SOME CHARACTERISTIC PROPERTIES OF FUZZY IDEALS ON A BCH-ALGEBRA

SHILPA KUMARI

shilparakhie@gmail.com

RECEIVED : 2 April, 2021

In this paper we have established some characteristic properties of fuzzy ideals on some specific extended BCH- algebras.

Key words:- Fuzzy Ideal, BCH-algebra, Disjoint Elements.

Introduction

Definition (1.1): (a) A system (X; *, 0) consisting of a non-empty set X, a binary operation '*' and a fixed element 0 is called a BCH-algebra [3] if the following conditions are satisfied:

(BCH1)
$$x * x = 0$$

(BCH2) $x * y = 0 = y * x \Rightarrow x = y$
(BCH3) $(x * y) * z = (x * z) * y$

for all $x, y, z \in X$.

(b) If in addition to (BCH1), (BCH2), (BCH3) the condition

(BCH4) 0 * x = 0, for all $x \in X$

is also satisfied then (X; *, 0) is a positive BCH-algebra.

Definition (1.2):- A pair $\{x, y\}$ of distinct elements of X is said to be mutually disjoint [7] if x * y = x and y * x = y.

Now we mention some extensions of BCH-algebras which appear in [4] from a given BCH-algebra as follows:

Theorem (1.3):- Let (X; *, 0) be a BCH-algebra and $t \notin X$. Let $Y = X \cup \{t\}$.

We define a binary operation ' \otimes ' in Y as

$$x \otimes y = x * y$$
 if $x, y \in X$,

...(1.1)

PCM0210140

$$x \otimes t = x$$
 for $x \neq 0$; $x \in X$ and $t \otimes x = t$; $x \in X$, ...(1.2)

$$0 \otimes t = t, \ t \otimes 0 = t, \ t \otimes t = 0 \qquad \dots (1.3)$$

Then $(Y; \otimes, 0)$ is a BCH-algebra iff X is a positive BCH-algebra.

Corollary (1.4):- In case X is not a positive BCH-algebra then taking $0 \otimes t = 0$ in (1.3), $(Y; \otimes, 0)$ becomes a BCH-algebra.

Theorem (1.5):- Every BCH-algebra (X; *, 0) with a pair of non-zero mutually disjoint elements u and v can be extended to a BCH-algebra $Y = X \cup \{b\}, b \notin X$ under the binary operation ' \otimes ' defined as

$$x \otimes y = x * y$$
 if $x, y \in X$, ...(1.4)

$$x \otimes b = x$$
 if $x \neq u, x \neq v, x \in X$, ...(1.5)

$$u \otimes b = b$$
 and $v \otimes b = 0$, ...(1.6)

$$0 \otimes b = 0, \ b \otimes 0 = b, \ b \otimes b = 0, \qquad \dots (1.7)$$

$$b \otimes u = 0$$
, $b \otimes y = b$, $y \neq u$...(1.8).

Theorem (1.6):- Let (X; *, 0) be a BCH-algebra and let $Y = X \times X$. For $u, v \in Y$ with $u = (x_1, x_2)$, $v = (y_1, y_2)$ a binary operation '③' is defined in Y as

$$u \odot v = (x_1 * y_1, x_2 * y_2) \qquad \dots (1.9)$$

where $x_1, x_2, y_1, y_2 \in X$. Further we put $\tilde{0} = (0, 0)$.

Then $(Y; \bigcirc, \tilde{0})$ is a BCH-algebra.

Definition (1.7):- A fuzzy set in X is a function

$$\mu: \mathbf{X} \to [0, 1].$$

Definition (1.8):-A fuzzy subset μ of a BCH-algebra X is said to be a fuzzy ideal of X if it satisfy:

$$\mu(0) \ge \mu(x)$$
 for all $x \in X$

 $\mu(x) \ge \min \{ \mu(x * y), \mu(y) \}$ for all $x, y \in X$.

Example (1.9) :- Let 0 < c < 1. Then every constant function with value c is a fuzzy ideal of X.

Some results on fuzzy ideals on BCH-ALGEBRA

Demma (2.1):- If μ is a fuzzy ideal on BCH-algebra X then $x \le y \Rightarrow \mu(y) \le \mu(x)$.

Acta Ciencia Indica, Vol. XLVI-M, No. 1 to 4 (2020)

Proof :- We have $x \le y \Rightarrow x * y = 0$.

Now $\mu(x) \ge \min \{\mu(x * y), \mu(y)\} = \min \{\mu(0), \mu(y)\} = \mu(y)$

 $\Rightarrow \mu(y) \le \mu(x).$

Theorem (2.2) :- Let μ be a fuzzy set defined on a BCH-algebra X such that $\mu(0) \ge \mu(x)$ for all $x \in X$. Then μ is a fuzzy ideal on X iff for all $x, y, z \in X$ with (x * y) * z = 0,

 $\mu(x) \ge \min \{ \mu(y), \mu(z) \}$ satisfied.

Proof:- Let μ be a fuzzy ideal on X. Then

$$\mu(x * y) \ge \min \{\mu((x * y) * z), \mu(z)\}$$

= min{\mu(0), \mu(z)}
= \mu(z).

Again since $(x * y) * z = 0 \implies (x * z) * y = 0$, we get

 $\mu(x * z) \geq \mu(y),$

Now

 $\mu(x) \ge \min \{ \mu(x * z), \mu(z) \}.$

If
$$\mu(x * z) \le \mu(z)$$
 then $\mu(x) \ge \mu(x * z) \ge \mu(y)$.

If $\mu(x * z) \ge \mu(z)$ then $\mu(x) \ge \mu(z)$. Combining these facts we get

 $\mu(x) \ge \min\{\mu(y), \mu(z)\}.$

Conversely, suppose that the given condition is satisfied.

```
We put z = x * y.

Then (x * y) * z = 0.

So \mu(x) \ge \min{\{\mu(y), \mu(z)\}}

= \min{\{\mu(y), \mu(x * y)\}}.
```

Hence μ be a fuzzy ideal.

Theorem (2.3):- Let μ be a fuzzy ideal on BCH-algebra X. For any $t \notin X$, let $Y = X \cup \{t\}$. Let Y be extended BCH-algebra with binary operation ' \otimes ' as given in theorem (1.3). Then μ can be extended to a fuzzy ideal μ^1 defined on Y as $\mu^1(x) = \mu(x)$ if $x \in X$ and $\mu^1(t) = \min\{\mu(x); x \in X\}$.

Proof :- For $x, y \in X$ we have nothing to prove. We take a point as t and other as $x \in X$.

Since $\mu^1(x \otimes t) = \mu^1(x) = \mu(x)$,

we have min { $\mu^{1}(x \otimes t), \mu^{1}(t)$ } = $\mu^{1}(t),$

So $\mu^{1}(x) \ge \min \{ \mu^{1}(x \otimes t), \mu^{1}(t) \} = \mu^{1}(t)$ is satisfied.

Now min { μ^1 ($t \otimes x$), $\mu^1(x)$ } = min { $\mu^1(t)$, $\mu^1(x)$ } = $\mu^1(t)$

Also $\{\mu^1 (t \otimes t), \mu^1(t)\} = \{\mu^1 (0), \mu^1(t)\} = \mu^1(t)$

So $\mu^1(x) \ge \min \{ \mu^1(x \otimes t), \mu^1(t) \}$ and $\mu^1(t) \ge \min \{ \mu^1(t \otimes x), \mu^1(x) \}$ are satisfied. Hence μ^1 is a fuzzy ideal on Y.

Definition (2.4):- Let X be a non- empty set and let μ be a fuzzy set in X. We consider the Cartesian product $X \times X$. Different types of fuzzy sets can be defined on $X \times X$. Let μ_1 , μ_2 , μ_3 , μ_4 and μ_5 be fuzzy sets defined on $X \times X$ as follows:

For any $x, y \in X$, we define

(a)
$$\mu_1(x, y) = \mu(x)$$
 ... (2.1)

(b)
$$\mu_2(x, y) = \mu(y)$$
 ...(2.2)

(c)
$$\mu_3(x, y) = \min \{\mu(x), \mu(y)\}$$
 ... (2.3)

(d)
$$\mu_4(x, y) = \max \{\mu(x), \mu(y)\}$$
 ... (2.4)

(e)
$$\mu_5(x, y) = \mu(x) \cdot \mu(y)$$
 ... (2.5)

Some other fuzzy sets may be defined on $X \times X$.

Theorem (2.5):- Let X be a BCH-algebra and let μ be a fuzzy set defined on X. Let $Y = X \times X$. Then Y be a BCH-algebra under binary operation \bigcirc defined by (1.9) [Theorem (1.6)]. We consider fuzzy set μ_1 defined on Y by relation (2.1). Then μ is a fuzzy ideal on X iff μ_1 is fuzzy ideal on Y.

Proof :- Let μ be a fuzzy ideal defined on X. Then

- (i) $\mu(0) \ge \mu(x)$ for all $x \in X$
- (ii) $\mu(x) \ge \min \{ \mu(x * y), \mu(y) \}$ for all $x, y \in X$.

Now (i)
$$\mu_1(0, 0) = \mu(0) \ge \mu(x) = \mu_1(x, y)$$
 for all $(x, y) \in Y$(2.6)

(ii) Let $(x, y) \in Y$. Then $\mu_1(x, y) = \mu(x) \ge \min \{\mu(x * y), \mu(y)\}$ for all $x, y \in X$.

This gives

i.

$$\min \{ \mu_1((x_1, y_1) \odot (x_2, y_2)), \mu_1(x_2, y_2) \}$$

= min { $\mu_1(x_1 * x_2, y_1 * y_2), \mu_1(x_2, y_2) \}$
= min { $\mu(x_1 * x_2), \mu(x_2) \} \le \mu(x_1) = \mu_1(x_1, y_1)$
e., $\mu_1(x_1, y_1) \ge \min \{ \mu_1((x_1, y_1) \odot (x_2, y_2)), \mu_1(x_2, y_2) \}$... (2.7)

100

for all $(x_1, y_1), (x_2, y_2) \in Y$.

This proves that μ_1 is fuzzy ideal on Y.

Conversely, suppose that μ_1 is fuzzy ideal on Y.

Then $\mu_1(0, 0) \ge \mu_1(x_1, y_1)$ for all $(x, y) \in Y$.

This implies $\mu(0) \ge \mu(x)$ for all $x \in X$.

Let $x, y \in X$. We consider $(x, 0), (y, 0) \in Y$.

From (2.7) we have $\mu_1(x, 0) \ge \min \{\mu_1((x, 0) \odot (y, 0)), \mu_1(y, 0)\}$

 $= \min \{ \mu_1(x * y, 0), \mu_1(y, 0) \}$

$$\mu(x) \geq \min \{\mu(x * y), \mu(y)\}.$$

So μ is a fuzzy ideal on BCH-algebra X.

Corollary (2.6):- Similar result can be given for μ_2 .

Theorem (2.8):- We recall X, Y, u, v, b and binary operation ' \otimes ' as given in theorem (1.5).

Let μ be a fuzzy ideal defined on X. We define μ^1 on Y as $\mu^1(x) = \mu(x)$ if $x \in X$ and $\mu^1(b) = \mu(u)$. Then μ^1 is a fuzzy ideal on Y iff $\mu(x) \ge \mu(u)$; for all $x \in X$.

Proof :- Suppose that μ^1 is a fuzzy ideal on Y then $\mu^1(0) \ge \mu^1(y)$ for all $y \in Y$, *i.e.*, for all $x \in X$.

Now for $x \in X$, $\mu^{1}(x) = \mu^{1}(x) \ge \min \{ \mu^{1}(x \otimes b), \mu^{1}(b) \}$

$$= \min \{ \mu(x), \mu(u) \}$$
$$\mu(x) \ge \mu(u) \text{; for all } x \in X.$$

⇒

So the condition is necessary.

Conversely, suppose that $\mu(x) \ge \mu(u)$ for all $x \in X$.

Now For $x \neq u, x \neq v$, min { $\mu^1(x \otimes b), \mu^1(b)$ }

$$= \min \{\mu(x), \mu(u)\} = \mu(u) \qquad ...(2.8)$$

For $x=u, x \neq v$, min { $\mu^1(x \otimes b), \mu^1(b)$ }

$$= \min \{\mu(b), \mu(b)\} = \mu(u) \qquad \dots (2.9)$$

For $x=v, x \neq u$, min { $\mu^1(x \otimes b), \mu^1(b)$ }

 $= \min \{\mu(0), \mu(u)\} = \mu(u), \qquad \dots (2.10)$

since

From (2.8), (2.9) and (2.10) we get

$$\mu^{1}(x) \geq \min \{ \mu^{1}(x \otimes b), \mu^{1}(b) \}.$$

Also for $x \in X$ and $x \neq u, x \neq 0$,

min { μ^1 ($b \otimes x$), $\mu^1(x)$ } = min { $\mu^1(b)$, $\mu^1(x)$ }

$$= \min \{\mu(u), \mu(x)\} = \mu(u) \qquad \dots (2.11)$$

If
$$x = u$$
, min { $\mu^1(b \otimes u)$, $\mu^1(u)$ } = min { $\mu(0)$, $\mu(u)$ } = $\mu(u)$... (2.12)

If x = 0, min { $\mu^1(b \otimes 0)$, $\mu^1(0)$ } = min { $\mu(u)$, $\mu(0)$ } = $\mu(u)$... (2.13)

(since $\mu^{1}(b) = \mu(u)$).

So in all cases condition $\mu^{1}(b) \ge \min \{ \mu^{1}(b \otimes x), \mu^{1}(x) \}$ is satisfied.

This proves that μ^1 is a fuzzy ideal on Y.

References

- Chakravarti, R.K.; Kumari, Shilpa and Prasad, R.L.; Some specific BCH-algebras, *Acta Ciencia Indica*, Vol. XLIII, No.2, 159-163 (2017).
- Imai, Y. and Iseki, K.; On axioms systems of propositional calculi, XIV Proc. *Japan Academy* 42, 19-22 (1966).
- 3. Hu, Q.P. and Li, X., On BCH-algebras, Math Seminar Notes, 11 313-320 (1983).
- 4. Kumari, Shilpa, Prajapat, Satyendra and Prasad, R.L.; Hyper Partial Homomorphisms in BCHalgebras, *Acta Ciencia Indica*, Vol. XLVI-M, No. 1 to 4, **63** (2020).
- Kumari, Shilpa, Ilyas, M. and Prasad, R.L., Some structural properties in BCH-algebras, *Acta Ciencia Indica*, Vol. XLII, No. 2,/85-92 (2017).
- 6. Moradian, R., Hamidi, M. and Radfar, A, ; Fuzzy ideals and Fuzzy soft ideals of BCH- algebras, *Journal of Mathematics and Computer Science*, **15**, 120 128 (2015).
- Rashmi Rani, Disjoint Elements in a BCK-algebra, *Acta Ciencia Indica*, Vol. XXXIXM No. 4, 459-462 (2013).
- Shilpa Kumari, A study to the theory of Fuzzy Ideals and Fuzzy Soft Ideals of BCH-algebras, *Ph.D. Thesis, Magadh University*, Bodh-Gaya (2018).

102