(1 + �):| , � > 0,  y ≥ 0. 

Thus, we can obtain, 

| � ´(�) �¸ (�,  y) ��%�%;: (�y) ���, �(�)�
 | ≤ j|(1 + �):|. 

where jw is a constant independent of ϵ. Now by using dominated convergence theorem, 
Fubini’s theorem and the product formula, we can have for 2 ≥ 0, 2∉ 
4��(´), 
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��∗(´)(2) = �mw¸ →   � � ´(�) �̧ (�,  y) ��%�%;: (y�) ��%�%;: (y2) ���, �(�)���, �(y)∞

 
∞

  

   = �mw¸ →   � � ´(�) �¸(�,  P) O�, �(�,  2,  P) ���, �(P)∞  ���, �(�)∞  

   =   � � ´(�) ��(�,  P) O�, �(�,  2,  P) ���, �(�)∞ ���, �(P)∞  

   =   � ��(�,  P)  ´(�) ���, �(�)∞ . 
This proves (23). 

Theorem 4.6. Let � ∈ 
�, � , then �� can be extended to a bounded operator from ��,�,� 

into itself for 1 < � < ∞. 

Proof. By density and from Theorem 3.3, the singular integral representation of �� can be 
extended to ��,�,�. Now by using Theorem 3.4 and Theorem 4.4, we conclude that �� satisfies 

the conditions (7) and (8) of Theorem 2.1. 

Now we can deduce that �� is bounded in ��,�,�-norm for1 < � ≤ 2. Further by using 

(19) and (23), we can apply the Theorem (2.1) to ��∗. By duality, �� can be extended to a 
bounded operator from ��,�,� into itself for 1 < � < ∞. Thus, the theorem is proved. 
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