CONTACT CR-PRODUCTS OF LORENTZIAN SASAKIAN MANIFOLD

DR. GAJENDRA SINGH
Deptt. of Mathematics, Nilamber Piramber University, Palamu

Email : drgajendrasingh2@gmail.com

RECEIVED : 2 March, 2021
Contact CR-products have been studied by many authors Bejancu (1978), Blair and chen (1979), Yano and Mon (1981) and Kobayashi (1982) studied the contact CRproducts of Sasakian manifolds.

In this paper we have studied the contact CR products of a LorentzianSasakian manifold Pablo Alegree (2011) and obtained in integrability conditions for the distributions D and D^{\perp}. Some properties of contact CR products of Lorentzian Sasakian manifolds have also been studied.

Zintroduction

An odd dimensional Riemannian manifold $\left(\widetilde{M}^{2 n+1}, g\right)$ is called a Lorentzian almost contact manifold if it is endowed with a structure (ϕ, ξ, η, g), where ϕ is one - one tensor, ξ and η a vector field and one form on \widetilde{M}, respectively, and g is a Lorentz metric, satisfying

$$
\begin{align*}
\phi^{2} U & =-U+\eta(U) \xi \tag{1.1}\\
g(\phi U, \phi V) & =g(U, V)+\eta(U) \eta(V) \tag{1.2}\\
\eta(\xi) & =1 \tag{1.3}\\
\eta(U) & =-g(U, \xi) \tag{1.4}
\end{align*}
$$

for any vector field U, V in \widetilde{M}. Let ϕ denote the 2-form in M given by $\phi(X, Y)=g(X, \phi Y)$ if $d \eta=\phi$.
\widetilde{M} is called contact Lorentzian manifold. A normal contact Lorentzian manifold is called Lorentzian Sasakian T.I Kawa (1998), this is contact Lorentzian on satisfying.

$$
\begin{align*}
& \left(\widetilde{\nabla}_{U} \phi\right) V=-g(U, V)-\eta(V) U \tag{1.5}\\
& \text { and } \\
& \widetilde{\nabla}_{U} \xi=\phi U \tag{1.6}
\end{align*}
$$

For any vector field U tangent to M, we put

$$
\phi U=T U+F U
$$

where $T U$ (resp. $F U$) denotes the tangential (resp. normal) component of ϕU. Also for a normal vector field N, we put

$$
\phi N=t N+f N
$$

where $t N$ (resp. $f N$) is the tangent part (resp. normal part) of ϕN.
Definition : A submanifold M is a $C R$-submanifold if M is tangent to ξ and there exists differential distributions $D: x \rightarrow D_{x} \subset T_{x} M$ on M satisfying the following conditions,

$$
\begin{equation*}
\phi\left(D_{x}\right) \subset D_{x} \text { for each } x \in M \tag{1.9}
\end{equation*}
$$

and complementary orthogonal distribution

$$
\begin{equation*}
D^{\perp}: x \rightarrow D_{x}^{\perp} \subset T_{x} M \tag{1.10}
\end{equation*}
$$

is totally real i.e. $\phi D^{\perp}{ }_{x} \subset T_{x} M^{\perp}$, for each $x \in M$. We call D (resp. D^{\perp}) horizontal (resp. vertical) distribution. The Gauss and Weingarten formulas are respectively given by

$$
\begin{align*}
& \widetilde{\nabla}_{U} V=\nabla_{U} V+B(U, V) \tag{1.11}\\
& \widetilde{\nabla}_{U} N=-A_{N} U+\nabla_{U} N \tag{1.12}
\end{align*}
$$

where $\widetilde{\nabla}$ is the Riemannian connection of M, ∇ is the Riemannian connection determined by the induced metric on M, ∇ is the connection in the normal bundle of M, B and A are both second fundamental tensor satisfying

$$
\begin{equation*}
B(U N, N)=g\left(A_{N} U, V\right) \tag{1.13}
\end{equation*}
$$

Let $\widetilde{R}(R)$ be the curvature tensor of \widetilde{M} (resp. M), then the equation of Gauss and codazzi are respectively given by

$$
\begin{align*}
g(\widetilde{R}(X, Y) Z, W) & =g(R(X, Y) Z, W)-g(B(X, W), B(Y, Z)) \tag{1.14}\\
(\widetilde{R}(X, Y) Z)^{\perp} & =\nabla_{X} B(Y, Z)-\nabla_{Y} B(X, Z) \tag{1.15}
\end{align*}
$$

$\mathcal{B a s i c}_{\text {asemmas and properties }}$

T
hroughout this paper we have taken the structure tensor ξ as tangent to the submanifold. Since ξ is tangent to M for any vector field U tangent to M, we have

$$
\begin{equation*}
\widetilde{\nabla}_{U} \xi=\phi U=\nabla_{U} \xi+B(U, \xi) \tag{2.1}
\end{equation*}
$$

from which $\nabla_{U} \xi=T U$
and

$$
\begin{equation*}
B(U, \xi)=F U \tag{2.2}
\end{equation*}
$$

Lemma (2.1) Let M be a submanifold of a Lorentzian Sasakian manifold ($\widetilde{M}, \phi, \xi, \eta, g)$. Then

$$
\begin{align*}
& \left(\nabla_{U} T\right) V=A_{F V} U+t B(U, V)-g(U, V) \xi-\eta(V) U \tag{2.3}\\
& \left(\nabla_{U} F\right) V=f B(U, V)-B(U, T V) \tag{2.4}
\end{align*}
$$

for U and V be the vector field tangent to M.
Where we have defined $\left(\nabla_{U} T\right) V$ and $\left(\nabla_{U} F\right) V$ respectively by

$$
\begin{aligned}
& \left(\nabla_{U} T\right) V=\nabla_{U}(T V)-T\left(\nabla_{U} V\right) \\
& \left(\nabla_{U} F\right) V=\nabla_{U} F V-F \nabla_{U} V
\end{aligned}
$$

and
Proof : Differentiating (1.7) covariantly along U and using (1.7), (1.8) and separating the tangent and normal part, we get (2.3) and (2.4)

Lemma (2.2) Let M be a submanifold of a Lorentzian Sasakian manifold ($\widetilde{M}, \phi, \xi, \eta, \theta)$. Then

$$
\begin{align*}
& \left(\nabla_{U} f\right) N=A_{f N} U-T A_{N} U \tag{2.5}\\
& \left(\nabla_{U} f\right) N=-F A_{N} U-B(U, t N) \tag{2.6}
\end{align*}
$$

for any vector field U tangent to M and for any vector field N normal to M.
Where, we defined $\left(\nabla_{U} t\right) N$ and $\left(\nabla_{U} f\right) N$ respectively by
and

$$
\begin{aligned}
& \left(\nabla_{U} t\right) N=\nabla_{U}(t N)-t \nabla_{U} N \\
& \left(\nabla_{U} f\right) N=\nabla_{U} f N-f \nabla_{U}{ }^{\perp} N
\end{aligned}
$$

Proof: Differentiating (1.8) covariantly along U and using (1.7), (1.8) and separating the tangent and normal parts we get (2.5) and (2.6)

Lemma (2.3) Let M be a submanifold of a Lorentzian Sasakian manifold ($\widetilde{M}, \phi, \xi, \eta, g)$. Hence we have the following identities.

$$
\begin{align*}
g(T U, V) & =-g(U, T V), g\left(f N_{1}, N_{2}\right)=-g\left(N_{1}, f N_{2}\right) \tag{2.7}\\
g(F U, V) & =-g(U, t V) \tag{2.7}\\
T \xi & =0, f \xi=0 \tag{2.8}\\
T^{2} U & =-U+\eta(U) \xi-t F U \tag{2.9}\\
F T U+f F U & =0 \tag{2.10}\\
T t N+f^{2} N & =-N \tag{2.11}\\
\text { FtN }+t f N & =0 \tag{2.12}
\end{align*}
$$

where U is a tangent vector field to M and N, N_{1}, N_{2} are normal vector field to M.

Proof: Applying ϕ to (1.7) and (1.8) and separating the tangent and the normal parts we get the above identities.

Remark : Now we see that if M is tangent to ξ, then M is a CR-submanifold if and only if one of the following conditions is satisfied Kabayashi (1982)
(i) $F T=0$
(ii) $t F=0$
(iii) $t f=0$
(iv) $T t=0$

Lemma 2.4. Let M be a submanifold of a Lorentzian Sasakian manifold $\widetilde{(M}, \phi, \xi, \eta, g)$. Then we have,

$$
\begin{equation*}
g\left(\nabla_{U} Z, X\right)=g\left(A_{F Z} U, T X\right)+\eta\left(\nabla_{U} Z\right) g(\xi, X)-\eta(Z) g(U, T X) \tag{2.14}
\end{equation*}
$$

for $X \in D$ and $Z \in D^{\perp}$
Proof : From (2.3), we see that for $Z \in D^{\perp}$

$$
\begin{equation*}
T \nabla_{U} Z=-A_{F Z} U-\operatorname{th}(U, Z)+g(U, Z) \xi+\eta(Z) U \tag{2.15}
\end{equation*}
$$

For any $T X \in D$, we get

$$
\begin{aligned}
g\left(T \nabla_{U} Z, T X\right)=-g\left(A_{F Z} U, T X\right)-g(t h(U, Z), T X)+g(U, Z) g & (\xi, T X) \\
& +g(U, T X) \eta(Z)
\end{aligned}
$$

Which on using (2.9), gives

$$
\begin{aligned}
& -g\left(\nabla_{U} Z, X\right)-g\left(t F \nabla_{U} Z, X\right)+\eta\left(\nabla_{U} Z\right) g(\xi, X)=-g(t h(U, Z) \\
& \quad-g\left(A_{F Z} U, T X\right)+\eta(Z) g(U, T X)+g(U, Z) g(\xi, T X)
\end{aligned}
$$

From which we get (2.14)
Lemma (2.5) : Let M be a submanifold of a Lorentzian Sasakian manifold ($\widetilde{M}, \phi, \xi, \eta, g)$. Then we have,

$$
\begin{equation*}
A_{F Z} W-A_{F W} Z=\eta(W) Z+\eta(Z) W \tag{2.16}
\end{equation*}
$$

for $Z, W \in D^{\perp}$
Proof: From (2.3), we see that $Z, W \in D^{\perp}$, we have

$$
\begin{aligned}
& T[Z, W]=T \nabla_{Z} W-T \nabla_{W} Z \\
& =-A_{F Z} U-\operatorname{th}(U, Z)+g(U, Z)+\eta(Z) U+A_{F Z} W \\
&
\end{aligned}
$$

From which we get (2.16)
Proposition (2.1) :The horizontal distribution D of a CR-submanifold of a Lorentzian Sasakian manifold is integrable if and only if

$$
\begin{align*}
g(h(X, T Y), F Z) & -g(h(Y, T X), F Z) \\
& =\eta(Y) \nabla_{X} Z-\eta(X) \eta\left(\nabla_{Y} Z\right)+g(X, T Y) \eta(Z)-g(Y, T X) \eta(Z) \tag{2.17}
\end{align*}
$$

for all $X, Y \in D$ and $Z \in D^{\perp}$
Proof: From (2.3), we see that for $Z \in D^{\perp}$

$$
T \nabla_{U} Z=-A_{F Z} U-\operatorname{th}(U, Z)+g(U, Z) \xi+\eta(Z) U
$$

For any $T Y \in D$, putting $U=X \in D$ and using (2.9), we get

$$
\begin{equation*}
g\left(Z, \nabla_{X} Y\right)=g\left(A_{F Z} X, T Y\right)-\eta(Y) \eta\left(\nabla_{X} Z\right)-g(X, T Y) \eta(Z) \tag{2.18}
\end{equation*}
$$

Similarly we can find,

$$
\begin{equation*}
g\left(Z, \nabla_{Y} X\right)=g\left(A_{F Z} Y, T X\right)-\eta(X) \eta\left(\nabla_{Y} Z\right)-g(Y, T X) \eta(Z) \tag{2.19}
\end{equation*}
$$

Subtracting equation (2.19) from equation (2.18), we get

$$
\begin{aligned}
g([X, Y], Z)=g(h(X, T Y), F Z)- & g(h(Y, T X), F Z)+\eta(X) \eta\left(\nabla_{Y} Z\right) \\
& -\eta(Y) \nabla_{X} Z+g(Y, T X) \eta(Z)-g(X, T Y) \eta(Z)
\end{aligned}
$$

From which, we get (2.17)
Proposition (2.2) : If D is ξ - horizontal, then the leaf of M^{\perp} of the vertical distribution M^{\perp} of the vertical distribution D^{\perp} is totally geoderic in M if and only if

$$
\begin{equation*}
g(h(Y, W), F Z)=g(W, Z) \eta(Y) \tag{2.20}
\end{equation*}
$$

for all $Y \in D$, and $W, Z \in D^{\perp}$
Proof : From (2.3), we see that for $Z \in D^{\perp}$

$$
T \nabla_{U} Z=-A_{F Z} U-t B(U, Z)+g(U, Z) \xi+\eta(Z) U
$$

Putting $U=W \in D^{\perp}$ and $Z \in D^{\perp}$ and using the fact that D is ξ-horizontal (resp. D^{\perp}), we get

$$
T \nabla_{W} Z=-A_{F Z} W-t B(W, Z)+g(W, Z) \xi+\eta(Z) W
$$

For any $Y \in D$, we get
$g\left(T \nabla_{W} Z, Y\right)=-g\left(A_{F Z} W, Y\right)-g(t B(W, Z), Y)+g(W, Z) g(\xi, Y)+g(W, Y) \eta(Z)$
Which on using (1.14), gives

$$
g\left(\nabla_{W} Z, Y\right)=g(B(Y, W), F Z)-g(W, Z) \eta(Y)
$$

From which we get (2.20)

3-Contact CR-Product

Definition: A CR-submanifold of a Lorentzian Sasakian manifold \widetilde{M} is called a contact CR-product if it is locally Riemannian product of a Lorentzian Sasakian (invariant) submanifold M^{\perp} and a totally real (anti-invariant) submanifold M^{\perp} of \widetilde{M} (Kobayashi 1982).

Theorem (3.1): Let M be a CR-submanifold of a LorentzianSasakian manifold. Then T is parallel if and only if M is anti-invariant submanifold.

Proof : From (2.3), We have

$$
\left(\nabla_{U} T\right) V=A_{F V} U+t h(U, V)-g(U, V) \xi-\eta(V) U
$$

Putting $V=\xi$, using (1.3), (2.2), (2.8) and assure that T is parallel gives

$$
\begin{equation*}
0=\left(\nabla_{U} T\right) \xi=-U+t F U-\eta(U) \xi \tag{3.1}
\end{equation*}
$$

Operating T to equation (3.1) and using (2.8) and (2.13) gives

$$
T U=0
$$

From which we see that M is anti-invariant submanifold.
Theorem (3.2) : Let M be a CR-submanifold and Let D be ξ - horizontal (resp. D^{\perp}). Then M is a contact CR-product if

$$
\begin{equation*}
A_{F Z} T X=0 \text { for } X \in D \text { and } Z \in D^{\perp} \tag{3.2}
\end{equation*}
$$

Proof : Since M is contact CR-product for any tangent vector X

$$
\nabla_{U} X \in D \text { for } X \in D \text { and } \nabla_{U} Z \in D^{\perp} \text { for } Z \in D^{\perp}
$$

From (2.3), we see that for $Z \in D^{\perp}$

$$
\begin{equation*}
T \nabla_{U} Z=-A_{F Z} U-t h(U, Z)+g(U, Z) \xi+\eta(Z) U \tag{3.3}
\end{equation*}
$$

Now, from (3.3) and (2.9) and using the fact that D is ξ horizontanl.

$$
0=g\left(T A_{F Z} U, X\right)-g\left(t F \nabla_{U} Z, X\right)
$$

Again

$$
\begin{aligned}
0 & =g\left(\nabla_{U} Z, X\right)=-g\left(Z, \nabla_{U} X\right) \\
& =-g\left(T A_{F Z} U, X\right)+g\left(t F \nabla_{U} Z, X\right) \\
& =g\left(A_{F Z} T X, U\right)+g\left(t F \nabla_{U} Z, X\right)
\end{aligned}
$$

Implying that (3.2) holds good.
Lemma (3.3) : Let M be a contact CR-product of a Lorentzian Sasakian manifold and D be ξ-horizontal (resp. D^{\perp}). Then for unit vector $X \in D$ with $\eta(X)=0$ and $Z \in D^{\perp}$, we have

$$
\begin{equation*}
g\left(B\left(\nabla_{X} \phi X, Z\right), \phi Z\right)=-1 \tag{3.4}
\end{equation*}
$$

$$
\begin{gather*}
g\left(B\left(\nabla_{\phi X} X, Z\right), \phi Z\right)=1 \tag{3.5}\\
g\left(B\left(\phi X, \nabla_{X} Z\right), \phi Z\right)=g\left(B\left(X, \nabla_{\phi X} Z\right), \phi Z\right)=0 \tag{3.6}
\end{gather*}
$$

Proof : By using (1.6) and $g(B(U, X), F Z)=\eta(X) g(Z, U)$, we can easily have

$$
\begin{aligned}
g\left(B\left(\nabla_{X} \phi X, Z\right), \phi Z\right) & =\eta\left(\nabla_{\phi X} X\right) g(Z, Z) \\
& =g\left(\nabla_{X} \phi X, \xi\right) g(Z, Z) \\
& =-g\left(\phi X, \nabla_{X} \xi\right) g(Z, Z) \\
& =-g(\phi X, \phi X) g(Z, Z) \\
& =-\|X\|^{2}\|Z\|^{2} \\
& =-1 .
\end{aligned}
$$

From which we get (3.4). Similarly we can find (3.5) and (3.6)
Theorem (3.4) : Let M be a contact CR-product of a Lorentzian Sasakian manifold and D be ξ-horizontal (resp. D^{\perp}). Then for unit vector $X \in D$ with $\eta(X)=0$ and $Z \in D^{\perp}$, we have

$$
\begin{equation*}
g(\tilde{R}(X, \phi X) X, \phi Z)=-\left.2| | B(X, Z)\right|^{2}+2 \tag{3.7}
\end{equation*}
$$

Proof : Using equation (1.16) and Lemma (3.3), we can easily have,

$$
\begin{aligned}
g(\tilde{R}(X, \phi X), \phi Z)= & g\left(\left(\nabla_{X} B\right)(\phi X, Z)-g\left(\nabla_{\phi X} B\right)(X, Z), \phi Z\right) \\
= & g\left(D_{X} B(\phi X, Z), \phi Z\right)-g\left(D \phi_{X} B(X, Z), \phi Z\right)+2 \\
= & g\left(B(X, Z), D_{\phi X} \phi Z\right)-g\left(B(\phi X, Z), D_{X} \phi Z\right)+2 \\
= & g\left(B(X, Z), \phi\left(\widetilde{\nabla}_{\phi X} Z\right)\right)+g\left(B(X, Z),\left(\widetilde{\nabla}_{\phi X} \phi\right) Z\right)+2 \\
& \quad-g\left(B(\phi X, Z), \phi\left(\widetilde{\nabla}_{X} Z\right)\right)-g\left(B(\phi X, Z),\left(\widetilde{\nabla}_{X} \phi\right) Z\right)+2 \\
& =-g(\phi B(X, Z), \phi B(X, Z))-g(\phi B(X, Z), \phi B(X, Z))+2 \\
= & -g(B(X, Z), B(X, Z))-g(B(X, Z),(X, Z))+2 \\
\quad & -2 B\|X, Z\|^{2}+2
\end{aligned}
$$

From which we get (3.7) and the fact that D is ξ-horizontal.

References

1. A.Bejancu, CR-Submanifold of a Kaehlerian manifold I, Proc. Amer. Math. Soc., 69, 135-142 (1978).
2. B.Laha and B. Das, Contact CR-submanifolds of an indefinite Lorentzian para-sasakian manifold, Acta Univ. Sapientiae, 5, 2, 157 - 168 (2013).
3. C.S. Bagewadi and M.S. Siddesha, Semi-invariant submanifolds of (LCS) n_{n} manifold, Commun. Korean Math. Soc. O(0), No. 0 November, PP. 1 - 9 (2017).
4. D.E. Blair and B.Y. Chen, On CR-Submanifolds of Harmitian manifolds, Israel J. 34, 353-363 (1979).
5. Gajendra Singh, On almost semi-invariant submanifold of a Lorentzian Sasakian manifold International Journal of Mathematical analysis, Vol. 14, no. 8, 361 - 370 (2020).
6. On almost semi-invariant submanifold of a normal almost para-contact manifold, Journal of Advance in Mathematics and Computer Science, 35 (8): 91 - 100, Article no. JAMCS. 62644 (2020).
7. K.Yano and M.Mon ; Differential geometry of CR-Submanifolds, Geometriae Dedicata, 10, 369-391 (1881).
8. Mehmet Atceken, Contact CR-submanifolds of Kenmotsu manifolds, Serdica Math. J. 37, $67-78$ (2011).
9. Mehmet Atceken and Siraj Uddin, Semi-invariant submanifolds of a normal almost paracontact manifold, published by Faculty of Science and Mathematics, University of Nis, Serbian, 4875-4887 (2017).
10. M.Kobayashi, Contact CR-products of Sasakian manifolds Tensor, N.S. Vol. 36, 281 - 288 (1982).
11. N-Papaghive, Almost semi-invariant submanifolds in Sasakian space form, An. Stint. Univ. Iasi. Math (N.S) 29, 5 - 10 (1983).
12. T. Ikawa, Spacelike maximal surfaces with constant scalar normal curvature in a normal contact Lorentzian manifold, Malaysian Math. Soc. 21, 31 - 36 (1998).
