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In the present paper, Rayleigh-Taylor instability of visco-

elastic (Rivlin-Ericksen) dusty plasma in the presence of 

magnetic field through a porous medium is considered. 

Following the linearized perturbation theory and normal 

mode technique, the dispersion relation is obtained. The 

system is found to be always stable for 1 > 2 and 

unstable for  1 < 2 under certain conditions. The case of 

exponentially varying density, viscosity, visco-elasticity, 

magnetic field and particles number density is also 

considered. For  < 0, the system is found to be stable 

always. For  < 0 the non- oscillatory modes are always 

stable and estimate of n for the growth rate of oscillatory 

stable modes are given by 
2| | .

D
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B
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INTRODUCTION 

Chandrasekhar [1] has discussed the theoretical and experimental results on the onset of 

thermal instability in a fluid layer under varying assumption of hydrodynamics. Further 

Rayleigh-Taylor instability of two viscous superposed conducting fluid in presence of a 

uniform horizontal magnetic field has been considered by Bahtia [2]. Sisodia and Gupta [3] 

and Sriratava and Singh [4] have studied the unsteady flow of a dusty Visco-elastic (Rivlin-

Ericksen) fluid through channel of different cross-section in the presence of the time-

dependent pressure gradient.  

While discussing the problem of Rayleigh-Taylor instability of viscous; visco-elastic 

fluids through porous medium Sharma and Kumar [5] found that as in both Newtonian 

viscous, visco-elastic fluids, the system is stable for a potentially stable case and unstable for 

potential unstable case. Kumar [6] have studied the problem of Rayleigh-Taylor instability of 

Rivlin-Eriksen elastico-viscous fluid in the presence of suspended particles through porous 
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medium. Kumar [7] has studied the stability of superposed viscous, visco-elastic (Rivlin-

Ericksen) fluid in the presence of suspended particles through porous medium. It is found that 

the presence of magnetic field stabilizes for a certain wave number, whereas the system is 

unstable for all wave number in the absence of magnetic field for the potentially unstable 

configuration. 

With the growing importance of non-Newtonian fluids in the modern technology and 

industries, the investigations of such fluids are desirable. Rivlin-Ericksen [8] is an important 

class of visco-elastic fluids. Khan and Bhatia [9] have considered the problem of stability of 

two superposed visco-elastic fluids in the presence of a horizontal magnetic field and found 

that elasticity has stabilizing effect and viscosity has a destabilizing effect on the growth rate 

of unstable mode of disturbances. Kumar and Lal [10] have studied the stability of two 

superposed Rivlin-Ericksen viscous, visco-elastic fluids and found that both kinematic 

viscosity and kinematic visco-elasticity have stabilizing effect. The problem of instability of 

two rotating visco-elastic (Rivlin-Ericksen) superposed fluids with suspended particles in 

porous medium has been discussed by Kumar, Lal and Sharma [11]. They have found that 

system is stable for potentially stable configuration and unstable for potentially unstable 

configuration. Sengupta and Basak [12] have studied the stability of two superposed visco-

elastic (Maxwell) fluids in a verticals magnetic field. They have found that both viscosity and 

visco-elasticity of fluid have stabilizing influence while medium permeability has mostly 

destabilizing effect on the growth rate of unstable mode of disturbances.  

Rivlin-Ericksen visco-elastic fluid plays a significant role industrial application. In view 

of the fact that hydro magnetic stability of stratified Rivlin-Ericksen visco-elastic in the 

presence of suspended particles through porous medium may find application in modern 

technology. This topic has been studied by several researchers. However, hydrodynamic 

stability of stratified Rivlin-Ericksen visco-elastic fluid in presence of suspended particles 

through porous medium seems uninvestigated so far. 

CONSTITUTIVE EQUATIONS 

Consider a static state of a fluid in which an incompressible, visco-elastic (Rivlin-

Ericksen) fluid layer of variable density is arranged in horizontal strata. The particles of the 

fluid are assumed to be non-conducting. This fluid particle layer is assumed to be flowing 

through an isotropic and homogeneous porous medium of porosity  and medium 

permeability k1. The pressure p and density  are functions of the vertical co-ordinate z only. 

The fluid is under the action of gravity g (0, 0, –g) and the variable horizontal magnetic field 

H (H (z), 0, 0).  

Let p and q (u, v, w) denote respectively the density, pressure, viscosity, 

viscoelasticity and the velocity of the hydromagnetic fluid, qd (x, t ) and N (x, t) denote the 
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velocity and number density  of particles, respectively x = (x, y, z), K = 6, where  is the 

particle radius, is a constant. Then the equations of motion and continuity for the (Rivlin–

Ericksen) fluid are, 
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The equations of motion for continuity for the particles are, 
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where mN  is the mass of the particles per unit volume.  

BASIC STATE AND PERTURBATION EQUATIONS 

The time independent solution of equation (1) to (7), whose stability we wish to 

examine is that of an incompressible, visco-elastic (Rivlin–Ericksen) fluid of variable density 

arranged in a horizontal strata in a homogeneous isotropic porous medium. In the undisturbed 

state, the fluid is at rest and magnetic field acts in the vertical direction (z-direction), therefore 

the basic state of which we wish to examine the stability is characterized by, 

   q (0, 0, 0), qd = (0, 0, 0), H = (H(z), 0, 0),  = (z), p = p(z) ... (8) 

To examine the character of equilibrium the system is slightly perturbed. Here, we 

assume that the small disturbances are the functions of space and time variables. Hence, the 

perturbed flow may be represented as: 

   q = (0, 0, 0) + (u, v, w), qd = (0, 0, 0) + (l, r, s), h  = (H(z), 0, 0)  

                      + (hx, hy, hz),   = (z) +p = p(z) +  p           ... (9) 
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where q(u, v, w), qd(l, r, s), h (hx, hy, hz), p denote respectively the perturbations in fluid 

velocity q(0, 0, 0), particles velocity qd (0, 0, 0), magnetic field H(H, 0, 0), density  and 

pressure  p. Using equation (9) into governing equation (1) to (7) and linearizing them, we 

have 
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In addition to equations (1) to (4), we have the equation 

            .w D
t


    


 ... (15) 

which ensure that the density of every particle remains unchanged as it travel with its motion. 

 Applying the normal mode technique to analyze the perturbation we seek solutions 

whose dependence on x, y and t is given by,  

    exp   x yi k x k y nt   ... (16) 

where kx and ky are the horizontal components of the wave number, k = 2 2
x yk k  is the 

resultant wave number and n is the growth rate, which is, in general, a complex constant. 

In the considered form of the perturbations in equation (16), equations (10) to (15) gives, 
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             ikx u +iky v + D w = 0, ... (20) 
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Multiplying equations (17) by ikx and (18) by iky and then adding, we get 
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Multiplying equation (19) by k
2
, we get 
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Now, on subtracting equation (27) from equation (26), we obtain 
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ANALYTICAL DISCUSSION 

(a) Two Uniform Fluids Separated by a Horizontal Boundary 

Consider the case when two superposed fluids of uniform density  1 and 2, uniform 

viscosities 1 and 2 uniform visco-elasticities 1'  and 2' , magnetic fields H1 and H2 

separated by a horizontal boundary at z = 0, subscript 1 and 2 distinguish the lower and upper 

fluids, respectively. Then each region of constant  and H, equation (28) reduces to  

    (D
2
 – k

2
 ) w = 0. ... (29) 

The general solution of equation (29) is 
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    w = Be
kz 

+ Be
–kz 

. ... (30) 

where A and B are arbitrary constants. 

The boundary conditions to be satisfied are:  

The velocity w should vanish when z   (for the lower fluid) on and z   for 

(i) upper fluid. 

(ii) w (z) is continuous at z = 0. 

(iii) The pressure should be continuous across the interface. 

Applying the boundary conditions (i) and (ii) to (30), we have 

    w1 = Ae
kz

              (z < 0) ... (31) 

and    w2 = Ae
–kz

              (z > 0) ... (32) 

The same constant A being chosen to ensure the continuity at z = 0. Thus continuity of 

pressure implies that 
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Applying the conditions (31) and (32), to the solutions of (33), we obtain 
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Theorem–1: The system is stable under the condition  1 >  2.  

Proof: If  1 >  2, then for the potentially stable case,  1 >  2 and equation (35) does not 

involve any change of sign and so does not allow any positives roots. Therefore, the system is 

stable. 
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Theorem–2: The system is stable under the condition 1<, provided 

2 2

2 12 ( ).x Ak V gk    

Proof: If 1 > 2, then for the potentially stable case, 1 < 2 and if 2 2

2 12 ( )x Ak V gk   , 

then equation (35) does not admit any change of sign and therefore does not allow any 

positive value of n. Therefore, the system is unstable. 

Theorem–3: The system is unstable under the conditions  < provided that if 
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Proof: If 
2 2

2 12 ( )x Ak V gk   , then the constant term in the equation (35) is negative, 

therefore allow one change of sign and so has at most one positive root. The occurrence of a 

positive root implies that the system is unstable. 

(a) The Case of Exponentially Varying Density, Viscosity, Visco-elasticity, 

Magnetic Field and Particles Number Density 

Let us assume that 
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where 0, N0, 0, 0' , m0, H0 and  all are constants. Equation (36) shows that the coefficient 

of kinematic visco-elasticity v and the Alfven velocity VA are constant everywhere. 

Substituting the values of , H
2 
(z) and N in equation (36), we obtain 
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Consider the case of two free boundaries. The boundary conditions for the case of two 

free surfaces are 

   w = 0, D
2
w = 0 at z = 0 and z = d. ... (38) 

The proper solution of equation (37) satisfying conditions (38) is given by 
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where A is a constant and m is any integer. Using equation (39), (37) gives 
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Theorem–4: For  < 0 the system is always stable. 

Proof: For the stable stratification ( < 0), equation (40) does not admit any positive 

value of n and so the system is stable for disturbances of all wave numbers. 

Theorem–5: For   > 0 the system is stable or unstable according as 
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, then equation (40) does not allow any positive 

value of n and so that the system is always stable for disturbances of all wave number. On the 

other hand, if 
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 then the constant term in (40) is negative. Therefore allow one 

change of sign and so has one positive root. The occurrence of a positive root implies that the 

system is unstable. 

In the absence of magnetic field, the system is clearly unstable for  > 0. However, the 

system can be completely stabilized by a magnetic field 
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The discussion below is divided into two sections. Section-I deals with the oscillatory 

(ni 0) modes and section-2 deals with the non-oscillatory modes (ni = 0). 

Section – 1 Discussion of Oscillatory Modes 

Equation (40) can be written as 
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Theorem-6: For  < 0 the estimate of n of the growth rate of oscillatory stable mode are 

given by 
2| | .

D
n

B
  

Proof: If  < 0 then the value of D is definite positive. B is also positive. Since the modes 

are oscillatory, i.e. 0in   , If nr is negative (for stable mode), then for the consistency of (43), 

we must have. 
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  Hence, for  < 0 the estimate of n for the growth rate of oscillatory 

stable modes are given by 
2| | .

D
n

B
  

Theorem -7:  < 0 the estimate of n for the growth rate of oscillatory unstable modes are 

given by 
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Proof: If  < 0 then the value of D is positive definite. Since the modes are oscillatory, 

i.e., 0in  . If nr is positive (for unstable mode), then for the consistency of (43), we must 

have 
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positive, since the modes are oscillatory, ( 0in  ) and stable (nr negative) and nr is positive 

(for unstable mode). Then for the consistency of (43) and under the conditions  > 0, and 
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Section- 2 Discussion of Non-oscillatory Modes 

For non-oscillatory modes, we must have ni = 0, then equation (41) becomes 

    A 3 2 0,r r rn Bn Cn D     ... (44) 
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Theorem–9: For  < 0, the non-oscillatory modes are always stable. 

Proof: If  < 0, equation (44) does not involve any change of sign and therefore does not 

any positive roots. Therefore, the non-oscillatory modes are stable for all wave numbers 

according to the given condition. 

Theorem–10: For  > 0, the non-oscillatory modes are stable under the condition 
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Proof: For  > 0 and 
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, then equation (44) does not involve any change of 

sign and therefore does not allow any positive root. Therefore, the non-oscillatory modes are 

stable. 

Theorem–11: For  < 0, then non-oscillatory modes are unstable if 
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Proof: For  < 0,  
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,then the value of D is definite negative. 

Therefore equation (44) involves at least one change of sign, so (44) has at least one 

positive root, which implies the non-oscillatory modes are unstable. 

Theorem – 12: For  > 0 and 
2
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, there are wave propagating for a given 

wave number (Two damped and one amplified). 

Proof: The roots of the equation (44) are 
1 2 3
, ,r r rn n n then using the theory of equation, we 

get 
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, then D is definite negative. Also, A and B are positive definite, 

so that the product of the roots is positive and the sum of the roots is negative. Therefore the 

possibility that all the three non-oscillatory modes can be unstable, ruled out. It follow that 

two waves of propagation are damped and one is amplified for a given wave number. 

CONCLUSION : 

In the present paper, the Rayleigh-Taylor instability of visco-elastic, (Rivlin-Ericksen) 

dusty fluid in the presence of magnetic field through porous medium is considered. Following 
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the linearized perturbation theory and normal mode analysis, the dispersion relation is 

obtained. The system is found to be always stable for 1 > 2 and unstable for 1 < 2 under 

certain conditions. The case of exponentially varying density, viscosity, visco-elasticity, 

magnetic field and particles number density is also considered. For  < 0, the system is found 

to be stable always. For  < 0 the non- oscillatory modes are always stable and estimate of n 

for the growth rate of oscillatory stable modes are given by 
2| | .

D
n

B
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