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Thermal instability of Rivlin-Ericksen elastico-viscous fluid 

in hydro magnetic field has been studied by various 

researchers. With the developing significance of non-

Newtonian fluid in contemporary day-era and industries the 

investigations on continuously stratified visco-elastic fluid 

in presence of magnetic field in porous medium are 

desirable. In the present paper, thermal instability of 

continuously stratified visco-elastic Maxwell fluid in a 

porous medium in the presence of magnetic field is 

considered. Following linearized perturbation theory and 

normal mode technique, the dispersion relation is obtained. 

The system is found stable everywhere in flow domain if 

R < 0 and (D < 0. The non-oscillatory modes are 

unstable if (D > 0 everywhere in flow domain under the 

certain conditions. Oscillatory modes are stable if R < 0 

and (D > 0 under certain conditions. 

Keywords: Thermal instability, Stratified visco-

elastic fluids, Maxwell fluid, Magnetic field, Porous 

medium. 

INTRODUCTION 

A detailed account of thermal instability in fluids and stability of superposed fluids 

under varying assumptions of hydrodynamic and hydromagnetics has been given by 

Chandrasekhar [1]. An authoritative to this fascinating subject has been discussed in detail in 

the celebrated monograph by Rosensweig [2]. This review several applications of heat transfer 

through ferromagnetic fluids. One such phenomenon is enhanced by convective cooling 

having a temperature dependent magnetic moment due to magnetization of the fluid. He 

showed magnetization in general, is the function of magnetic field, temperature and density of 

the fluid. Sharma and Kumar [3] have studied the thermal instability of Rivlin-Ericksen 

elastico-viscous fluid in hydromagnetics whereas the thermal convection in Rivlin-Ericksen 
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visco-elastic fluid in porous medium in hydromagnetics has been studied by Sharma and 

Kango [4]. Sharma and Sharma [5] have studied the thermal instability in a Maxwellian visco-

elastic fluid in porous medium. It is found that for stationary convection, Maxwellian fluid 

behaves like a Newtonian fluid and critical Rayleigh number increase with the increase in 

magnetic field and rotation. 

The problem of thermaosolutal instability of a Oldroydian visco-elastic fluid in porous 

medium has been discussed by Sharma and Bhardwaj [6]. They found that stable solute 

gradient and rotation has a stabilizing effect on the system. Sharma and Kumar [7] have 

investigated the problem of thermal convection in Oldroydian visco-elastic fluid in porous 

medium. 

The problem of thermosolutal instability of Rivlin-Ericksen visco-elastic fluid mixture in 

porous medium in the presence of magnetic field is discussed by Pundir [8]. Kumar and Lal 

[9] studied thermal instability of Walters’ B visco-elastic fluid permeated with suspended 

particles under the effect of hydromagnetic field in porous medium. Kumar and Mohan [10] 

have investigated the effect of magnetic field on thermal instability of a rotating Rivlin-

Ericksen visco-Elasitc fluid. 

Now, it would be much interest to examine the thermal instability of continuously 

stratified visco-elastic Maxwell fluid in porous medium in presence of magnetic field. This 

topic seems to be uninvestigated so far. Various instability problems of such fluids have 

growing importance in modern technology and industry, geophysics and bio-mechanics. 

CONSTITUTIVE EQUATIONS 

The basic equations are, 
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and                    . 0 H  ... (7)
 

where   is the medium porosity, kT is the thermal conductivity of the fluid, and 1 0T T

d


   is 

the magnitude of uniform temperature gradient which is maintained and is positive as the 

temperature increases upward and T0 are respectively the density and the temperature at the 

lower boundary z = 0. 

BASIC STATE AND PERTURBATION EQUATIONS 

The time independent solution of equation (1) to (7), whose stability we wish to 

examine is that of an incompressible, electrically conducting, Maxwell visco-elastic fluid of 

varying density and variable viscosity arranged in horizontal strata in a homogeneous and 

isotropic porous medium. The system is acted upon by a uniform horizontal magnetic field H 

(H, 0, 0), a temperature T and gravity field g (0, 0, –g). The character of equilibrium is 

examined by supposing that the system is slightly disturbed and then by following its further 

evolution. 

Let , p  , q (u, v, w),   and h (hx, hy, hz) denote respectively the perturbations in 

density  , pressure p, velocity (0, 0, 0), temperature T and the magnetic field H (H, 0, 0). 

Then the linearized perturbation equations are,  
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Equation (13) results from the fact that the density of every fluid particle remains 

unchanged during its motion. 

Analyzing the perturbations into normal modes, we seek solutions, whose dependence on 

x, y and t is given by 
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Where kx and ky are horizontal wave numbers, 2 2
x yk k k    is the resultant wave 

number and n is complex in general. 

With this dependence of perturbation, equations (8) to (17) reduce to  
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and             
2 2( )z znh HDw D k h   . ... (28) 

On adding equations (19) and (20) after multiplying by kx and ky respectively, we have, 
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Now subtracting equation (21), after multiplying it by k
2
, from equation (29), we have 
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Further, equation (22) can be rewritten as 
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Now, using the non-dimensional quantities defined by 
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Multiplying equation (32) by w*, integrating over the range of z and using equation (33), 

we have 
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Integrals I1, I2, I3, I4 and I5 are positive definite and I2 is definitely positive or negative 

according as D  is everywhere positive or everywhere negative. Further, equation (34) can 

also be written as 
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ANALYTICAL DISCUSSION 

Depending upon various physical parameters, we obtain below a number of results 

stating clearly the role of these parameters. 

Theorem-1. If R < 0 and (D  ) < 0 everywhere in the flow domain, then the system is 

stable. 

Proof: Observe that if R < 0 and (D  ) < 0 everywhere in the flow domain, then equation 

(35) does not allow any positive value of  . Neither it allows  to be zero, so that  can 

take only negative values, implying thereby that the system is stable. 

This result being independent of magnetic field, hold even in the absence of magnetic 

field. 

Theorem-2. If R < 0 and (D  ) > 0 everywhere in the flow domain, then the system is 

stable. Under the condition 
2 2
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Proof: Assuming that if R < 0 and (D  ) > 0 everywhere in the flow domain, then the 

stability of the system is ensured under the condition 
2 2

1 1 2xQa I R a I  

Theorem-2 ensures the stability of the system under the condition. 
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Thus given any unstable disturbance (hence any unstable wave number), a suitable 

magnetic force number Q can be obtained which will stabilize this disturbance. However, 

instability might occur when Q < Q*, though, we are unable to prove the instability in general 

when Q < Q*. Following two theorems are important in as much as they provide the instability 

of non-oscillatory modes and the number of stable and unstable modes under this condition. 

DISCUSSION OF NON-OSCILLATORY MODES 

Theorem -3: The non-oscillatory modes (if exist) are unstable when (D  ) > 0 

everywhere in the flow domain provided 
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Proof: For non-oscillatory modes we have i = 0. Then equation (35) reduces to  
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Equation (36) is a cubic equation in r  and if 1 2 3, ,r r r    are the roots of this equation, 

if follows that the product of the roots become positive under the conditions (D  ) > 0 and

2
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 . Therefore, either-all three roots are positive or else one root is positive and 

two roots are negative. In both the situations, system becomes unstable. It follows that the 

non-oscillatory modes if exist under the conditions of theorem, are unstable. 

It is important to observe that the instability of non-oscillatory modes is independent of 

whether R is positive or negative. Theorem (4) below, however, holds only when R< 0. 

Theorem–4: If R < 0, there are three waves propagating for a given wave number: two 

damped and one amplified, under the conditions   (D  ) > 0 and 
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Proof: Let the roots of the equation (36) be ri  = 1, 2, 3. Then using the theory of 

equations we get 

    1 2 3. .r r r  
D

A
  (Positive) 

and              1 2 3r r r     
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 , then both A and B become positive definite so 

that the product of the roots is positive and the sum of the roots is negative. Therefore the 

possibility that all three non-oscillatory modes can be unstable is ruled out. It follows that two 

waves of propagation are damped and one is amplified for a given wave number. 

Remark: In the absence of temperature effect (R = 0), equation (35) does not allow 

instability of non-oscillatory modes, If exist. Therefore, the temperature effects either induce 

instability of non-oscillatory modes or else there is no possibility of such modes to exist in the 

system. The possibility of the existence of non-oscillatory modes requires further 

investigations which are being undertaken. 

Theorem 5: Unstable modes, if exist under the conditions R < 0 and (D  ) > 0 and X > Y 

everywhere in the flow domain, are non-oscillatory.  
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Proof: The imaginary part of equation (35), taken after its division by , is given by 
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Let the modes be unstable so that r  > 0, then for the consistency of equation (37) i

must be equal to zero, which ensure the existence of non-oscillatory modes. Hence unstable 

modes; if exist under the conditions R < 0, X > Y, and (D  ) > 0 everywhere in the flow 

domain, are non-oscillatory. 

Theorem–6: Oscillatory modes, if exist under the conditions R < 0, X > Y and D  > 0 are 

stable, where X and Y are defined above. 

Proof: For oscillatory modes 0i  . Then for unstable modes r < 0 so 2LI1 r is 

negative therefore for consistency of equation (37) we have X > Y; R < 0 and (D  ) > 0. 
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Theorem 7: If the unstable modes exist under the conditions R < 0, (D  )> 0 and X < Y, 

then the bounds on r  for these unstable modes, are given by
2

r

y

L
  . 

Proof: For oscillatory modes ( 0), 0i r     then 2 0rL   therefore for the 

consistency of equations (37) we must have 2L r  – Y < 0 or
2

r

Y

L
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CONCLUSION : 

Thermal instability of Rivlin-Ericksen elastico-viscous fluid in hydromagnetic field has 

been studied by Sharma and Kumar [3]. With the growing importance of non-Newtonian fluid 

in modern technology and industries the investigations on continuously stratified visco-elastic 

fluid in presence of magnetic field in porous medium are desirable. In the present paper, 

thermal instability of continuously stratified visco-elastic Maxwell fluid in a porous medium 

in the presence of magnetic field is considered. Following linearized perturbation theory and 

normal mode technique, the dispersion relation is obtained. The system is found stable 

everywhere in flow domain if R < 0 and (D  ) < 0. The non oscillatory modes are unstable if 

(D  ) > 0 everywhere in flow domain under the certain conditions. Oscillatory modes are 

stable if R < 0 and (D  ) > 0 under certain conditions. 
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