THERMAL CONVECTION IN A VISCO-ELASTIC WALTER'S (MODEL-B) FLUID IN HYDROMAGNETICS THROUGH A POROUS MEDIUM

SUDHIR KUMAR PUNDIR
Department of Mathematics, S.D. (P.G.) College, Muzaffarnagar, U.P.-251001, India
Email: skpundir05@yahoo.co.in

RECEIVED : 23 July, 2021
In the present study, thermal convection of visco-elastic walter's (model-B) fluid in porous medium in hydromagnetics is considered. In this paper, we examined the nature of perturbation at the marginal state taking $P_{r}=0$. We have established variational principle in term of

Rayleigh number R and the solution of the problem gives the extremum value of R over all possible functions satisfying the boundary conditions. We have also discussed the stability of the fluid layers confined between free boundaries. We find the sufficient condition for stability
of the system is $R<\left[\frac{-R_{d} I_{1}+Q I_{3}}{a^{2}\left(I_{5}+a^{2} I_{6}\right)}, \frac{I_{1}+R_{d} F I_{1}+Q P_{2} I_{4}}{a^{2} P_{1} I_{4}}\right]$.
Fixing the values of parameters, Q, R_{d}, P_{1}, P_{2}, we determine the value of Rayleigh number R for frequency P and any value of the wave number a.

Keywords: Thermal convection, Walter's model-B fluid, hydromagnetics, porous medium.

2ntroduction

I
he theory of Bénard convection in viscous Newtonian fluid layer heated from below has been given by Chandrasekhar [1]. The instability problem of hydro magnetic viscous fluid has been studied by several researchers in past few decades. Through the discussion of the thermal instability of Maxwellian fluid in presence of magnetic field, Bhatia and Steiner [2] found that magnetic field has a stabilizing effect on visco-elastic fluid in the same way as for Newtonian fluid. The effect of transverse periodic variation of the permeability on the heat transfer has been studied by Singh et al [3]. They also studied the free convective flow of viscous incompressible fluid through a highly porous medium bounded by a vertical porous plate. A problem, governed by a coupled non-linear system of partial differential equation has been studied by Sounalgekar et al [4]. He have studied free convection flow of an
incompressible viscous dissipative fluid. Wilson and Rallison [5] illustrated the instability of channel flows of elastic liquids having continuously stratified properties. Jha [6] analyzed the effect of applied magnetic field on transient free convective flow in a vertical channel. Rangnathan and Govindarajan [7] have studied the stabilization and destabilization of channel flow by location of viscosity stratified fluid layer. Singh and Sharma [8] analyzed threedimensional free convective flow and heat transfer through a porous medium with periodic permeability. Batia and Mathur [9] discussed instability of visco-elastic superposed fluids in a vertical magnetic field through porous media. The fluids have been considered to be Newtonian or visco-elastic in all the above studies. Rhyzhov et al. [10] have studied instabilities in boundary-layer flows on a curved surface. Blanchette et al. [11] analyzed the stability of a stratified fluid with a vertically moving sidewall and shows the stability of uniform stratified fluid bounded by a sidewall moving vertically with constant velocity.

To the best of our knowledge, thermal convection of visco-elastic Walter's (Model B) fluid in porous medium in hydromagnetics is uninvestigated so far. Therefore, we have discussed the hydromagnetic instability of visco-elastic fluid Walters' (Model B) in porous medium. It can be looked upon as the extension of thermal instability of visco-elastic fluid layer in porous medium discussed by Rani [12] and Alam, Pundir [13].

Constitutive equations

W_{e} consider the stability of an incompressible finitely conducting visco-elastic fluid layer in a porous media in the presence of a vertical magnetic field. The fluid is taken to be statically non-homogenous confined between to horizontal boundaries and heated from below. Let T_{0} and T_{1} [with $T_{1}<T_{0}$] denote the uniform temperature of the lower and upper boundaries.

The stationary state of the system whose stability we wish to examine is given by following solutions of the basic conservation laws of the fluid flows:

$$
\begin{align*}
\boldsymbol{q} & =(0,0,0), \tag{1}\\
T & =T_{0}-\beta z ; \beta=\frac{T_{0}-T_{1}}{d}>0, \tag{2}\\
\rho & =\rho_{0}\left[e^{-\delta z}+\alpha\left(T_{0}-T_{1}\right)\right], \tag{3}\\
P & =P_{0}-g P_{0}\left[\frac{1}{\delta}\left(1-e^{\delta z}\right)+\frac{\alpha \beta z^{2}}{2}\right] \tag{4}\\
\boldsymbol{H} & =\left(0,0, \mathrm{H}_{0}\right) \tag{5}
\end{align*}
$$

where β is the uniform adverse temperature gradient maintained between the boundaries.
The equations of motion of Walters' (Model B) fluid in the porous medium in the presence of magnetic field are:

$$
\begin{equation*}
\rho\left[\frac{\partial \boldsymbol{q}}{\partial t}+(\boldsymbol{q} \cdot \nabla) \boldsymbol{q}\right]=-\nabla P+\boldsymbol{g} \rho \lambda-g \alpha \rho \theta+\frac{\mu}{4 \pi}(\nabla \times \boldsymbol{H}) \times \boldsymbol{H}-\frac{1}{k_{1}}\left(\mu-\mu^{\prime} \frac{\partial}{\partial t}\right) \boldsymbol{q} \tag{6}
\end{equation*}
$$

where $\boldsymbol{g}(0,0,-g)$ is the gravitational force per unit mass, P is pressure. \boldsymbol{H} is the magnetic field and k_{1} is the permeability of the porous medium.

The induction equations are,

$$
\begin{equation*}
\frac{\partial \boldsymbol{H}}{\partial t}=\nabla \times(\boldsymbol{q} \times \boldsymbol{H})+\nabla^{2} \boldsymbol{H}, \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \cdot \boldsymbol{H}=0 . \tag{8}
\end{equation*}
$$

The equation of continuity is

$$
\begin{equation*}
\nabla \cdot \boldsymbol{q}=0 \tag{9}
\end{equation*}
$$

The energy equation is,

$$
\begin{equation*}
\frac{\partial T}{\partial t}+(q \cdot \nabla) T=\kappa_{T} \nabla^{2} T \tag{10}
\end{equation*}
$$

$\mathcal{B}_{\text {asic state and perturbation equations }}$

To analyze the stability of the fluid layer, we perturbed the basic state of the fluid given by (1) to (5). Let the perturbed state of the fluid layer be given by,

$$
\begin{aligned}
& \mathbf{q}=(u, v, w), T^{\prime}=T_{0}-\beta z+\theta, \rho^{\prime}=\rho_{0}\left[e^{-\delta z}+\frac{\partial \rho}{\rho_{0}}+\alpha\left(T_{0}-T-\theta\right)\right], \\
& P^{\prime}=P+\delta P \quad \text { and } \quad \boldsymbol{H}=\left(h_{x}, h_{y}, H_{0}+h_{z}\right)
\end{aligned}
$$

where $(u, v, w) Q, \delta \rho, \delta P$ and $\left(h_{x}, h_{y}, h_{z}\right)$ are respectively, the perturbation is velocity, temperature, density, pressure and magnetic field. Substituting these variables in constitutive equations, we have the linearized perturbation equations as,

$$
\begin{align*}
& \rho \frac{\partial u}{\partial t}=\frac{\partial \delta P}{\partial x}-\frac{1}{k_{1}}\left(\mu-\mu^{\prime} \frac{\partial}{\partial t}\right) \mu+\frac{\mu}{4 \pi}\left[H_{z}\left(\frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}\right)\right] \tag{11}\\
& \rho \frac{\partial v}{\partial t}=\frac{\mu}{4 \pi}\left[\frac{\partial H_{x}}{\partial x}-\frac{\partial H_{x}}{\partial y}\right]-\frac{1}{k_{1}}\left(\mu-\mu^{\prime} \frac{\partial}{\partial t}\right) v \tag{12}\\
& \rho \frac{\partial w}{\partial t}=-\frac{\partial}{\partial z} \delta P-g \delta \rho-\frac{1}{k_{1}}\left(\mu-\mu^{\prime} \frac{\partial}{\partial t}\right) w \tag{13}\\
& \delta \rho=-\alpha \rho \theta \tag{14}\\
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \tag{15}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial H_{x}}{\partial t}=H_{0} \frac{\partial u}{\partial z}+\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) h_{x}, \tag{16}\\
& \frac{\partial H_{y}}{\partial t}=H_{0} \frac{\partial v}{\partial z}+\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) h_{y}, \tag{17}\\
& \frac{\partial H_{z}}{\partial t}=H_{0} \frac{\partial w}{\partial z}+\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) h_{z}, \tag{18}\\
& \frac{\partial H_{x}}{\partial x}+\frac{\partial H_{y}}{\partial y}+\frac{\partial H_{z}}{\partial z}=0 \tag{19}\\
& \text { and } \quad \frac{\partial \theta}{\partial t}+u \frac{\partial \theta}{\partial x}+v \frac{\partial \theta}{\partial y}+w \frac{\partial \theta}{\partial z}=\kappa\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \theta . \tag{20}
\end{align*}
$$

To discuss the stability of the fluid layer, we consider the perturbation to be two discuss the stability of the fluid layer, we consider the perturbation to be two-dimensional and therefore we can take the perturbation variables of the form,

$$
\begin{equation*}
f(x, y, z, t)=\sum_{k, n} \exp \cdot\left[i k_{x}+n t\right] \tag{21}
\end{equation*}
$$

where $f(z)$ is some regular function of z, representing the perturbation variables $f(x, y, z, t)$. In this, k is the wave number of n the complex growth rate of the perturbation modes. We substitute the complex growth rate of the perturbation equations (11) to (20) and then solve the resultant equations simultaneously. We have

$$
\begin{align*}
\rho n u & =-i k \delta P+\frac{\mu H_{0}}{4 \pi}\left[D h_{x}-i k h_{z}\right]-\frac{1}{k_{1}}\left(\mu-\mu^{\prime} n\right) u \tag{22}\\
\rho n v & =\frac{\mu H_{0}}{4 \pi} D h_{y}-\frac{1}{k_{1}}\left(\mu-\mu^{\prime} n\right) v, \tag{23}\\
\rho n w & =-D \delta P-g \delta \rho-\frac{1}{k_{1}}\left(\mu-\mu^{\prime} n\right) w, \tag{24}\\
\delta \rho & =-\alpha \rho \theta, \tag{25}\\
i k u+D w & =0 \quad \text { or, } \quad i k u=-D w, \tag{26}\\
n h_{x} & =H_{0} D u+\eta\left(D^{2}-k^{2}\right) h_{x} \tag{27}\\
n h_{y} & =H_{0} D v+\eta\left(D^{2}-k^{2}\right) h_{y} \tag{28}\\
n h_{z} & =H_{0} D w+\eta\left(D^{2}-k^{2}\right) h_{z} \tag{29}\\
i k h_{x} & +D h_{z}=0 \tag{30}
\end{align*}
$$

and $\quad n \theta-\kappa\left(D^{2}-k^{2}\right) \theta=\beta w$.
We substitute the values of h_{x} and $\delta \rho$ from the equations (30) and (25) into the equations (22) and (24), we get

$$
\begin{align*}
& i k \rho n u=k^{2} \delta P-\frac{\mu H_{0}}{4 \pi}\left[D^{2}-k^{2}\right] h_{z}-\frac{1}{k_{1}}\left(\mu-\mu^{\prime} n\right) i k u \tag{32}\\
& n \rho w=-D \delta P+g \alpha \rho \theta-\frac{1}{k_{1}}\left(\mu-\mu^{\prime} n\right) w . \tag{33}
\end{align*}
$$

We eliminate δP from the equations (32) and (33) by multiplying the equation (33) by k^{2} and differentiating the equation and adding, we get

$$
\begin{align*}
i k \rho n D u & =k^{2} D \delta P-\frac{\mu H_{0}}{4 \pi}\left[D^{2}-k^{2}\right] h_{z}-\frac{1}{\kappa}\left(\mu-\mu^{\prime} n\right) i k D u \\
k^{2} n \rho w & =-D \delta P k^{2}+g \alpha \rho \theta k^{2}-\frac{1}{\kappa_{1}}\left(\mu-\mu^{\prime} n\right) k^{2} w \\
n \rho\left[i k D u+k^{2} w\right] & =k^{2} g \alpha \rho \theta+\frac{\mu H_{0}}{4 \pi}\left(D^{2}-k^{2}\right) h_{z}-\frac{1}{k_{1}}\left(\mu-\mu^{\prime} n\right)\left(i k D u+k^{2} w\right) . \tag{34}
\end{align*}
$$

Eliminating u between the above equations (34) and (26), we get

$$
\begin{equation*}
\left[-n \rho-\frac{1}{k_{1}}\left(\mu-\mu^{\prime} n\right)\right]\left(D^{2}-k^{2}\right) w+H D\left(D^{2}-k^{2}\right) h_{z}=k^{2} g \alpha \rho \theta \tag{35}
\end{equation*}
$$

Now we have to solve the equations (35), (29) and (31) to determine the nature of the perturbations.

We now, non-dimensionalize the perturbation variables in the equations (35), (29) and (31) by taking the following transformations and dropping the *for convenience in writing,

$$
\begin{align*}
& D^{*}=d D, a=k d, P=\frac{n d^{2}}{v}, u^{*}=U v, w^{*}=U w, v=\frac{\mu}{\rho}, P_{1}=\frac{v}{\eta}, Q=\frac{H_{0}^{2} d^{2}}{\rho v^{2}} \\
& R_{d}=\frac{d^{2}}{k_{1}}, R=\frac{g \alpha \beta d^{4}}{k v}, \lambda^{*}=\frac{\lambda v}{d^{2}}, F=\frac{v^{\prime}}{d^{2}} \tag{36}
\end{align*}
$$

Where P_{1} is the Prandtl number, P_{2} is the magnetic Prandtl number, Q is the magnetic force number, R_{d} the porosity number, R the Rayleigh number, $\lambda *$ non-dimensional relaxation time and F elastic parameter.

Using the above transformations (36) in equations (35), (29) and (31), these equations become

$$
\left[-P-R_{d}(1-F P)\right]\left(D^{2}-a^{2}\right) w+Q D\left(D^{2}-a^{2}\right) h_{z}=k^{2} g \alpha \rho \theta \rho v d^{2}
$$

$$
\begin{equation*}
\left[-P-R_{d}(1-F P)\right]\left(D^{2}-a^{2}\right) w+Q D\left(D^{2}-a^{2}\right) h_{z}=a^{2} R \theta \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
\left(D^{2}-a^{2}-P_{1} P\right) \theta=-w \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(D^{2}-a^{2}-P_{2} P\right) h_{z}=-D w \tag{39}
\end{equation*}
$$

Sufficient condition for the stability of the system

To analyze the nature of the perturbation modes, we have to solve the eigen value problem consisting of equations (37) and (39) together with the boundary condition. Now, multiplying the equation (37) by w^{*} (complex conjugate of w), integrating the resultant equation over the interval $(0,1)$, we get,

$$
\begin{align*}
& \left.-\left[P+R_{d}(F P)-1\right)\right] \int_{0}^{1} w^{*}\left(D^{2}-a^{2}\right) w d z \\
& \quad+\int_{0}^{1} w^{*} D\left(D^{2}-a^{2}\right) h_{z} d z=a^{2} R \int_{0}^{1} w^{*} \theta d z
\end{align*}
$$

We express $G=\left(D^{2}-a^{2}\right) w$ and evaluate the above integrals using boundary condition,
we find that $\quad I_{1}=\int_{0}^{1}\left[|D w|^{2}+a^{2}|w|^{2}\right] d z$

$$
\begin{equation*}
I_{2}=\int_{0}^{1} D w^{*}\left(D^{2}-a^{2}\right) h_{z} d z \tag{41}
\end{equation*}
$$

Now, we take the complex conjugate of equation (39). We thus have

$$
\left(D^{2}-a^{2}-P_{2} P^{*}\right) h_{z}^{*}=-D w^{*} .
$$

Substituting this value of $-D w^{*}$ in (41), we have

$$
I_{2}=\int_{0}^{1}\left(D^{2}-a^{2}\right)^{2} h_{z} h_{z}^{*} d z-P_{2} P^{*} \int_{z}^{*} h_{z}^{*}\left(D^{2}-a^{2}\right) h_{z} d z
$$

Let

$$
M=\left(D^{2}-a^{2}\right) h_{z}, \text { then }
$$

$$
\begin{equation*}
I_{2}=I_{3}+P_{2} P^{*} I_{4} \tag{43}
\end{equation*}
$$

where, $I_{3}=\int_{0}^{1}|M|^{2} d z$, and $\left.I_{4}=\int_{0}^{1}\left|D h_{z}\right|^{2}+a^{2}\left|h_{z}\right|^{2}\right] d z$.
Now taking the complex conjugate of equation (38) and substituting the value of w^{*}, we have $\int_{0}^{1} w^{*} \theta d z=I_{5}+\left(a^{2}+P_{1} P^{*}\right) I_{6}$.
where, $\quad I_{5}=\int_{0}^{1}|D \theta|^{2} d z$ and $I_{6}=\int_{0}^{1}|\theta|^{2} d z$.

Substituting the values of the integrals $\int_{0}^{1} w^{*} \theta d z, I_{1}, I_{2}$ and I_{3} into the equation (40), we find the dispersion relation as

$$
\begin{equation*}
\left[P+R_{d}(F P-1)\right] I_{1}+Q\left(I_{3}+P_{2} P^{*} I_{4}\right)=a^{2} R\left[I_{5}+\left(a^{2}+P_{1} P^{*}\right) I_{6}\right] \tag{45}
\end{equation*}
$$

Now, P is the complex growth rate of the perturbations and so we can express $P=P_{r}+i P_{i}$. and taking the real part of this equation, we have

$$
P_{r}\left[I_{1}+R_{d} F I_{1}+Q P_{2} I_{4}-a^{2} R P_{1} I_{6}\right]=a^{2} R\left(I_{5}+a^{2} I_{6}\right)+R_{d} I_{1}-Q I_{3}
$$

Now, if $a^{2} R\left(I_{5}+a^{2} I_{6}\right)+R_{d} I_{1}-Q I_{3}<0$
or

$$
a^{2} R\left(I_{5}+a^{2} I_{6}\right)<-R_{d} I_{1}+Q I_{3}
$$

Or

$$
\begin{equation*}
R<\left[\frac{-R_{d} I_{1}+Q I_{3}}{a^{2}\left(I_{5}+a^{2} I_{6}\right)}\right] . \tag{46}
\end{equation*}
$$

or

$$
\begin{equation*}
R<\left[\frac{I_{1}+R_{d} F I_{1}+Q P_{2} I_{4}}{a^{2} P_{1} I_{6}}\right] \tag{47}
\end{equation*}
$$

Combining these two conditions (46) and (47), we see that sufficient condition for the stability of system is

$$
\begin{equation*}
R<\left[\frac{-R_{d} I_{1}+Q I_{3}}{a^{2}\left(I_{5}+a^{2} I_{6}\right)}, \frac{I_{1}+R_{d} F I_{1}+Q P_{2} I_{4}}{a^{2} P_{1} I_{6}}\right] . . \tag{48}
\end{equation*}
$$

MCarginal state of the system

We now proceed to examine the nature of the perturbations at the marginal state. We therefore take $P_{r}=0$ and so we can express $P=i P_{i},\left(P_{i}\right.$ is real) substituting this in the equation (45). We get

$$
\left[i P_{i}+R_{d}\left(F i P_{i}-1\right)\right] I_{1}+Q\left(I_{3}-P_{2} i P_{i} I_{4}\right)=a^{2} R\left[I_{5}+\left(a^{2}-i p_{i} P_{1}\right) I_{6}\right]
$$

Separating the real and imaginary parts of the above equations, we have the real part

$$
\begin{equation*}
R=\frac{-R_{d} I_{1}+Q I_{3}}{a^{2}\left(I_{5}+a^{2} I_{6}\right)} \tag{50}
\end{equation*}
$$

And from the imaginary part, we have

$$
\begin{align*}
& P_{i}\left[I_{1}+R_{d} F I_{1}-Q P_{2} I_{4}+a^{2} R P_{1} I_{6}\right]=0 \tag{51}\\
& \text { If } P_{i} \neq 0 \text {, then } a^{2} R P_{1} I_{6}=Q P_{2} I_{4}-I_{1}-R_{d} F I_{1} \tag{52}
\end{align*}
$$

Eliminating R between the equations (50) and (52), we get

$$
\begin{equation*}
Q P_{2} I_{4}-I_{1}-R_{d} F I_{1}-\frac{P_{1}\left(-R_{d} I_{1}+Q I_{3}\right)}{a^{2}\left(\frac{I_{5}}{I_{6}}+a^{2}\right)}=0 \tag{53}
\end{equation*}
$$

By fixing the values of non-dimensional parameter Q, R_{d}, P_{1}, P_{2} for any value of a and F, we calculate the value of P_{i} from the equation (53) as the root of the equation. Then with these values of P_{i} and a, we can find the value of R from the equation (50). We thus have a neutral mode.

$V_{\text {ariational principle }}$

. the solution of this problem. Proceeding as in the previous section, the equation (45) can be expressed as.

$$
\left[P+R_{d}(F P-1)\right] I_{1}+Q\left(I_{3}+P_{2} P^{*} I_{4}\right)=a^{2} R\left[I_{5}+\left(a^{2}+P_{1} P^{*}\right) I_{6}\right]
$$

Taking the complex conjugate of the above equation and adding into it, we get

$$
\begin{equation*}
R=\frac{I}{a^{2} J} \tag{54}
\end{equation*}
$$

where

$$
I=\left[P_{r}+R_{d}\left(F P_{r}-1\right)\right] I_{1}+Q\left[I_{3}+P_{2} P_{r} I_{4}\right] \text { and } J=I_{5}+\left(a^{2}+P_{1} P_{r}\right) I_{6}
$$

Let δR be the variation in R, when W is subjected to a small variation δW and $\delta G, \delta F, \Delta \theta$, $d h_{z}$ be the variations in G, F, q and h_{z}, respectively, consistent with the boundary conditions, i.e.,

$$
\begin{equation*}
\delta W=0, \delta \theta=0, \delta h_{z}=0, \delta G=0, \delta F=0 \text { at } z=0 \text { and } 1 \tag{55}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
\delta R=\frac{I}{a^{2} J}\left(\delta I-a^{2} R \delta J\right) \tag{56}
\end{equation*}
$$

Taking up the variation δI, we have

$$
\begin{align*}
& 2 \delta I=\left[P+R_{d}(F P-1)+P^{*}+R_{d}\left(F P^{*}-1\right) \delta I_{1}+Q\left[\delta I_{3}+P_{2}\left(P+P^{*}\right) I_{4}\right]\right. \tag{57}\\
& \text { and } \quad 2 \delta J=2 \delta I_{5}+\left(a^{2}+P_{1} P+a_{2}+P_{1} P^{*}\right) \delta I_{6} \tag{58}
\end{align*}
$$

We takes these variations one by one. Taking first the variation δI_{1} and δI_{2}, integrating this and using the boundary condition.
or

$$
\begin{align*}
I_{1} & =\int_{0}^{1} \delta\left[|D W|^{2}+a^{2}|W|^{2}\right] d z \\
\delta I_{1} & =-\int_{0}^{1}\left[\left(D^{2}-a^{2}\right) \delta W^{*} d z-\int_{0}^{1}\left(D^{2}-a^{2}\right) \delta W\right] W^{*} d z \tag{59}\\
\delta I_{3} & =\int_{0}^{1} \delta|M|^{2} d z \\
& =\int_{0}^{1} M \delta M^{*} d z+\int_{0}^{1} M^{*} \delta M d z \\
& \left.=\int_{0}^{1} M\left[\left(D^{2}-a^{2}\right)\right] \delta h_{z}^{*} d z+\int_{0}^{1} M^{*}\left[D^{2}-a^{2}\right)\right] \delta h_{z} d z \tag{60}
\end{align*}
$$

$$
\delta I_{4}=\int_{0}^{1}\left[\left|D H_{z}\right|^{2}+a^{2}\left|h_{z}\right|^{2} d z\right.
$$

or

$$
\left.\delta I_{4}=\int_{0}^{1}\left[D^{2}-a^{2}\right) h_{z}\right] \delta h_{z}^{*} d z-\int_{0}^{1}\left[\left(D^{2}-a^{2}\right) \delta h_{z}\right] \delta h_{z}^{*} d z
$$

$$
\delta I_{5}=\int_{0}^{1}|D \theta|^{2} d z
$$

or

$$
\begin{equation*}
\delta I_{5}=-\int_{0}^{1} D^{2} \delta \theta^{*} \theta d z-\int_{0}^{1} D^{2} \theta^{*} \delta \theta d z \tag{62}
\end{equation*}
$$

and $\quad \delta I_{6}=\int_{0}^{1} \delta|\theta|^{2} d_{z}=\int_{0}^{1} D^{2} \delta \theta^{*} \theta d z+\int_{0}^{1} D^{2} \theta^{*} \delta \theta d z$.
Substituting the values of variations form equations (59) to (63) into the equation (57) and (58), we get

$$
\begin{align*}
& \begin{array}{l}
2 \delta I=\int_{0}^{1}\left[-\left[P+R_{d}(F P-1)\right]\left(D^{2}-a^{2}\right) W\right] \delta W^{*} d z \\
\\
+Q \int_{0}^{1}\left[\left(D^{2}-a^{2}-P_{2} P^{*}\right) h_{z}^{*}\right]\left(D^{2}-a^{2}\right) h_{z} d_{z}
\end{array} \\
& \left.\left.+\int_{0}^{1} P+R_{d}(P F-1)\left(D^{2}-a^{2}\right) W^{*}\right] W d z+Q \int_{0}^{1}\left[D^{2}-a^{2}-P_{2} P\right) \delta h_{z}\right]\left(D^{2}-a^{2}\right) h_{z}^{*} d z \\
& \left.+\int_{0}^{1}-\left\{P+R_{d}(P F-1)\left(D^{2}-a^{2}\right) \delta W\right] W^{*} d z+Q \int_{0}^{1}\left[D^{2}-a^{2}-P_{2} P\right) h_{z}\right]\left(D^{2}-a^{2}\right) \delta h_{z} d z \\
& \left.+\int_{0}^{1}-\left\{P+R_{d}(P F-1)\left(D^{2}-a^{2}\right) \delta W^{*}\right] W d z+Q \int_{0}^{1}\left[D^{2}-a^{2}-P_{2} P\right) h_{z}\right]\left(D^{2}-a^{2}\right) \delta h_{z}^{*} d z
\end{align*}
$$

and $\quad 2 \delta j=-\int_{0}^{1}\left(D^{2}-a^{2}-P_{1} O\right) \theta \delta \theta^{*} d z-\int_{0}^{1}\left(D^{2}-a^{2}-P_{1} P\right) \delta \theta \theta^{*} d z$

$$
\begin{equation*}
-\int_{0}^{1}\left(D^{2}-a^{2}-P_{1} P^{*}\right) \theta^{*} \delta \theta d z-\int_{0}^{1}\left(D^{2}-a^{2}-P_{1} P^{*}\right) \delta \theta^{*} \theta d z . \tag{65}
\end{equation*}
$$

Substituting the values of δI and δJ from the equations (64) and (65) into the equation (56), we get

$$
\begin{equation*}
\delta R=\frac{1}{a^{2} J}\left[\delta A_{1}+\delta A_{1}^{*}+\delta A_{2}+\delta A_{2}^{*}\right], \tag{66}
\end{equation*}
$$

Where

$$
\begin{align*}
& \delta A_{1}=\int\left[-\left[P+R_{d}(F P-1)\right]\left(D^{2}-a^{2}\right) W\right] \delta W^{*} d z \\
& \quad+Q \int_{0}^{1}\left[\left(D^{2}-a^{2}-P_{2} P^{*}\right) \delta h_{z}^{*}\right]\left(D^{2}-a^{2}\right) h_{z} d z \\
& \quad+a^{2} R \int_{0}^{1}\left(D^{2}-a^{2}-P_{1} P^{*}\right) \theta \delta \theta^{*} d z \tag{67}
\end{align*}
$$

and

$$
\begin{align*}
& \delta A_{2}=\int_{0}^{1}\left[-\left[P+R_{d}(F P-1)\right]\left(D^{2}-a^{2}\right) \delta W\right] W^{*} d z \\
& +Q \int_{0}^{1}\left[\left(D^{2}-a^{2}-P_{2} P^{*}\right) h_{z}^{*}\right]\left(D^{2}-a^{2}\right) \delta h_{z} d z \\
& \quad+a^{2} R \int_{0}^{1}\left(D^{2}-a^{2}-P_{1} P^{*}\right) \theta^{*} \delta \theta d z \tag{68}
\end{align*}
$$

Let us first take up δA_{1}. For this taking the variation in δh_{z} and δW consistent equation (39), and taking its complex conjugate, we have

$$
\left(D^{2}-a^{2}-P_{2} P^{*}\right) \delta h_{z}^{*}=-D \delta W^{*}
$$

Now, multiplying the above equation with $\left(D^{2}-a^{2}\right) h_{z}$ and integrating, we have

$$
\begin{gather*}
\left.\left.\int_{0}^{1}\left[D^{2}-a^{2}-P_{2} P^{*}\right) \delta h_{z}^{*}\right]\left(D^{2}-a^{2}\right) h_{z} d z=-\int_{0}^{1} D \delta W^{*}\left[D^{2}-a^{2}\right) h_{z}\right] d z \\
=\int_{0}^{1}\left[D\left(D^{2}-a^{2}\right) h_{z}\right] \delta W^{*} d z \tag{69}
\end{gather*}
$$

Again taking the variation is δq and δW in equation (38) and taking its complex conjugate, we have

$$
\left(D^{2}-a^{2}-P_{1} P^{*}\right) \delta \theta=-\delta W^{*}
$$

Now multiplying the above equation with θ and integrating, we have

$$
\begin{equation*}
\left.\int_{0}^{1}\left[D^{2}-a^{2}-P_{2} P^{*}\right) \delta \theta^{*}\right] \theta d z=-\int_{0}^{1} \delta W^{*} \theta d z \tag{70}
\end{equation*}
$$

Using integrals (69) and (70) in δA_{1} equation (67), we get.

$$
\begin{equation*}
\delta A_{1}=\int_{0}^{1}-\left[P+R_{d}(P F-1)\right]\left(D^{2}-a^{2}\right) W+\left\{Q D\left(D^{2}-a^{2}\right) h_{z}-a^{2} R Q\right\} \delta W^{*} d z \tag{71}
\end{equation*}
$$

Similarly, for δA_{2} taking the complex conjugate of the equation (39), we have

$$
\left(D^{2}-a^{2}-P_{2} P^{*}\right) h_{z}^{*}=-D W^{*}
$$

Multiplying this equation with $\left(D^{2}-a^{2}\right) \delta h_{z}$ and integrating, we have

$$
\begin{align*}
\left.\int_{0}^{1}\left[D^{2}-a^{2}-P_{2} P^{*}\right) h_{z}^{*}\right] & \left(D^{2}-a^{2}\right) \delta h_{z} d z=-\int_{0}^{1} D W^{*}\left[D^{2}-a^{2}\right] \delta h_{z} d z \\
& =\int_{0}^{1}\left[D\left(D^{2}-a^{2}\right) \delta h_{z}\right] W^{*} d z \tag{72}
\end{align*}
$$

Using above integral into $\delta \mathrm{A}_{2}$ equation (68) we get.

$$
\begin{align*}
\delta A_{2}=\int_{0}^{1}[-\{P+ & \left.\left.R_{d}(P F-1)\right\}\left(D^{2}-a^{2}\right) \delta W+Q D\left(D^{2}-a^{2}\right) \delta h_{z}\right] W^{*} d z \\
+ & a^{2} R \int_{0}^{1}\left(D^{2}-a^{2}-P_{1} P^{*}\right) \theta^{*} \delta \theta d z \tag{73}
\end{align*}
$$

Taking the variation $\delta W, \delta h_{z}$ and $\delta \theta$ in equation (37), we have

$$
\begin{equation*}
\left[-\left\{P+R_{d}(P F-1)\right\}\left(D^{2}-a^{2}\right) \delta W+Q D\left(D^{2}-a^{2}\right) \delta h_{z}\right]=a^{2} R \delta \theta \tag{74}
\end{equation*}
$$

Using above variation (74) into the equation (73), we get

$$
\delta A_{2}=a^{2} R \int_{0}^{1}\left[W^{*}+\left(D^{2}-a^{2}-P_{1} P^{*}\right) \theta^{*}\right] \delta \theta d z
$$

From the equation (66), we have

$$
\begin{aligned}
\delta R & =\frac{1}{2 a^{2} J} \operatorname{Re}\left[\delta A_{1}+\delta A_{2}\right] \\
= & \frac{1}{2 a^{2} J}\left[\int_{0}^{1}-\left\{P+R_{d}(P F-1)\right\}\left(D^{2}-a^{2}\right) W+Q D\left(D^{2}-a^{2}\right) h_{z}-a^{2} R \vartheta\right] \delta W^{*} d z \\
& +a^{2} R \int_{0}^{1}\left\{W^{*}+\left(D^{2}-a^{2}-P_{1} P^{*}\right) \theta^{*}\right\} \delta \theta d z .
\end{aligned}
$$

Thus for the functions W, h_{z} and θ satisfying the equations (37) to (39) with boundary conditions, we see the $\delta R=0$. This proves the variational principle.

Solution of the problem for free boundaries

We consider the solution of the equations (37) to (39), when the boundaries at $z=0$ and 1 are free. We have established the variational principle in terms of Rayleigh number R and the solution of the given problem gives the extremum values of R over all possible functions satisfying the boundary conditions. We taken the function $W(z)$ as

$$
\begin{equation*}
W(z)=A \sin \pi z \tag{75}
\end{equation*}
$$

Substituting this value of $W(z)$ from above equation (75) into equation (38), we have

$$
\begin{equation*}
\left(D^{2}-a^{2}-P_{1} P\right) \theta=-A \sin \pi z \tag{76}
\end{equation*}
$$

Solving above equation (76) and using boundary conditions $\theta=0$ at $z=0$ and $z=1$, we have

$$
\begin{align*}
& \left(D^{2}-a^{2}-P_{1} P\right) \theta=-A \sin \pi z \\
& \theta=\frac{A \sin \pi z}{\left(\pi^{2}+a^{2}+P_{1} P\right)}=\frac{A \sin \pi z}{C_{0}} \tag{77}
\end{align*}
$$

where

$$
C_{0}=\left(\pi^{2}+a^{2}+P_{1} P\right)
$$

Again substituting the value of $W(z)$ from the equation (75) into the equation (39), we have

$$
\begin{equation*}
\left(D^{2}-a^{2}-P_{2} P\right) h_{z}=-A \pi \cos \pi z \tag{78}
\end{equation*}
$$

Solving the above equation (78) and using boundary conditions $D h_{z}=0$ at $z=0$ and 1 , we have
where,

$$
\begin{equation*}
h_{z}=\frac{A \pi \cos \pi z}{\pi^{2}+a^{2}+P_{2} P}=\frac{A \pi \cos \pi z}{D_{0}} \tag{79}
\end{equation*}
$$

Substituting the values $W(z), \theta(z)$ and $h(z)$ from the equations (75), (77) and (79) into the equation (37), we get

$$
\begin{equation*}
\left[\left\{P+R_{d}(P F-1)\right\}\right] C_{1} \sin \pi z+\frac{Q \pi^{2} C_{1}}{D_{0}} \sin \pi z=\frac{a^{2} R}{C_{1}+P_{1} P} \sin \pi z \tag{80}
\end{equation*}
$$

where

$$
C_{1}=\pi^{2}+a^{2}
$$

Multiplying above equation (80) by $\sin \pi z$ and integrating from $z=0$ to $z=1$, we get the dispersion relation as

$$
\begin{equation*}
\left[\left\{P+R_{d}(P F-1)\right\}\right] C_{1}+\frac{Q \pi^{2} C_{1}}{C_{1}+P_{2} P}=\frac{a^{2} R}{C_{1}+P_{1} P} \tag{81}
\end{equation*}
$$

At the marginal state, $P_{r}=0$ and so we express $P=I p$. Substituting this in equation (81), we have

$$
\begin{equation*}
\left[\left\{i P+R_{d}(i P F-1)\right\}\right] C_{1}+\frac{Q \pi^{2} C_{1}\left(C_{1}-i P_{2} P\right)}{C_{1}^{2}+P_{2}^{2} P^{2}}=\frac{a^{2} R\left(C_{1}-i P_{1} P\right)}{C_{1}^{2}+P_{1}^{2} P^{2}} \tag{82}
\end{equation*}
$$

Separating the real and imaginary parts of the above equation (82), we have the real part as

$$
\begin{equation*}
-R_{d} C_{1}+\frac{Q \pi^{2} C_{1}}{C_{1}^{2}+P_{2}^{2} P^{2}}=\frac{a^{2} R}{C_{1}^{2}+P_{1}^{2} P^{2}} \tag{83}
\end{equation*}
$$

And imaginary part

$$
\begin{equation*}
P_{i}\left[C_{1}+R_{d} F C_{1}+\frac{Q \pi^{2} P_{2} C_{1}}{C_{1}^{2}+P_{2}^{2} P^{2}}-\frac{a^{2} R P_{1}}{C_{1}^{2}+P_{1}^{2} P^{2}}\right]=0 . \tag{84}
\end{equation*}
$$

Eliminating the term between the equations (83) and (84), we have

$$
\begin{equation*}
P_{i}\left[C_{1}+\frac{Q \pi^{2} C_{1}\left(P_{2}-P_{1}\right)}{C_{1}^{2}+P_{2}^{2} P^{2}}+C_{1} R_{d}\left(F+P_{1}\right)\right]=0 \tag{85}
\end{equation*}
$$

If $P_{i} \neq 0$, then we have

$$
\left[C_{1}+\frac{Q \pi^{2} C_{1}\left(P_{2}-P_{1}\right)}{C_{1}^{2}+P_{2}^{2} P^{2}}+C_{1} R_{d}\left(F+P_{1}\right)\right]=0 .
$$

From equation (83), we get the value of R as

$$
\begin{equation*}
R=\frac{C_{1}^{2}+P_{2}^{2} P^{2}}{a^{2}}\left[-R_{d} C_{1}+\frac{Q \pi^{2} C_{1}}{C_{1}^{2}+P_{2}^{2} P^{2}}\right] \tag{86}
\end{equation*}
$$

Now, we have fix the values of physical parameters Q, R_{d}, P_{1}, P_{2} and then take the value of the wave number a and F, calculate the value of P from the equation (85) as its roots and then with these values of a and P, calculate R from (86). In this way we get the relation between R and a. The minimum value of R is the critical wave number a_{c} and wave frequency P_{c} for the fixed values of non-dimensional numbers.

Conclusion:

We have discussed the stability of the fluid layers confined between free boundaries.
We find the sufficient condition for stability of the system is

$$
\begin{equation*}
R<\left[\frac{-R_{d} I_{1}+Q I_{3}}{a^{2}\left(I_{5}+a^{2} I_{6}\right)}, \frac{I_{1}+R_{d} F I_{1}+Q P_{2} I_{4}}{a^{2} P_{1} I_{4}}\right] \tag{87}
\end{equation*}
$$

Fixing the values of parameters, Q, R_{d}, P_{1}, P_{2}, we determine the value of Rayleigh number R for frequency P and any value of the wave number a.

References

1. Chandrasekhar, S. : Dover Publication, New York.
2. Bhatia, P.K. and Stenier, J.M. : J. Math. Anal and Appl., 41, 271 (1973).
3. Singh, K.D. and Verma, G.N. : ZAMM, 75, 950 (1955).
4. Soundalgekar V.M., Lahurika R.M. and Pohanerkar, S.G. : Int. J. Heat Mass Transfer, 32, 301 (1997).
5. Wilson, H. and Rallison, J.J. : Non-Newtonian Fluid Mech., 85, 273 (1999).
6. Jha, B. : Indian J. Pure and Appl. Maths, 29 (4), 441 (1998).
7. Ranganthan, B. and Govindarajan, R. :Phy. Fluids., 13, 1 (2001).
8. Singh, K.G. and Sharma, R. : Indian J. Pure and Appl. Math., 33 (6), 941 (2002).
9. Bhatia, P.K. and Mathur, R.P. : Ganita Sandesh, 17, 21 (2003).
10. Rhyzhov, O. and Bogdanova, V. : J. Fluid Mech, 546, 395 (2006).
11. Blanchette, F., Peacock, T. and Gousin, R. : J. Fluid Mech., 609, 305 (2008).
12. Rani, A. : Ph.D. Thesis, C.C.S. University, Meerut (1998).
13. Alam, A., Pundir, S. and Pundir, R. : International journal of Engineering, Iran (2009).
