INTEGRAL SOLUTION OF THE HOMOGENEOUS TERNARY CUBIC EQUATION

$$
x^{3}+y^{3}=52(x+y) z^{2}
$$

DR. V. PRABA, DR. S. MALLIKA

Pg and Research Department of Mathematics
Srimathi Indira Gandhi College, Trichirappalli. 2
prabavenkatrengan23@gmail.com,,msmallika65@gmail.com
RECEIVED : 04 September, 2021
The cubic homogeneous ternary equation $x^{3}+y^{3}=52(x+y) z^{2}$ is analyzed for its non-zero integral solutions. A few interesting relations between the solutions and special numbers are exhibited.

Key-Words: Homogeneous, ternary, Diophantine equation, integral solution.

$$
\text { Notations: } \quad \begin{aligned}
P_{r n} & =n(n+1) \\
S_{n} & =6 n(n-1)+1 \\
t_{m, n} & =n\left[1+\frac{(n-1)(m-2)}{2}\right]
\end{aligned}
$$

Introduction

\square
ntegral solutions for the homogeneous or non-homogeneous Diophantine equation is an interesting concept as it can be seen from [1-4]. In [5-13], a few special cases of cubic Diophantine equation with three and four unknowns are studied. This communication concerns with another interesting homogeneous cubic equation with three unknowns given by $x^{3}+y^{3}=52(x+y) z^{2}$ for its integral solutions.A few interesting relations between the solutions are presented.

Method of analysis

The cubic Diophantine equation with three unknowns to be solved for getting non-zero integral solution is,

$$
\begin{equation*}
x^{3}+y^{3}=52(x+y) z^{2} \tag{1}
\end{equation*}
$$

on substituting the linear transformations
leads to

$$
\begin{equation*}
x=u+v, y=u-v \tag{2}
\end{equation*}
$$

$$
u^{2}+3 v^{2}=52 z^{2}
$$

We employ different ways of solving (3) and thus different patterns of integer solutions to (1) are illustrated below.

Pattern : I

Assume

$$
\begin{equation*}
z=a^{2}+3 b^{2} \tag{4}
\end{equation*}
$$

Write 52 as $\quad 2=(7+i \sqrt{3})(7-i \sqrt{3})$
Substituting (4) and (5) in (3) and using the method of factorization, define,

$$
\begin{equation*}
(u+i \sqrt{3} v)=(7+i \sqrt{3})(a+i \sqrt{3} b)^{2} \tag{6}
\end{equation*}
$$

Equating real and imaginary parts in the above equation, we get,

$$
\left.\begin{array}{l}
u=7 a^{2}-21 b^{2}-6 a b \\
v=a^{2}-3 b^{2}+14 a b \tag{7}
\end{array}\right\}
$$

Substituting (7) in (2), the corresponding integer values of x, y, z satisfying (1) are obtained as

$$
\begin{aligned}
& x=x(a . b)=8 a^{2}-24 b^{2}+8 a b \\
& y=y(a . b)=6 a^{2}-18 b^{2}-20 a b \\
& z=z(a, b)=a^{2}+3 b^{2}
\end{aligned}
$$

Properties:

$$
\begin{aligned}
& x(a, 1)+z(a, 1)-t_{10, a} \equiv 1(\bmod 2) \\
& x(a, 1)+y(a, 1)-t_{28, a}-t_{4, a} \equiv 0(\bmod 3) \\
& x(a, 1)+t_{8, a}-2 t_{4, a}+25 \text { is a perfect square. }
\end{aligned}
$$

Pattern : II

In (3), 52 can also be written as

$$
\begin{equation*}
52=(5+3 i \sqrt{3})(5-3 i \sqrt{3}) \tag{8}
\end{equation*}
$$

Substituting (4) and (8) in (3), and following the same procedure as in Pattern I, we get non-zero distinct integral solutions of (1) as,

$$
\begin{aligned}
& x=x(a, b)=8 a^{2}-24 b^{2}-8 a b \\
& y=y(a, b)=2 a^{2}-6 b^{2}-28 a b \\
& z=z(a, b)=a^{2}+3 b^{2}
\end{aligned}
$$

Properties:

$$
\begin{aligned}
& x(a, 1)+y(a, 1)-t_{22, a} \equiv 0(\bmod 5) \\
& x(a, 1)+z(a, 1)-t_{20, a} \equiv 0(\bmod 3)
\end{aligned}
$$

$$
y(a, 1)+z(a, 1)-2 t_{4, a}+199 \text { is a perfect square. }
$$

Pattern : III

Equation (3) can also be written as

$$
\begin{equation*}
u^{2}+3 v^{2}=52 z^{2} * 1 \tag{9}
\end{equation*}
$$

Write 1 as

$$
\begin{equation*}
1=\frac{(1+i \sqrt{3})(1-i \sqrt{3})}{2^{2}} \tag{10}
\end{equation*}
$$

Substituting (8) and (10) in (9) using the method of factorization define,

$$
(u+i \sqrt{3} v)=(5+i 3 \sqrt{3})(a+i \sqrt{3} b)^{2} \frac{(1+i \sqrt{3})}{2}
$$

Equating real and imaginary parts, we get the values of u, v as

$$
\begin{gathered}
u=-2 a^{2}+6 b^{2}-24 a b \\
v=4 a^{2}-12 b^{2}-4 a b
\end{gathered}
$$

Substituting the values of u and v in (2), we get the non-zero distinct integral solution of (1) as

$$
\begin{aligned}
& x=x(a, b)=2 a^{2}-6 b^{2}-28 a b \\
& y=y(a, b)=-6 a^{2}+18 b^{2}-20 a b \\
& z=z(a, b)=a^{2}+3 b^{2}
\end{aligned}
$$

Properties:

$$
\begin{aligned}
& x(a, 1)+y(a, 1)+z(a, 1)+t_{8, a} \equiv 0(\bmod 3) \\
& \quad 2[x(a, 1)+z(a, 1)+34 a+6] \text { is a nasty number. } \\
& y(1, b)+z(1, b)-t_{34, b}-S_{b}+P_{r b}+6=0
\end{aligned}
$$

Note : 1 Using (8) and (10) in (9) and using the same procedure as in Pattern. III, we get the different set of nonzero distinct integer solution of (1) as

$$
\begin{aligned}
x & =x(a, b)=2 a^{2}-6 b^{2}-28 a b \\
y & =y(a, b)=-6 a^{2}+18 b^{2}-20 a b \\
z & =z(a, b)=a^{2}+3 b^{2}
\end{aligned}
$$

Properties:

$$
\begin{aligned}
& x(a, 1)+y(a, 1)+z(a, 1)+t_{8, a} \equiv 0(\bmod 5) \\
& \quad 2[x(a, 1)+z(a, 1)+34 a+6] \text { is a nasty number. } \\
& y(1, b)+z(1, b)-21 P r_{b}+5 \equiv 0(\bmod 41)
\end{aligned}
$$

Pattern. IV In the equation (9), 1 can also be written as

$$
\begin{equation*}
1=\frac{(1+4 i \sqrt{3})(1-4 i \sqrt{3})}{7^{2}} \tag{11}
\end{equation*}
$$

Using (8) and (11) in (9), using the method of factorization, define

$$
(u+i \sqrt{3} v)=(5+i 3 \sqrt{3})(a+i \sqrt{3} b)^{2} \frac{(1+4 i \sqrt{3})}{7}
$$

Equating real and imaginary parts, we get the values of u, v as

$$
\begin{gathered}
u=\frac{-31 a^{2}+93 b^{2}-138 a b}{7} \\
v=\frac{23 a^{2}-69 b^{2}-62 a b}{7}
\end{gathered}
$$

Substituting the values of u and v in (2), assuming $a=7 A, b=7 B$ we get the non-zero distinct integral solution of (1) as

$$
\begin{gathered}
x(A, B)=-56 A^{2}+168 B^{2}-1400 A B \\
y(A, B)=-378 A^{2}+1134 B^{2}-532 A B \\
z(A, B)=49 A^{2}+147 B^{2}
\end{gathered}
$$

Properties:

$$
\begin{gathered}
x(A, 1)+t_{114,} \mathrm{~A}-t_{2914,} \mathrm{~A}+1456 t_{4,} \mathrm{~A} \equiv 0(\bmod 2) \\
z(A, 1)-x(A, 1)-t_{202, A}-t_{12, A} \equiv 0(\bmod 3) \\
\quad z(A, 1)+14 P_{r A}+14 t_{4, A}-146 \text { is a perfect square. }
\end{gathered}
$$

Note : 2 Using (5) and (11) in (9) and using the same procedure as in Pattern. IV and assuming $a=7 A, b=7 B$, we get the different set of non-zero distinct integer solution of (1) as

$$
\begin{aligned}
& x(A, B)=168 A^{2}-504 B^{2}-1288 A B \\
& y(A, B)=-238 A^{2}+714 B^{2}-1148 A B \\
& z(A, B)=49 A^{2}+147 B^{2}
\end{aligned}
$$

Properties:

$$
\begin{aligned}
& x(A, 1)-y(A, 1)-t_{284, A}+265 t_{4, A} \equiv 0(\bmod 2) \\
& z(A, 1)+y(A, 1)-t_{2300, A}+1338 t_{\$, A} \equiv 0(\bmod 3) \\
& x(A, 1)-168 t_{4, A} \equiv 0(\bmod 2)
\end{aligned}
$$

Pattern.V The equation (3) can also be written as

$$
\begin{equation*}
52 z^{2}-u^{2}=3 * v^{2} \tag{12}
\end{equation*}
$$

Write 3 as

$$
\begin{equation*}
3=(\sqrt{52}+7)(\sqrt{52}-7) \tag{13}
\end{equation*}
$$

Assume

$$
\begin{equation*}
v=52 a^{2}-b^{2}=(\sqrt{52} a+b)(\sqrt{52} a-b) \tag{14}
\end{equation*}
$$

Using (13) and (14) in (12) using the method of factorization define

$$
(\sqrt{52} z+u)=(\sqrt{52}+7)(\sqrt{52} a+b)^{2}
$$

Equating rational and irrational parts, we get

$$
\begin{align*}
& z=52 a^{2}+b^{2}+14 a b \tag{15}\\
& u=364 a^{2}+7 b^{2}+104 a b \tag{16}
\end{align*}
$$

Substituting (14) and (16) in (2), we get the values of x, y as

$$
\left.\begin{array}{l}
x=416 a^{2}+6 b^{2}+104 a b \tag{17}\\
y=312 a^{2}+8 b^{2}+104 a b
\end{array}\right\}
$$

Thus (15) and (17) represents non-zero distinct integer solutions of (1).

$$
\begin{aligned}
& .3\left[x(a, 1)-y(a, 1)-96 t_{4,2}+2\right. \text { is a nasty number. } \\
& y(1, b)+z(1, b)-4 b+3 \text { is a perfect square. } \\
& x(1, b)+y(1, b)+z(1, b)-15 \text { Pr }_{b} \equiv 0(\bmod 3)
\end{aligned}
$$

Pattern : VI Write (3) as

$$
\begin{gather*}
\\
 \tag{18}\\
\Rightarrow \quad u^{2}-25 z^{2}=27 z^{2}-3 v^{2} \\
(u+5 z)(u-5 z)=3(3 z+v)(3 z-v)
\end{gather*}
$$

Case : I

(18) can be written in the form of ratio as

$$
\frac{(u+5 z)}{(3 z+v)}=\frac{3(3 z-v)}{(u-5 z)}=\frac{A}{B}
$$

This is equivalent to the following system of equations as

$$
\begin{aligned}
u B+z(5 B-3 A)-v A & =0 \\
-A u+z(9 B+5 A)-3 v B & =0
\end{aligned}
$$

solving these two equations using cross multiplication method, we get the values of u, v and z as

$$
\begin{aligned}
u & =5 A^{2}+18 A B-15 A^{2} \\
v & =-3 A^{2}+10 A B+9 B^{2} \\
z & =A^{2}+3 B^{2}
\end{aligned}
$$

Substituting the values of u, v in (2), the non-zero distinct integral values satisfying (1) are obtained as

$$
x=x(A, B)=2 A^{2}+28 A B-6 B^{2}
$$

$$
\begin{aligned}
& y=y(A, B)=8 A^{2}+8 A B-24 B^{2} \\
& z=z(A, B)=A^{2}+3 B^{2}
\end{aligned}
$$

Properties:

$$
\begin{gathered}
x(A, 1)+y(A, 1)-t_{4, A} \equiv 0(\bmod 2) \\
y(A, 1)+z(A, 1)-9 \operatorname{Pr}_{A}-t_{3, A}+t_{4, A}+21=0 \\
x(1, B)+y(1, B)+z(1, B)-36 \operatorname{Pr}_{B}+63 t_{4, B}=11
\end{gathered}
$$

Case 2 (18) can also be written in the form of ratio as

$$
\frac{(u-5 z)}{3(3 z-v)}=\frac{(3 z+v)}{(u+5 z)}=\frac{A}{B}
$$

which is equivalent to the system of equations as

$$
\begin{gathered}
u B-z(5 B+9 A)+3 v A=0 \\
-\boldsymbol{u} \boldsymbol{A}+\boldsymbol{z}(\mathbf{3} \boldsymbol{B}-\mathbf{5} \boldsymbol{A})+\boldsymbol{v} \boldsymbol{B}=\mathbf{0}
\end{gathered}
$$

solving these two equations using cross multiplication method, we get the values of u, v and z as

$$
\begin{aligned}
& u=15 A^{2}-18 A B-5 B^{2} \\
& v=-9 A^{2}-10 A B+3 B^{2} \\
& z=-3 A^{2}-B^{2}
\end{aligned}
$$

Substituting the values of u, v in (2), we get the non-zero distinct integral solutions of (1) as

$$
\begin{aligned}
& x=x(A, B)=6 A^{2}-28 A B-2 B^{2} \\
& y=y(A, B)=24 A^{2}-8 A B-8 B^{2} \\
& z=z(A, B)=-3 A^{2}-B^{2}
\end{aligned}
$$

Properties:

$$
\begin{aligned}
& x(A, 1)+y(A, 1)+6 t_{4, A}+19 \text { is a perfect square. } \\
& 2\left[y(A, 1)-z(A, 1)-10 \operatorname{Pr}_{A}+10 t_{4, A}+10\right] \text { is a nasty number } \\
& z(1, B)-x(1, B)+25 t_{4, B}-28 P r_{B}+3=0
\end{aligned}
$$

Case : 3 Write the equation (18) in the form of ratio as

$$
\frac{(u+5 z)}{(3 z-v)}=\frac{3(3 z+v)}{(u-5 z)}=\frac{A}{B}
$$

which is equivalent to the system of double equations as

$$
\begin{aligned}
u B+z(5 B-3 A)+A v & =0 \\
-u A+z(9 B+5 A)+3 v B & =0
\end{aligned}
$$

Solving these two equations using cross multiplication method we get the values of u, v and z as

$$
\begin{aligned}
u & =-5 A^{2}-18 A B+15 B^{2} \\
v & =-3 A^{2}+10 A B+9 B^{2} \\
z & =-A^{2}-3 B^{2}
\end{aligned}
$$

Substituting the values of u, v in (2),the non-zero distinct integral values satisfying (1) are obtained as

$$
\begin{aligned}
& x=x(A, B)=-8 A^{2}-8 A B+24 B^{2} \\
& y=y(A, B)=-2 A^{2}-28 A B+6 B^{2} \\
& z=z(A, B)=-A^{2}-3 B^{2}
\end{aligned}
$$

Properties :

$$
\begin{aligned}
& x(A, 1)+y(A, 1)+z(A, 1)+11 t_{4, A} \equiv 0(\bmod 3) \\
& y(1, B)+z(1, B)+28 \operatorname{Pr}_{B}-31 t_{74, B}+3=0 \\
& x(1, B)+y(1, B)+z(1, B)+9 t_{4, B}-t_{74, B} \equiv 0(\bmod 11)
\end{aligned}
$$

Case;4 (18) can also be written in the form of ratio as

$$
\frac{(u-5 z)}{3(3 z+v)}=\frac{(3 z-v)}{(u+5 z)}=\frac{A}{B}
$$

which is equivalent to the system of double equations as

$$
\begin{aligned}
& u B-z(5 B+9 A)-3 A v=0 \\
& -u A+z(3 B-5 A)-v B=0
\end{aligned}
$$

Solving these two equations using cross multiplication method we get the values of u, v and z as

$$
\begin{gathered}
u=-15 A^{2}+18 A B-5 B^{2} \\
v=-9 A^{2}-10 A B+3 B^{2} \\
z=3 A^{2}+B^{2}
\end{gathered}
$$

Substituting the values of u, v in (2), the non-zero distinct integral values satisfying (1) are obtained as

$$
\begin{aligned}
& x=x(A, B)=-24 A^{2}+8 A B-2 B^{2} \\
& y=y(A, B)=-6 A^{2}+28 A B-8 B^{2} \\
& z=z(A, B)=3 A^{2}+B^{2}
\end{aligned}
$$

Properties:

$$
\begin{gathered}
x(A, 1)+y(A, 1)+66 t_{4, A}-36 \operatorname{Pr}_{A}+10=0 \\
z(A, A+1)-y(A, A+1)+10 \operatorname{Pr}_{A}=9
\end{gathered}
$$

$$
y(1, B)+z(1, B)+35 t_{4, B}-28 \operatorname{Pr}_{B}+3=0
$$

Conclusion

In this paper, a search is performed to obtain different sets of non-zero integral solutions to the homogeneous ternary equation (1).One may search for other choices of integer solutions and their corresponding properties.

References

1. Carmichael. R.D, The Theory of Numbers and Diophantine Analysis, Dover Publications, New York, (1959).
2. Dickson L. E., History of Theory of Numbers, Chelsea / publishing company, Vol. II, New York (1952).
3. Mordell L .J., Diophantine Equations, Academic press, London (1969).
4. Telang S.G. Number Theory, Tata Mcgrow Hill Publishing company, New Delhi (1996).
5. Gopalan. M.A., Vidhyalakshmi. S., Mallika. S., On the ternary non-homogeneous. Cubic equation $x^{3}+y^{3}-$ $3(\mathrm{x}+\mathrm{y})=2\left(3 \mathrm{k}^{2}-2\right) \mathrm{z}^{3}$ Impact journal of science and Technology, Vol. 7., No.1., 41-45 (2013).
6. Gopalan. M. A., Vidhyalakshmi. S., Mallika. S., Non-homogeneous cubic equation with three unknowns $3\left(x^{2}+y^{2}\right)-5 x y+2(x+y)+4=27 z^{3}$., International Journal of Engineering Science and Research Technelogy,Vol.3, No. 12., Dec. 2014, 138-141.
7. Anbuselvi. R, Kannan. K., On Ternary cubic Diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=15 z^{3}$ International Journal of scientific Research, Vol.5., Issue. 9., Sep. 369-375 (2016).
8. Vijayasankar. A., Gopalan. M.A., Krithika.V., On the ternary cubic Diophantine equation $2\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$ $3 \mathrm{xy}=56 \mathrm{z}^{3}$., Worldwide Journal of Multidisciplinary Research and Development., vol. 3, Issue.11, 6-9 (2017).
9. Gopalan M. A., Sharadha kumar, On the non-homogeneous Ternary cubic equation $3\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$ $5 \mathrm{xy}+\mathrm{x}+\mathrm{y}+1=111 \mathrm{z}^{3}$, International Journal of Engineering and technology, vol. 4, issue. 5, 105-107 (SepOct 2018).
10. Gopalan. M. A., Sharadha kumar., On the non-homogeneous Ternary cubic equation $(x+y)^{2}-3 x y=12 z^{3}$., IJCESR, VOL.5., Issue. 1., 68-70 (2018).
11. Dr. R. Anbuselvi., R. Nandhini., Observations on the ternary cubic Diophantine equation $x^{2}+y^{2}-$ $x y=52 z^{3}$., International Journal of Scientific Development and Research Vol. 3., Issue., 8., August. 223225 (2018).
12. Gopalan. M.A., Vidhyalakshmi. S., Mallika. S., Integral solutions of $x^{3}+y^{3}+z^{3}=3 x y z+14(x+y) w^{3}$., International Journal of Innovative Research and Review, vol. 2., No.4, 18-22 (Oct-Dec 2014).
13. Priyadharshini. T, Mallika. S, Observation on the cubic equation with four unknowns $x^{3}+y^{3}+$ $(x+y)(x+y+1)=z w^{2}$ Journal of Mathematics and Informatics, Vol.10, page 57-65 (2017).
