ON IRREDUCIBILITY OF AFFINE SPACE CURVES

DR. REETA KUMARI DIXIT

Department- Mathematics, S.S.P.G. College, SHAHJAHANPUR E-mail :- reeta.dixit9956@gmail.com

RECEIVED : 17 February, 2021

Our main aim here is to extend the assumptions of Torreli's theorem for any characteristic p for the curves are hyperelleptic Torrelis's theoremfor curves and surfaces are generally based in Riemann Roch theorem. Our main thrust is develop its lattice structure assuming symmetric product.

Key words : Variety, projective, biregular, Torreli's theorem hyperplane, canonical, multiplicity.

Introduction

Let X be any algebraic abstract variety defined over a field F which is algebraically closed. Let us denote the sheaf of local rings by $\theta(x) \cdot (x)^m = x \times x \dots \times x$ is the cartesian product on which the symmetric group G_q operates by permutation of the coordinate point where each operator is a biregular transformation. We choose here a suitable quotient space $(X)^{\Gamma} = (X)^q / \Gamma$, where $\Gamma \subset G_q$ equipped with natural ring structure. In particular, if any set of points of X is contained in the affine open subset of X, space $(X)^{\Gamma}$ possess a structure of algebraic variety satisfying the conditions:

- (i) If X is projective, then $(X)^{\Gamma}$ is also projective
- (ii) If X is locally normal, so is $(X)^{\Gamma}$
- (iii) If $\Gamma = G_q$, $(X)^q = (X)^{\Gamma}$.

Theorem : The symmetric product $(X)^q$ of an algebraic non-singular curve X is non-singular.

Proof: Let us put $(A_1)+(A_2) \dots \dots + (A_q) = z$, a point of $(X)^q$ property $A_1+\dots+A_n = n_1P_1 + n_2P_2 + \dots + n_kP_k (\sum n_i = q, p_i \neq p_j)$. The point Z is considered here on affine open set of type $(U)^{(q)}$ such that U is affine open set on X containing $P_1, P_2, \dots P_k$. We further suppose that there is a regular function t on U such that (i) $t - (t)p_1$ is a uniformizing parameter on X

PCM0210131

at P_1 for $1 \le i \le k(ii)(t)_{pi} \ne (t)_{pj}$ if $i \ne j$. We consider a regular function t_s induced on $(U)^{(q)}$ by the projection on the s-th factor by the function t on U. Putting $\varphi_1 = t_1 + t_2 \dots + t_q$, $\dots \varphi_q = t_1 \cdot t_2 \dots t_q$ to be rational regular function on (U) which is invariant under G_q .

Definition (Hyperelliptic) : Let *M* be a Riemann surface with genus ≥ 2 . Then M is hyperelliptic if and only if there exists an integral divisor *D* on Mwith deg *D*=2, dim *L*(*D*) ≥ 2 .

Theorem : The rational map $\varphi : C' \to \Gamma$ is purely in separable.

Proof: Let C_1, C_2 be any two curves with same envelop Γ . C_1 and C_2 are birationally equivalent for which let us suppose that

$$[K(C_1):K(\Gamma)] = p^{\alpha_1}$$
$$[K(C_2):K(\Gamma)] = p^{\alpha_2}$$

Such that $K(C_1)p^{\alpha_1} = K(\Gamma)$ and $K(C_2)p^{\alpha_2} = K(\Gamma)$

where

$$\alpha_1 \ge \alpha_2 \Rightarrow K(C_2) = K(C_1)p^{\alpha_1} - p^{\alpha_2}$$

We now show that $\alpha_1 = \alpha_2$ for which let us choose σ as the automorphism of the universal domain Ω gives by the exponentiation to the power $p^{\alpha_1 - \alpha_2}$ such that $K(C_1)^{\sigma} = K(C_2)$

If f(x', y') = 0 be equation of the curve C_1 , then $f^{\sigma}(x'', y'') = 0$ is the equation of curve C_2 .

Let us define $K(\Gamma)$ as the field given by

$$\frac{K(y^{''}-x^{''})\left(\frac{\partial f}{\partial x}\right)}{\frac{\partial f}{\partial y}}, \frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$$

whose generators are computed at M'.

By an appropriate application automorphism σ , we obtain the required field

$$K^{\sigma}(y^{\prime\prime}-x^{\prime\prime})\left\{\left(\frac{\partial f}{\partial x^{\prime}}\right)/\left(\frac{\partial f}{\partial y^{\prime}}\right)^{\sigma}\right\},\left\{\left(\frac{\partial f}{\partial x^{\prime}}\right)/\left(\frac{\partial f}{\partial y^{\prime}}\right)\right\}^{\sigma}$$

Since *K* is perfect $K^{\sigma} = K$

$$\Rightarrow \qquad \left(\frac{\partial f}{\partial x'}\right)^{\sigma} = \frac{\partial f^{\sigma}}{\partial x''} \left(\frac{\partial f}{\partial x'}\right)^{\sigma} = \frac{\partial f^{\sigma}}{\partial y''}$$

 $\Rightarrow \sigma$ carries the extension $K(C_1)/K(\Gamma)$ over the extension $K(C_2)/K(\Gamma)$.

$$\Rightarrow p^{\alpha_1} = p^{\alpha_2}$$

Hence the theorem is proved.

Theorem (Hyperelliptic case) : For $p \neq 2$, Torreli's theorem is valid for hyperelliptic case. But in case p = 2, the rational function Q(x)=A(x) with A, B(x) with A, B in K[x] such that prime divisor of B is of odd multiplicity with no common factor.

Proof: Let us consider a quadratic extension of the field K(x) generated by an equation of the type $y^2 - y = Q(x)$ where $Q(x) \in K(x)$ such that $q(x) \to Q(x) + Q_0^2(x)$ with $Q(x) \in K(x)$. It has been assumed here that (i) for a hyperelliptic curve X the model $(X)^{(g-1)}$ is intrinsically defined with respect to biregular transformations in terms of the field $K((X)^{(g-1)})$. (ii) The canonical system on $(X)^{(g-1)}$ has a fixed part in the subvariety which is the locus of the point $(P_1) + (P_2^{\sigma}) + \dots (P_{g-1})$ where σ is the automorphism of X into itself. For p = 2, $\sigma(x, y) \to (x, y + 1)$.

We choose here a suitable canonical map $j: (X)^{(g-1)} \to P^{f}_{(g-1)}$ such that $f^{-1}(y)$ has the minimum number of distinct points $(y \in P_{g-1})$

⇒ The curve *C* is rational normal and the obscular hyperplane at any point $P \in C$ is uniquely detemined and meets *C* only at *P*.

 \Rightarrow The locus of the points y is rational curve Γ of P_{q-1}

⇒ The set $f^{-1}(\Gamma)$ consists of the curves on which are the images on $(X)^{g-1}$ of the curve *x* under $F_n: Q \to h(Q) + (g - 1 - h)$

⇒ diagonal of $(X)^{g-1}$ does not be on the common part of the canonical system.

Let us further consider $K((Y)^{(g-1)}) = K((X)^{(g-1)})$ for some curve Y. We thus get a biregular map of $(Y)^{(g-1)}$ onto $(X)^{(g-1)}$ which shows that the diagonal Δ_0 of $(Y)^{(g-1)}$ is birationally equivalent with diagonal Δ_0 of $(X)^{(g-1)}$. Hence we finally conclude that

$$[K(Y): K(\Delta_0')] = [K(X): K(\Delta_0')] \Rightarrow K(Y) \approx K(X).$$

CONCLUSION

(i) A generic Riemann surface of genus $g \ge 3$ is non-hyperelliptic.

(ii) A Riemann surface of genus at least two is hyperelliptic if and only if the number of Weierstrass points on it is equal to 2g+2.

(iii) Torreli's theorem and Abel's theorem in its Jacobian version assert that divisors of Grassmann manifold are linearly equivalent to each other.

(iv) The set of all Riemann surfaces of genus $g \ge 2$ depends on 3g-3 parameters.

References

- 1. Borel, A. : Linear algebraic groups, Benjamin, New York (1969).
- 2. Fiort : Abelian Veriaties, Lecture Notes in Maths, Vol. 732, Springer verlag, Berlin (1979).
- 3. Joyce, D. : Ilyerfinite complex algebraic geometry, Quarterly Journal of Math V. 49 (129-164) (1998).
- 4. R. Narsimhan : Introduction to the theory of Analytic surfaces, Springer- Verlag, Berlin (1966).
- 5. J. Koller : *The structure of algebraic three folds Bulletin*, AMS, **17** (211-274) (1987).
- 6. H. Martens : A new proof of Torrali's theorem Ann. Math., **78** (107-111) (1963).