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In the present study, thermal convection of visco-elastic 

walter's (model-B) fluid in porous medium in 

hydromagnetics is considered. In this paper, we examined 

the nature of perturbation at the marginal state taking 

0rP  . We have established variational principle in term of 

Rayleigh number R and the solution of the problem gives 

the extremum value of R over all possible functions 

satisfying the boundary conditions. We have also 

discussed the stability of the fluid layers confined between 

free boundaries. We find the sufficient condition for stability 

of the system is 1 3 1 1 2 4
2 2 2

5 6 1 4

,
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d dR I QI I R FI QP I
R

a I a I a PI

    
  

  

. 

Fixing the values of parameters, Q, Rd, P1, P2, we 

determine the value of Rayleigh number R for frequency P 

and any value of the wave number a. 

Keywords: Thermal convection, Walter's model-B fluid, 

hydromagnetics, porous medium. 

INTRODUCTION 

The theory of Bénard convection in viscous Newtonian fluid layer heated from below 

has been given by Chandrasekhar [1]. The instability problem of hydro magnetic viscous fluid 

has been studied by several researchers in past few decades. Through the discussion of the 

thermal instability of Maxwellian fluid in presence of magnetic field, Bhatia and Steiner [2] 

found that magnetic field has a stabilizing effect on visco-elastic fluid in the same way as for 

Newtonian fluid. The effect of transverse periodic variation of the permeability on the heat 

transfer has been studied by Singh et al [3]. They also studied the free convective flow of 

viscous incompressible fluid through a highly porous medium bounded by a vertical porous 

plate. A problem, governed by a coupled non-linear system of partial differential equation has 

been studied by Sounalgekar et al [4]. He have studied free convection flow of an 
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incompressible viscous dissipative fluid. Wilson and Rallison [5] illustrated the instability of 

channel flows of elastic liquids having continuously stratified properties. Jha [6] analyzed the 

effect of applied magnetic field on transient free convective flow in a vertical channel. 

Rangnathan and Govindarajan [7] have studied the stabilization and destabilization of channel 

flow by location of viscosity stratified fluid layer. Singh and Sharma [8] analyzed three-

dimensional free convective flow and heat transfer through a porous medium with periodic 

permeability. Batia and Mathur [9] discussed instability of visco-elastic superposed fluids in a 

vertical magnetic field through porous media. The fluids have been considered to be 

Newtonian or visco-elastic in all the above studies. Rhyzhov et al. [10] have studied 

instabilities in boundary-layer flows on a curved surface. Blanchette et al. [11] analyzed the 

stability of a stratified fluid with a vertically moving sidewall and shows the stability of 

uniform stratified fluid bounded by a sidewall moving vertically with constant velocity. 

To the best of our knowledge, thermal convection of visco-elastic Walter’s (Model B) 

fluid in porous medium in hydromagnetics is uninvestigated so far. Therefore, we have 

discussed the hydromagnetic instability of visco-elastic fluid Walters’ (Model B) in porous 

medium. It can be looked upon as the extension of thermal instability of visco-elastic fluid 

layer in porous medium discussed by Rani [12] and Alam, Pundir [13]. 

CONSTITUTIVE EQUATIONS 

We consider the stability of an incompressible finitely conducting visco-elastic fluid 

layer in a porous media in the presence of a vertical magnetic field. The fluid is taken to be 

statically non-homogenous confined between to horizontal boundaries and heated from below. 

Let T0 and T1 [with T1 < T0] denote the uniform temperature of the lower and upper 

boundaries. 

The stationary state of the system whose stability we wish to examine is given by 

following solutions of the basic conservation laws of the fluid flows:   

    q = (0, 0, 0), ...(1) 

    0 1
0 ; 0

T T
T T z

d


     , ...(2) 

    0 0 1( ) ,ze T T     
 

 ...(3) 

    
2

0 0

1
(1 )

2

z z
P P gP e

 
    

  

 ...(4) 

and    H = (0, 0, H0). ...(5) 

where  is the uniform adverse temperature gradient maintained between the boundaries. 

The equations of motion of Walters’ (Model B) fluid in the porous medium in the 

presence of magnetic field are:  
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1

1
( . ) ( )

4
P g

t k t

     
                    

q
q q g H H q  ... (6) 

where g(0, 0, -g) is the gravitational force per unit mass, P is pressure. H is the magnetic field 

and k1 is the permeability of the porous medium. 

The induction equations are, 

    2( ) ,
t


   



H
q H H  ... (7) 

and    . 0. H  ... (8) 

The equation of continuity is 

    . 0. q  ... (9) 

The energy equation is, 

    2( . ) T

T
q T T

t


    


 ... (10)  

BASIC STATE AND PERTURBATION EQUATIONS 

To analyze the stability of the fluid layer, we perturbed the basic state of the fluid given 

by (1) to (5). Let the perturbed state of the fluid layer be given by, 

    q = (u, v, w), 0 ,T T z      0 0
0

( ) ,ze T T 
       

 
 

   P P P      and    H = (hx, hy, H0 + hz), 

where (u, v, w) Q, , P and (hx, hy, hz) are respectively, the perturbation is velocity, 

temperature, density, pressure and magnetic field. Substituting these variables in constitutive 

equations, we have the linearized perturbation equations as, 

   
1

1

4

x z
z

H Hu P
H

t x k t z x

        
         

         
, ... (11) 

   
1

1
,

4

x xH Hv
v

t x y k t

     
       

      
 ... (12) 

   
1

1
,

w
P g w

t z k t

   
        

   
 ...(13) 

      , ...(14) 

   0,
u v w

x y z

  
  

  
 ... (15) 
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          

, ... (16) 
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 ... (17) 
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0 2 2 2
,z

z

H w
H h

t z x y z

     
          

 ... (18) 

   0
yx z

HH H

x y z

 
  

  
 ... (19) 

and    
2 2 2

2 2 2
u v w

t x y z x y z

       
                

. ... (20) 

To discuss the stability of the fluid layer, we consider the perturbation to be two discuss 

the stability of the fluid layer, we consider the perturbation to be two-dimensional and 

therefore we can take the perturbation variables of the form, 

   f (x, y, z, t) 
,

exp.[ ]x

k n

ik nt   ... (21) 

where f(z) is some regular function of z, representing the perturbation variables f (x, y, z, t). In 

this, k is the wave number of n the complex growth rate of the perturbation modes. We 

substitute the complex growth rate of the perturbation equations (11) to (20) and then solve the 

resultant equations simultaneously. We have  

   0

1

1
[ ] ( ) ,

4
x z

H
nu ik P Dh ikh n u

k


       


 ... (22) 

   0

1

1
( ) ,

4
y

H
nv Dh n v

k


   


 ...(23) 

   
1

1
( ) ,n w D P g n w

k
        ...(24) 

         , ...(25) 

    0iku Dw     or,     iku Dw  , ...(26) 

      
2 2

0 ( ) ,x xnh H Du D k h    ... (27) 

     
2 2

0 ( ) ,y ynh H Dv D k h    ... (28) 

   
2 2

0 ( ) ,z znh H Dw D k h    ...(29) 

   0x zikh Dh   ... (30) 
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and   2 2( ) .n D k w      ...(31) 

We substitute the values of hx and  from the equations (30) and (25) into the equations 

(22) and (24), we get 

   2 2 20

1

1
[ ] ( )

4
z

H
ik nu k P D k h n iku

k


      


 ...(32) 

and   
1

1
( ) .n w D P g n w

k
        ... (33) 

We eliminate P from the equations (32) and (33) by multiplying the equation (33) by k
2
 

and differentiating the equation and adding, we get 

     2 2 20 1
[ ] ( )

4
z

H
ik nDu k D P D k h n ikDu


      

 
  

        2 2 2 2
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1
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
     

 2 2 2 2 20

1

1
[ ] ( ) ( )( ).

4
z

H
n ikDu k w k g D k h n ikDu k w

k


       


 ...(34)

 

Eliminating u between the above equations (34) and (26), we get 

   
2 2 2 2 2

1

1
( ) ( ) ( ) .zn n D k w HD D k h k g

k

 
        

 
 ...(35) 

Now we have to solve the equations (35), (29) and (31) to determine the nature of the 

perturbations. 

We now, non-dimensionalize the perturbation variables in the equations (35), (29) and 

(31) by taking the following transformations and dropping the *for convenience in writing, 

 

2 22
0

1 2
* , , , * , * , , ,

H dnd
D dD a kd P u Uv w Uw P Q

v

 
        

    

 

2 4

2 2
1

, , * ,d

d g d v
R R F

k k d d

 
    


 ... (36) 

Where P1 is the Prandtl number, P2 is the magnetic Prandtl number, Q is the magnetic 

force number, Rd the porosity number, R the Rayleigh number, *  non-dimensional 

relaxation time and F elastic parameter. 

Using the above transformations (36) in equations (35), (29) and (31), these equations 

become 

  
2 2 2 2 2 2[ (1 )]( ) ( )d zP R FP D a w QD D a h k g d          
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2 2 2 2 2[ (1 )]( ) ( ) ,d zP R FP D a w QD D a h a R         ...(37) 

    
2 2

1( )D a P P w      ...(38) 

and                  
2 2

2( ) .zD a P P h Dw     ...(39) 

SUFFICIENT CONDITION FOR THE STABILITY OF THE SYSTEM 

To analyze the nature of the perturbation modes, we have to solve the eigen value 

problem consisting of equations (37) and (39) together with the boundary condition. Now, 

multiplying the equation (37) by w*(complex conjugate of w), integrating the resultant 

equation over the interval (0, 1), we get,  

    
1 2 2

0
( ) 1) *( )dP R FP w D a wdz     

    
1 12 2 2

0 0
* ( ) *zw D D a h dz a R w dz     . ...(40) 

We express 
2 2( )G D a w   and evaluate the above integrals using boundary condition, 

we find that 
1 2 2 2

1 0
| | | |I Dw a w dz  
   ....(41) 

   
1 2 2

2 0
*( ) .zI Dw D a h dz   ... (42) 

Now, we take the complex conjugate of equation (39). We thus have 

    
2 2 * *

2( *) .zD a P P h Dw     

Substituting this value of –Dw
*
in (41), we have 

    
1 *2 2 2 * * * 2 2

2 20
( ) ( ) .z z z zz

I D a h h dz P P h D a h dz       

 Let   
2 2( ) ,zM D a h   then 

    
*

2 3 2 4 ,I I P P I   ... (43) 

where, 
1 2

3 0
| |I M dz  , and 

1 2 2 2
4 0

| | | | ] .z zI Dh a h dz   

Now taking the complex conjugate of equation (38) and substituting the value of w
*
, we 

have 
1 * 2 *

5 1 60
( )w dz I a P P I    . ...(44) 

where,      
1 2

5 0
| |I D dz   and  

1 2
6 0

| |I dz  . 
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Substituting the values of the integrals 
1

1 20
* , ,w dz I I  

and 3I  into the equation (40), we 

find the dispersion relation as 

   
* 2 2 *

1 3 2 4 5 1 6[ ( 1)] ( ) [ ( ) ]dP R FP I Q I P P I a R I a P P I        ...(45) 

Now, P is the complex growth rate of the perturbations and so we can express 

.r iP P iP  and taking the real part of this equation, we have 

   
2 2 2

1 1 2 4 1 6 5 6 1 3[ ] ( ) .r d dP I R FI QP I a RP I a R I a I R I QI        

 Now, if 
2 2

5 6 1 3( ) 0da R I a I R I QI      

or   
2 2

5 6 1 3( ) da R I a I R I QI    . 

Or    1 3

2 2
5 6( )

dR I QI
R

a I a I

  
  

  

. ... (46) 

and if,   
2

1 1 2 4 1 6 0dI R FI QP I a RP I    . 

   
2

1 6 1 1 2 4da RP I I R FI QP I   . 

or    1 1 2 4

2
1 6

dI R FI QP I
R

a P I

  
  
  

. ...(47) 

Combining these two conditions (46) and (47), we see that sufficient condition for the 

stability of system is 

    1 3 1 1 2 4

2 2 2
5 6 1 6

, .
( )

d dR I QI I R FI QP I
R

a I a I a P I

    
  

  

. ...(48) 

MARGINAL STATE OF THE SYSTEM 

We now proceed to examine the nature of the perturbations at the marginal state. We 

therefore take 0rP  and so we can express ,iP iP  ( iP  is real) substituting this in the 

equation (45). We get 

   
2 2

1 3 2 4 5 1 6[ ( 1)] ( ) [ ( ) ]i d i i iiP R FiP I Q I P iPI a R I a ip P I        ...(49) 

Separating the real and imaginary parts of the above equations, we have the real part 

   1 3

2 2
5 6( )

dR I QI
R

a I a I

 



. ... (50) 

And from the imaginary part, we have 
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2

1 1 2 4 1 6[ ] 0i dP I R FI QP I a RP I     ...(51) 

 If 0iP  , then 
2

1 6 2 4 1 1.da RP I QP I I R FI    ... (52) 

Eliminating R between the equations (50) and (52), we get 

   1 1 3
2 4 1 1

2 25

6

( )
0.d

d

P R I QI
QP I I R FI

I
a a

I

 
   

 
 

 

 ...(53) 

By fixing the values of non-dimensional parameter Q, Rd, P1, P2 for any value of a and F, 

we calculate the value of Pi from the equation (53) as the root of the equation. Then with these 

values of Pi and a, we can find the value of R from the equation (50). We thus have a neutral 

mode. 

VARIATIONAL PRINCIPLE 

In this section, we shall establish variational principle in terms of Rayleigh number for 

the solution of this problem. Proceeding as in the previous section, the equation (45) can be 

expressed as. 

  
* 2 2 *

1 3 2 4 5 1 6[ ( 1)] ( ) [ ( ) ].dP R FP I Q I P P I a R I a P P I        

Taking the complex conjugate of the above equation and adding into it, we get 

    
2

,
I

R
a J

  ...(54) 

where 1 3 2 4[ ( 1)] [ ]r d r rI P R FP I Q I P P I      and 
2

5 1 6( ) .rJ I a P P I     

Let R be the variation in R, when W is subjected to a small variation W  and G, F, , 

dhz be the variations in G, F, q and hz, respectively, consistent with the boundary conditions, 

i.e., 

   W = 0,  = 0,  hz = 0, G = 0,  F = 0 at z = 0 and 1. ...(55) 

Now we have 

   
2

2
( ).

I
R I a R J

a J
      ... (56) 

Taking up the variation I, we have 

   
* *

12 [ ( 1) ( 1)d dI P R FP P R FP I         
*

3 2 4[ ( ) ]Q I P P P I     ...(57) 

and   2J = 2I5 + (a
2
 + P1P + a2+P1P

*
)I6 ... (58)
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We takes  these variations one by one. Taking first the variation I1 and I2, integrating 

this and using the boundary condition. 

   
1 2 2 2

1 0
[| | | | ]I DW a W dz    

or   
1 12 2 * 2 2 *

1 0 0
[( ) ( ) ] .I D a W dz D a W W dz          ...(59) 

   
1 2

3 0
| |I M dz     

                
1 1* *

0 0
M M dz M Mdz      

           
1 12 2 * * 2 2

0 0
[( )] [ )]z zM D a h dz M D a h dz         

or   
1 12 2 2 * 2 2 2 *

3 0 0
[( ) ] [( ) ] .z z z zI D a h h dz D a h h dz          ... (60) 

   
1 2 2 2

4 0
[| | | |z zI DH a h dz    

or   
1 12 2 * 2 2 *

4 0 0
[ ) ] [( ) ] .z z z zI D a h h dz D a h h dz          ... (61) 

   
1 2

5 0
| |I D dz    

or   
1 12 * 2 *

5 0 0
I D dz D dz          ... (62) 

and   
1 1 12 2 * 2 *

6 0 0 0
| | zI d D dz D dz            . ... (63) 

Substituting the values of variations form equations (59) to (63) into the equation (57) and 

(58), we get 

  
1 2 2 *

0
2 [ [ ( 1)]( ) ]dI P R FP D a W W dz        

    
1 2 2 * * 2 2

20
[( ) ]( )z z zQ D a P P h D a h d     

  

1 2 2 *

0
( 1)( ) ]dP R PF D a W Wdz   

1 2 2 2 2 *
20

[ ) ]( )z zQ D a P P h D a h dz      

  
1 2 2 *

0
]{ ( 1)( )dP R PF D a W W dz     

1 2 2 2 2
20

[ ) ]( )z zQ D a P P h D a h dz      

  
1 2 2 *

0
{ ( 1)( ) ]dP R PF D a W Wdz     

1 2 2 2 2 *
20

[ ) ]( )z zQ D a P P h D a h dz      

     ... (64) 

and   
1 12 2 * 2 2 *

1 10 0
2 ( ) ( )j D a P O dz D a P P dz            

    
1 12 2 * * 2 2 * *

1 10 0
( ) ( ) .D a P P dz D a P P dz            ...(65) 
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Substituting the values of I and J from the equations (64) and (65) into the equation 

(56), we get  

   * *
1 1 2 22

1
[ ],R A A A A

a J
          ...(66) 

 Where   2 2 *
1. 1 ( )dA P R FP D a W W dz            

    
1 2 2 * * 2 2

20
[( ) ]( )z zQ D a P P h D a h dz       

     
12 2 2 * *

10
( )a R D a P P dz        ...(67) 

and    
1 2 2 *

2 0
( 1) ( )dA P R FP D a W W dz       

   

    
1 2 2 * * 2 2

20
[( ) ]( )z zQ D a P P h D a h dz      

     
12 2 2 * *

10
( ) .a R D a P P dz         ...(68) 

Let us first take up A1. For this taking the variation in hz and W consistent equation 

(39), and taking its complex conjugate, we have 

    
2 2 * * *

2( ) zD a P P h D W       

Now, multiplying the above equation with (D
2
 – a

2
)hz and integrating, we have  

   
1 12 2 * * 2 2 * 2 2

20 0
[ ) ]( ) [ ) ]z z zD a P P h D a h dz D W D a h dz          

 

    
1 2 2 *

0
[ ( ) ] .zD D a h W dz    ...(69) 

Again taking the variation is q and W in equation (38) and taking its complex 

conjugate, we have 

    
2 2 * *

1( )D a P P W      

Now multiplying the above equation with  and integrating, we have 

   
1 12 2 * * *

20 0
[ ) ]D a P P dz W dz          ... (70) 

Using integrals (69) and (70) in A1 equation (67), we get. 

     
1 2 2 2 2 2 *

1 0
1 ( ) ( ) .d zA P R PF D a W QD D a h a RQ W dz              ...(71) 

Similarly, for A2 taking the complex conjugate of the equation (39), we have 

    
2 2 * * *

2( ) .zD a P P h DW     

Multiplying this equation with (D
2
 – a

2
) hz and integrating, we have 
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1 12 2 * * 2 2 * 2 2

20 0
[ ) ]( ) [ ]z z zD a P P h D a h dz DW D a h dz         

                 
1 2 2 *

0
[ ( ) ] .zD D a h W dz    ...(72) 

Using above integral into A2 equation (68) we get. 

     
1 2 2 2 2 *

2 0
1 ( ) ( )d zA P R PF D a W QD D a h W dz          

    

              
12 2 2 * *

10
( ) .a R D a P P dz      ...(73) 

Taking the variation W, hz and  in equation (37), we have 

      2 2 2 2 21 ( ) ( ) .d zP R PF D a W QD D a h a R          
 

 ...(74) 

Using above variation (74) into the equation (73), we get 

    
12 * 2 2 * *

2 10
( ) .A a R W D a P P dz       

    

From the equation (66), we have 

        1 22

1
Re

2
R A A

a J
      

           
1 2 2 2 2 2 *

2 0

1
1 ( ) ( )

2
d zP R PF D a W QD D a h a R W dz

a J

          
     

      
12 * 2 2 * *

10
( ) .a R W D a P P dz       

Thus for the functions W, hz and  satisfying the equations (37) to (39) with boundary 

conditions, we see the R = 0. This proves the variational principle. 

SOLUTION OF THE PROBLEM FOR FREE BOUNDARIES 

We consider the solution of the equations (37) to (39), when the boundaries at z = 0 and 

1 are free. We have established the variational principle in terms of Rayleigh number R and 

the solution of the given problem gives the extremum values of R over all possible functions 

satisfying the boundary conditions. We taken the function W (z) as 

    W (z) = A sinz. ...(75) 

Substituting this value of W(z) from above equation (75) into equation (38), we have 

   
2 2

1( ) sinD a P P A z       ... (76) 

Solving above equation (76) and using boundary conditions  = 0 at z = 0 and z = 1, we 

have 
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2 2

1( ) sinD a P P A z        

    
2 2

01

sin sin

( )

A z A z

Ca P P

 
  

  
 ... (77) 

where   2 2
0 1( )C a P P     

Again substituting the value of W(z) from the equation (75) into the equation (39), we 

have 

   
2 2

2( ) coszD a P P h A z       ... (78) 

Solving the above equation (78) and using boundary conditions Dhz = 0 at z = 0 and 1, we 

have 

           
2 2

02

cos cos
z

A z A z
h

Da P P

   
 
  

 ... (79) 

where,          
2 2

0 2D a P P    . 

Substituting the values W(z), (z) and h(z) from the equations (75), (77) and (79) into the 

equation (37), we get 

    
2 2

1
1

0 1 1

( 1) sin sin sind

Q C a R
P R PF C z z z

D C P P


         

 ... (80) 

where         
2 2

1C a     

Multiplying above equation (80) by sin z and integrating from  z = 0 to z =1, we get the 

dispersion relation as 

    
2 2

1
1

1 2 1 1

( 1)d

Q C a R
P R PF C

C P P C P P


       

 ... (81) 

At the marginal state, Pr = 0 and so we express P = Ip. Substituting this in equation (81), 

we have 

    
2 2

1 1 2 1 1
1 2 2 2 2 2 2

1 2 1 1

( ) ( )
( 1)d

Q C C iP P a R C iP P
iP R iPF C

C P P C P P

  
     

 
. ... (82) 

Separating the real and imaginary parts of the above equation (82), we have the real part 

as 

   
2 2

1
1 2 2 2 2 2 2

1 2 1 1

d

Q C a R
R C

C P P C P P


  

 
 ...(83) 

And imaginary part 
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2 2

2 1 1
1 1 2 2 2 2 2 2

1 2 1 1

0i d

Q P C a RP
P C R FC

C P P C P P

 
    

   

. ... (84) 

Eliminating the term between the equations (83) and (84), we have 

   
2

1 2 1
1 1 12 2 2

1 2

( )
( ) 0i d

Q C P P
P C C R F P

C P P

  
    

  

. ...(85) 

If 
0iP

, then we have 

   
2

1 2 1
1 1 12 2 2

1 2

( )
( ) 0d

Q C P P
C C R F P

C P P

  
    

  

.  

From equation (83), we get the value of R as 

   
2 2 2 2
1 2 1

12 2 2 2
1 2

d

C P P Q C
R R C

a C P P

  
   

  

. ... (86) 

Now, we have fix the values of physical parameters Q, Rd, P1, P2 and then take the value 

of the wave number a and F, calculate the value of P from the equation (85) as its roots and 

then with these values of a and P, calculate R from (86). In this way we get the relation 

between R and a. The minimum value of R is the critical wave number ac and wave frequency 

Pc for the fixed values of non-dimensional numbers. 

CONCLUSION : 

We have discussed the stability of the fluid layers confined between free boundaries. 

We find the sufficient condition for stability of the system is  

   1 3 1 1 2 4

2 2 2
5 6 1 4

,
( )

d dR I QI I R FI QP I
R

a I a I a P I

    
  

  

. ...(87) 

Fixing the values of parameters, Q, Rd, P1, P2, we determine the value of Rayleigh 

number R for frequency P and any value of the wave number a. 
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