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The cubic homogeneous ternary equation  

3 3 252( )x y x y z    is analyzed for its non-zero integral 

solutions. A few interesting relations between the solutions 

and special numbers are exhibited. 
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Notations:        𝑃 = 𝑛(𝑛 + 1)                            

𝑆 = 6𝑛(𝑛 − 1) + 1              
 

𝑡, = 𝑛 ቈ1 +
(𝑛 − 1)(𝑚 − 2)

2
 

INTRODUCTION 

Integral solutions for the homogeneous or non-homogeneous Diophantine equation is an 

interesting concept as it can be seen from [1-4]. In [5-13], a few special cases of cubic 

Diophantine equation with three  and four unknowns are studied.  This communication 

concerns with another interesting homogeneous cubic equation with three unknowns  given by 

𝑥ଷ + 𝑦ଷ = 52(𝑥 + 𝑦)𝑧ଶ for its integral solutions.A few interesting relations between the 

solutions are presented. 

METHOD OF ANALYSIS 

The cubic Diophantine equation with three unknowns to be solved for getting non-zero 

integral solution is, 

    𝑥ଷ + 𝑦ଷ = 52(𝑥 + 𝑦)𝑧ଶ   ...(1)     

on  substituting the linear transformations 

       𝑥 = 𝑢 + 𝑣, 𝑦 = 𝑢 − 𝑣    ...(2)     

leads to    𝑢ଶ + 3𝑣ଶ = 52𝑧ଶ          ...(3) 
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We employ different ways of solving (3) and thus different patterns of integer solutions to 

(1) are illustrated below. 

Pattern : I 

Assume    𝑧 = 𝑎ଶ + 3𝑏ଶ                       ...(4) 

 Write 52 as    2 = (7 + 𝑖√3)(7 − 𝑖√3)            ...(5) 

Substituting  (4) and (5) in (3) and using the method of factorization, define, 

    (𝑢 + 𝑖√3𝑣) = (7 + 𝑖√3)(𝑎 + 𝑖√3𝑏)ଶ     ...(6) 

Equating real and imaginary parts in the above equation ,we get, 

     𝑢 = 7𝑎ଶ − 21𝑏ଶ − 6𝑎𝑏
𝑣 = 𝑎ଶ − 3𝑏ଶ + 14𝑎𝑏

ൠ        ...(7)                                                                              

Substituting (7)  in (2) ,the corresponding integer values of zyx ,,  satisfying (1) are 

obtained as  

    𝑥 = 𝑥(𝑎. 𝑏) = 8𝑎ଶ − 24𝑏ଶ + 8𝑎𝑏                                                                                                                             

    𝑦 = 𝑦(𝑎. 𝑏) = 6𝑎ଶ − 18𝑏ଶ − 20𝑎𝑏 

                                     𝑧 = 𝑧(𝑎, 𝑏) = 𝑎ଶ + 3𝑏ଶ 

Properties: 

     10,( ,1) ( ,1) 1(mod 2).ax a z a t    

    28, 4,( ,1) ( ,1) 0(mod3).a ax a y a t t     

    8, 4,( ,1) 2 25a ax a t t    is a perfect square. 

Pattern : II 

In (3), 52 can also be written as 

    52 = (5 + 3𝑖√3)(5 − 3𝑖√3)  ... (8)                                                     

Substituting (4) and (8) in (3), and following the same procedure as in Pattern I,we get 

non-zero distinct integral solutions of (1) as,  

𝑥 = 𝑥(𝑎, 𝑏) = 8𝑎ଶ − 24𝑏ଶ − 8𝑎𝑏 

𝑦 = 𝑦(𝑎, 𝑏) = 2𝑎ଶ − 6𝑏ଶ − 28𝑎𝑏 

        𝑧 = 𝑧(𝑎, 𝑏) = 𝑎ଶ + 3𝑏ଶ 

Properties: 

     22,( ,1) ( ,1) 0(mod5).ax a y a t    

    20,( ,1) ( ,1) 0(mod3).ax a z a t    
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    𝑦(𝑎, 1) + 𝑧(𝑎, 1) − 2𝑡ସ, + 199   is a perfect square. 

Pattern : III 

Equation  (3) can also be written as 

    𝑢ଶ + 3𝑣ଶ = 52𝑧ଶ ∗ 1   ...(9)                                        

Write 1 as  

1 =
(1 + 𝑖√3)(1 − 𝑖√3)

2ଶ
                                                            … (10) 

Substituting (8) and (10) in (9) using the method of factorization define, 

(𝑢 + 𝑖√3𝑣) = (5 + 𝑖3√3)(𝑎 + 𝑖√3𝑏)ଶ
(1 + 𝑖√3)

2
 

Equating real and imaginary parts, we get the values of ,u v  as 

𝑢 = −2𝑎ଶ + 6𝑏ଶ − 24𝑎𝑏 

𝑣 = 4𝑎ଶ − 12𝑏ଶ − 4𝑎𝑏 

Substituting the values of u and v in (2), we get the non-zero distinct integral solution of 

(1) as  

𝑥 = 𝑥(𝑎, 𝑏) = 2𝑎ଶ − 6𝑏ଶ − 28𝑎𝑏      

𝑦 = 𝑦(𝑎, 𝑏) = −6𝑎ଶ + 18𝑏ଶ − 20𝑎𝑏 

𝑧 = 𝑧(𝑎, 𝑏) = 𝑎ଶ + 3𝑏ଶ                          

Properties: 

𝑥(𝑎, 1) + 𝑦(𝑎, 1) + 𝑧(𝑎, 1) + 𝑡଼, ≡ 0(𝑚𝑜𝑑 3). 

    2[𝑥(𝑎, 1) + 𝑧(𝑎, 1) + 34𝑎 + 6] is a nasty number. 

𝑦(1, 𝑏) + 𝑧(1, 𝑏) − 𝑡ଷସ, − 𝑆 + 𝑃 + 6 = 0 

Note : 1 Using (8) and (10) in (9) and using the same procedure as in Pattern. III, we get 

the different set of nonzero distinct integer solution of (1) as  

𝑥 = 𝑥(𝑎, 𝑏) = 2𝑎ଶ − 6𝑏ଶ − 28𝑎𝑏     

𝑦 = 𝑦(𝑎, 𝑏) = −6𝑎ଶ + 18𝑏ଶ − 20𝑎𝑏 

𝑧 = 𝑧(𝑎, 𝑏) = 𝑎ଶ + 3𝑏ଶ                         

Properties: 

𝑥(𝑎, 1) + 𝑦(𝑎, 1) + 𝑧(𝑎, 1) + 𝑡଼, ≡ 0(𝑚𝑜𝑑5) 

    2[𝑥(𝑎, 1) + 𝑧(𝑎, 1) + 34𝑎 + 6] is a nasty number. 

𝑦(1, 𝑏) + 𝑧(1, 𝑏) − 21𝑃𝑟 + 5 ≡ 0(𝑚𝑜𝑑41) 
Pattern . IV  In the equation (9), 1 can also be written as  
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2

(1 4 3)(1 4 3)
1

7

i i 
  ...(11)

 

Using (8) and (11) in (9), using the method of factorization, define   

    2 (1 4 3)
( 3 ) (5 3 3)( 3 )

7

i
u i v i a i b


   

 

Equating real and imaginary parts, we get the values of ,u v  as 

𝑢 =
−31𝑎ଶ + 93𝑏ଶ − 138𝑎𝑏

7
 

𝑣 =
23𝑎ଶ − 69𝑏ଶ − 62𝑎𝑏

7  

Substituting the values of u and v in (2), assuming BbAa 7,7  we get the non-zero 

distinct integral solution of (1) as  

𝑥(𝐴, 𝐵) = −56𝐴ଶ + 168𝐵ଶ − 1400𝐴𝐵 

𝑦(𝐴, 𝐵) = −378𝐴ଶ + 1134𝐵ଶ − 532𝐴𝐵 

𝑧(𝐴, 𝐵) = 49𝐴ଶ + 147𝐵ଶ

 

Properties: 

𝑥(𝐴, 1) + 𝑡ଵଵସ,A − 𝑡ଶଽଵସ,A + 1456𝑡ସ,A ≡ 0(𝑚𝑜𝑑 2) 

𝑧(𝐴, 1) − 𝑥(𝐴, 1) − 𝑡ଶଶ, − 𝑡ଵଶ, ≡ 0(𝑚𝑜𝑑 3) 

    𝑧(𝐴, 1) + 14𝑃 + 14𝑡ସ, − 146 is a perfect square. 

Note : 2 Using (5) and (11) in (9) and using the same procedure as in Pattern. IV and    

assuming 𝑎 = 7𝐴, 𝑏 = 7𝐵, we get the different set of non-zero distinct integer solution of (1) 

as  

𝑥(𝐴, 𝐵) = 168𝐴ଶ − 504𝐵ଶ − 1288𝐴𝐵 

    𝑦(𝐴, 𝐵) = −238𝐴ଶ + 714𝐵ଶ − 1148𝐴𝐵. 

    𝑧(𝐴, 𝐵) = 49𝐴ଶ + 147𝐵ଶ 

Properties: 

                           𝑥(𝐴, 1) − 𝑦(𝐴, 1) − 𝑡ଶ଼ସ, + 265𝑡ସ, ≡ 0(𝑚𝑜𝑑2). 

                             𝑧(𝐴, 1) + 𝑦(𝐴, 1) − 𝑡ଶଷ, + 1338𝑡$, ≡ 0(𝑚𝑜𝑑3) 

                             𝑥(𝐴, 1) − 168𝑡ସ, ≡ 0(𝑚𝑜𝑑2) 

Pattern .V  The equation (3) can also be written as  

    52𝑧ଶ − 𝑢ଶ = 3 ∗ 𝑣ଶ                    ...(12)                                                                                         

Write 3 as  

   3 = (√52 + 7)(√52 − 7)                                               ...(13)                                                                       
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Assume  

   𝑣 = 52𝑎ଶ − 𝑏ଶ = (√52𝑎 + 𝑏)(√52𝑎 − 𝑏)           ...(14) 

Using (13) and (14) in (12)  using the method of factorization define   

(√52𝑧 + 𝑢) = (√52 + 7)(√52𝑎 + 𝑏)ଶ 

Equating rational and irrational parts, we get  

        𝑧 = 52𝑎ଶ + 𝑏ଶ + 14𝑎𝑏                                              ... (15) 

     𝑢 = 364𝑎ଶ + 7𝑏ଶ + 104𝑎𝑏                                                  ...(16)                                                                          

Substituting (14) and (16) in (2), we get the values of yx,  as  

                       










abbay

abbax

1048312

1046416
22

22

 

 ...(17)                                                                    

Thus (15) and (17) represents non-zero distinct integer solutions of (1). 

    .3[𝑥(𝑎, 1) − 𝑦(𝑎, 1) − 96𝑡ସ,ଶ + 2  is a nasty number. 

     𝑦(1, 𝑏) + 𝑧(1, 𝑏) − 4𝑏 + 3 is a perfect square. 

     𝑥(1, 𝑏) + 𝑦(1, 𝑏) + 𝑧(1, 𝑏) − 15𝑃𝑟 ≡ 0(𝑚𝑜𝑑3) 

Pattern : VI  Write (3)  as  

𝑢ଶ − 25𝑧ଶ = 27𝑧ଶ − 3𝑣ଶ 

         ( 5 )( 5 ) 3(3 )(3 )u z u z z v z v      ...(18)                                                                      

Case : I 

(18)  can be written in the form of ratio as  

(𝑢 + 5𝑧)

(3𝑧 + 𝑣)
=

3(3𝑧 − 𝑣)

(𝑢 − 5𝑧)
=

𝐴

𝐵
 

This is equivalent to the following system of equations as  

     𝑢𝐵 + 𝑧(5𝐵 − 3𝐴) − 𝑣𝐴 = 0 

−𝐴𝑢 + 𝑧(9𝐵 + 5𝐴) − 3𝑣𝐵 = 0 

solving  these two equations using cross multiplication method, we get the values of  vu,

and z as 

𝑢 = 5𝐴ଶ + 18𝐴𝐵 − 15𝐴ଶ 

𝑣 = −3𝐴ଶ + 10𝐴𝐵 + 9𝐵ଶ 

𝑧 = 𝐴ଶ + 3𝐵ଶ                       

Substituting the values of vu,  in (2), the non-zero distinct integral values satisfying (1) 

are obtained as 

𝑥 = 𝑥(𝐴, 𝐵) = 2𝐴ଶ + 28𝐴𝐵 − 6𝐵ଶ 
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𝑦 = 𝑦(𝐴, 𝐵) = 8𝐴ଶ + 8𝐴𝐵 − 24𝐵ଶ 

𝑧 = 𝑧(𝐴, 𝐵) = 𝐴ଶ + 3𝐵ଶ                    

Properties: 

𝑥(𝐴, 1) + 𝑦(𝐴, 1) − 𝑡ସ, ≡ 0(mod2) 

𝑦(𝐴, 1) + 𝑧(𝐴, 1) − 9𝑃𝑟 − 𝑡ଷ, + 𝑡ସ, + 21 = 0 

𝑥(1, 𝐵) + 𝑦(1, 𝐵) + 𝑧(1, 𝐵) − 36𝑃𝑟 + 63𝑡ସ, = 11 

Case . 2   (18) can also be written in the form of ratio as  

(𝑢 − 5𝑧)

3(3𝑧 − 𝑣)
=

(3𝑧 + 𝑣)

(𝑢 + 5𝑧)
=

𝐴

𝐵
 

which is equivalent to the system of equations as 

𝑢𝐵 − 𝑧(5𝐵 + 9𝐴) + 3𝑣𝐴 = 0 
−𝒖𝑨 + 𝒛(𝟑𝑩 − 𝟓𝑨) + 𝒗𝑩 = 𝟎 

solving  these two equations using cross multiplication method ,we get the values of  vu,  and 

z as  

𝑢 = 15𝐴ଶ − 18𝐴𝐵 − 5𝐵ଶ
 

𝑣 = −9𝐴ଶ − 10𝐴𝐵 + 3𝐵ଶ 

𝑧 = −3𝐴ଶ − 𝐵ଶ                   

Substituting the values of vu,  in (2), we get the non-zero distinct integral solutions of (1) 

as  

𝑥 = 𝑥(𝐴, 𝐵) = 6𝐴ଶ − 28𝐴𝐵 − 2𝐵ଶ 

𝑦 = 𝑦(𝐴, 𝐵) = 24𝐴ଶ − 8𝐴𝐵 − 8𝐵ଶ 

𝑧 = 𝑧(𝐴, 𝐵) = −3𝐴ଶ − 𝐵ଶ                 

Properties: 

    𝑥(𝐴, 1) + 𝑦(𝐴, 1) + 6𝑡ସ, + 19 is a perfect square. 

    2[𝑦(𝐴, 1) − 𝑧(𝐴, 1) − 10𝑃𝑟 + 10𝑡ସ, + 10] is a nasty number 

    𝑧(1, 𝐵) − 𝑥(1, 𝐵) + 25𝑡ସ, − 28𝑃𝑟 + 3 = 0 

Case : 3  Write the equation (18) in the form of ratio as    

           
(𝑢 + 5𝑧)

(3𝑧 − 𝑣)
=

3(3𝑧 + 𝑣)

(𝑢 − 5𝑧)
=

𝐴

𝐵
 

which is equivalent to the system of double  equations as  

       𝑢𝐵 + 𝑧(5𝐵 − 3𝐴) + 𝐴𝑣 = 0 

−𝑢𝐴 + 𝑧(9𝐵 + 5𝐴) + 3𝑣𝐵 = 0 



Acta Ciencia Indica, Vol. XLVII-M, No. 1 to 4 (2021) 55 

 

Solving these two equations using cross multiplication method we get the values of  vu,  

and z as 

𝑢 = −5𝐴ଶ − 18𝐴𝐵 + 15𝐵ଶ 

𝑣 = −3𝐴ଶ + 10𝐴𝐵 + 9𝐵ଶ 

𝑧 = −𝐴ଶ − 3𝐵ଶ                   

Substituting the values of vu,  in (2),the non-zero distinct integral values satisfying (1) 

are obtained as 

𝑥 = 𝑥(𝐴, 𝐵) = −8𝐴ଶ − 8𝐴𝐵 + 24𝐵ଶ 

𝑦 = 𝑦(𝐴, 𝐵) = −2𝐴ଶ − 28𝐴𝐵 + 6𝐵ଶ

 
                                              𝑧 = 𝑧(𝐴, 𝐵) = −𝐴ଶ − 3𝐵ଶ   

Properties : 

𝑥(𝐴, 1) + 𝑦(𝐴, 1) + 𝑧(𝐴, 1) + 11𝑡ସ, ≡ 0(𝑚𝑜𝑑3) 

𝑦(1, 𝐵) + 𝑧(1, 𝐵) + 28𝑃𝑟 − 31𝑡ସ, + 3 = 0 

                  𝑥(1, 𝐵) + 𝑦(1, 𝐵) + 𝑧(1, 𝐵) + 9𝑡ସ, − 𝑡ସ, ≡ 0(𝑚𝑜𝑑11) 

Case;4  (18) can also be written in the form of ratio as 

    
( 5 ) (3 )

3(3 ) ( 5 )

u z z v A

z v u z B

 
 

 
 

which is equivalent to the system of  double  equations as  

𝑢𝐵 − 𝑧(5𝐵 + 9𝐴) − 3𝐴𝑣 = 0 

−𝑢𝐴 + 𝑧(3𝐵 − 5𝐴) − 𝑣𝐵 = 0 

Solving these two equations using cross multiplication method we get the values of  vu,  

and z as  

𝑢 = −15𝐴ଶ + 18𝐴𝐵 − 5𝐵ଶ 

𝑣 = −9𝐴ଶ − 10𝐴𝐵 + 3𝐵ଶ 

𝑧 = 3𝐴ଶ + 𝐵ଶ 

Substituting the values of vu,  in (2), the non-zero distinct integral values satisfying (1) 

are obtained as 

𝑥 = 𝑥(𝐴, 𝐵) = −24𝐴ଶ + 8𝐴𝐵 − 2𝐵ଶ 

𝑦 = 𝑦(𝐴, 𝐵) = −6𝐴ଶ + 28𝐴𝐵 − 8𝐵ଶ

 
𝑧 = 𝑧(𝐴, 𝐵) = 3𝐴ଶ + 𝐵ଶ                      

Properties: 

     
010Pr3666)1,()1,( ,4  AAtAyAx  

          9Pr10)1,()1,(  AAAyAAz  
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03Pr2835),1(),1( ,4  BBtBzBy  

CONCLUSION 

In this paper, a search is performed to obtain different sets of non-zero integral solutions 

to the homogeneous ternary equation (1).One may search for other choices of integer solutions 

and their corresponding properties. 
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