HYPER PARTIAL HOMOMORPHISMS IN BCH-ALGEBRAS

SHILPA KUMARI

shilparakhie@gmail.com

SATYENDRA PRAJAPAT

satyendraprajapat614@gmail.com

R.L. PRASAD

Department of Mathematics, Magadh University, Bodh-Gaya.

RECEIVED : 16 February, 2021

The concept of partial homomorphism in BE-algebras has been studied by Pandey, Ilyas and Prasad **[2]** in 2018. Here we have developed a method to extend a BCK/BCIalgebra into a BCH-algebra. The concept of hyper partial homomorphism in a BCH-algebra has been considered with some results and suitable examples.

Keywords : BCK/BCI/BCH- algebras, partial and hyper partial homomorphism, disjoint elements.

PRELIMINARIES

Definition (1.1) :- Let (X; *, 0) be a system where X is a non-empty set, '*' is a binary

operation and '0' is a fixed element.

Then (X; *, 0) is called.

(a) a BCI - algebra [3] if the elements of X satisfy the following conditions:

(P1).
$$((x*y)*(x*z))*(z*y)=0$$

(P2).
$$(x^*(x^*y))^*y = 0$$

- (P3). x * x = 0
- (P4). $x^* y = 0$ and $y^* x = 0$ imply x = y,
 - for all $x, y, z \in X$;

(b) a BCK-algebra [3] if the elements of a system (X;*,0), in addition to above conditions, also satisfy: PCM0210124 (P5). $0^* x = 0$, for all $x \in X$.

Lemma (1.2) :- Elements of a BCK/BCI- algebra also satisfy the following conditions:

(P6). x*0 = x, (P7). (x*y)*z = (x*z)*y, (P8). x*(x*(x*y)) = x*y, (P9). $x \le y$ implies $x*z \le y*z$ and $z*y \le z*x$, for all $x, y, z \in X$,

where $x \le y$ means $x^* y = 0$.

Definition (1.3) :- A system (X;*,0) is called a BCH-algebra [5] if the elements of X satisfy only conditions (P3), (P4) and (P7).

Further, *X* is a positive BCH-algebra if elements of *X* also satisfy (P5).

Remark (1.4) :- The concept of a BCH-algebra is a generalization of the concepts BCK/BCI-algebra.

Definition (1.5) :-A subset M of a BCH-algebra (X;*,0) is called a subalgebra if $x, y \in M \Rightarrow x^* y \in M$. A subalgebra M is called a maximal subalgebra if it not contained in any subalgebra other than X.

Definition (1.6) :- A pair $\{x, y\}$ of distinct elements of X is said to be.

- (a) mutually disjoint [7] if $x^*y = x$ and $y^*x = y$;
- (b) semi-mutually disjoint if either $x^*y = x$ and $y^*x = 0$ or $x^*y = 0$ and $y^*x = y$
- (c) co-equal if either $x^* y = x$ and $y^* x = x$ or $x^* y = y$ and $y^* x = y$.

Lemma (1.7) :- If a system (X;*,0) with properties (P3), (P5), (P6) contains a pair

 $\{x, y\}$ of non-zero co-equal elements then (P1) can not be satisfied.

Proof :- Suppose that $x^*y = x$ and $y^*x = x$. Then $((y^*x)^*(y^*0))^*(0^*x) = (x^*y)^*0 = x \neq 0$ implies that (P1) is not satisfied.

We present here some extension theorems as follows :

Theorem (1.8) [9] :- Let (X;*,0) be a BCH-algebra and let $t \notin X$.

Let $Y = X \cup \{t\}$.

Acta Ciencia Indica, Vol. XLVI-M, No. 1 to 4 (2020)

We define a binary operation \otimes *in Y as*

$$x \otimes y = x^* y \text{ if } x, y \in X, . \tag{1.1}$$

$$x \otimes t = x \text{ for } x \neq 0; x \in X \text{ and } t \otimes x = t; x \in X \text{ .}$$
 ...(1.2)

$$0 \otimes t = t, t \otimes 0 = t, t \otimes t = 0 \qquad \dots (1.3)$$

Then
$$(Y;\otimes,0)$$
 is a BCH-algebra iff X is a positive BCH-algebra.

Corollary (1.9) :- In case X is not a positive BCH-algebra then taking $0 \otimes t = 0$ in (1.3), $(Y, \otimes, 0)$ becomes a BCH-algebra.

Theorem (1.10) :-Every BCK/BCI-algebra with a pair of non-zero mutually disjoint elements can be extended to a BCH-algebra, by adjoining one element and defining a binary operation suitably, which is not a BCK/BCI-algebra.

Proof :- Let (X;*,0) be a BCK/BCI-algebra and let $u,v \in X$, be non-zero mutually disjoint elements of X. Let b be an element not in X and let $Y = X \cup \{b\}$. We define a binary operation \otimes in Y as follows:

$$x \otimes y = x^* y \text{ if } x, y \in X, \qquad \dots (1.4)$$

$$x \otimes b = x \text{ if } x \neq u, x \neq v, x \in X, \qquad \dots (1.5)$$

$$u \otimes b = b \text{ and } v \otimes b = 0, \qquad \dots (1.6)$$

$$0 \otimes b = 0, \ b \otimes 0 = b, \ b \otimes b = 0, \qquad \dots (1.7)$$

$$b \otimes u = 0, b \otimes y = b \text{ for } y \neq u.$$
 ...(1.8)

For elements of $X \subseteq Y$, all conditions of a BCH-algebra are satisfied. Also from the given definitions of \otimes , (P3) and (P4) are satisfied. So it remains to check condition (P7) for elements, 0, *u*, *v* and *b*,

We have

$$(u \otimes v) \otimes b = u \otimes b = b, \qquad (u \otimes b) \otimes v = b \otimes v = b;$$
$$(b \otimes u) \otimes v = 0 \otimes v = 0, \qquad (b \otimes v) \otimes u = b \otimes u = 0;$$
$$(v \otimes b) \otimes u = 0 \otimes u = 0, \qquad (v \otimes u) \otimes b = v \otimes b = 0;$$
$$(0 \otimes u) \otimes b = 0 \otimes b = 0, \qquad (0 \otimes b) \otimes u = 0 \otimes u = 0;$$

and

If x and y are different from u and v then $(x \otimes y) \otimes b = t \otimes b = t$, where $x \otimes y = x^* y = t$ (say) and $(x \otimes b) \otimes y = x \otimes y = t$.

Also
$$(b \otimes x) \otimes y = b \otimes y = b$$
 and $(b \otimes y) \otimes x = b \otimes x = b$.

So, $(Y, \otimes, 0)$ is a BCH-algebra.

Since
$$((v \otimes u) \otimes (v \otimes b)) \otimes (b \otimes u) = (v \otimes 0) \otimes 0 = v \neq 0$$
,

Y is not a BCK-algebra.

Remark (1.11) :-(i) In the above theorem pair $\{u, v\}$ may be taken as semi-mutually disjoint.

(ii) In the equation (1.7) we may take $0 \otimes b = b$.

WYPER PARTIAL HOMOMORPHISM

Definition (2.1):-Let (X;*,0) be a BCH-algebra and let $f: X \to X$ be a mapping.

(a) If $f(x^*y) = f(x)^* f(y)$ for all $x, y \in X$ then f is called a homomorphism.

(b) If there exists a subalgebra M of X such that $f(x^*y) = f(x)^* f(y)$ for all $x, y \in M$ but $f(x^*y) \neq f(x)^* f(y)$ for some $x, y \in X$ then f is called a partial homomorphism on X with respect to subalgebra M.

(c) If M is a maximal subalgebra of X then partial homomorphism defined on X with respect to M is called a hyper partial homomorphism.

Lemma (2.2):- If $f: X \to X$ is a homomorphism or partial homomorphism then f(0) = 0 and K_f is a subalgebra of X where $K_f = \{x \in X : f(x) = 0\}$.

Example (2.3) [9] :-Let $S = \{a, b, c, d, e\}$ and let $X = \{0, A, B, C, D, E, F, 1\}$ where $0 = \phi, A = \{a, b\}, B = \{a, b, c\}, C = \{c\}, D = \{c, d, e\}, E = \{d, e\}, F = \{a, b, d, e, \}, 1 = S.$

A binary operation 'o' is defined in X as follows :

For $L, K \in X$, $LoK = L \cap K^c$.

The binary operation table for o' is given as.

Table (2	.1)
----------	----	---

0	0	A	В	С	D	Ε	F	1
0	0	0	0	0	0	0	0	0
Α	A	0	0	Α	Α	Α	0	0
В	B	С	0	Α	Α	В	С	0
С	C	С	0	0	0	С	С	0
D	D	D	С	Ε	0	С	С	0
Ε	Ε	Ε	Ε	Ε	0	0	0	0
F	F	Ε	Ε	F	Α	Α	0	0
1	1	0 0 C D E E D	Ε	F	Α	В	С	0

The system (X; o, 0) is a BCH-algebra.

(a) Let *M* be the collection of those elements which do not contain *a*. For $K, L \in M$, $KoL = K \cap L^c$ does not contain a. So $KoL \in M$. This proves that *M* is a subalgebra of *X*.

We consider a mapping $f_a: X \to X$ as

$$f_a(L) = \begin{cases} L & \text{if } a \notin L \\ L^c & \text{if } a \in L \end{cases}$$

Then for $L, K \in M$, $f_a(L) = L$ and $f_a(K) = K$.

Also
$$f_a(LoK) = f_a(L \cap K^c) = L \cap K^c$$
, $a \notin L \cap K^c$.

Further, $f_a(L) \circ f_a(K) = L \circ K = L \cap K^c$.

This proves that $f_a(LoK) = f_a(L) \circ f_a(K)$ for all $L, M \in M$.

So, f_a is a homomorphism on sub algebra M.

Now

$$f_a(AoC) = f_a(A) = D$$

 $f_a(A) = A^c = D, f_a(C) = C,$

and

$$f_a(A)o f_a(c) = DoC = E \neq D,$$

which means that $f_a(A \circ C) \neq f_a(A) \circ f_a(c)$.

So f_a is a partial homomorphism on X with respect to subalgebra M such that $f_a(0) = 0$.

(b) Let $f, g: X \to X$ be defined as

$$f(x) = x \text{ for all } x \neq 1, f(1) = 0$$
 ...(2.2)

$$g(x) = 0$$
 for all $x \neq 1$, $g(1) = 1$...(2.3)

Then f and g are homomorphisms on subalgebra

$$L = \left\{0, A, B, C, D, E, F\right\}.$$

But

$$f(Co1) = f(0) = 0 \text{ and } f(C)of(1) = Co0 = C$$

$$g(1o E) = g(B) = 0$$
 and $g(1)o g(E) = 1o0 = 1$

imply that f and g are not homomorphisms on X.

Since L is a maximal subalgebra of X, f and g are hyper partial homomorphisms w.r.t. L.

Some examples.

We recall BCH-algebras X and Y discussed in theorem (1.8) and define:

Definition (3.1) :-For a given function f from X into itself, we define h_1, h_2, h_3 on Y as

$$h_1(x) = h_2(x) = h_3(x) = f(x); x \in X;$$

and

$$h_1(t) = 0, h_2(t) = t \text{ and } h_3(t) = z \text{ for some fixed } z \neq 0, z \in X.$$

Now, we see that

Lemma (3.2) :- h_1 and h_2 are homomorphisms in Y iff f is a homomorphism in X.

Proof :- Suppose that h_1 and h_2 are homomorphisms on Y. Then

$$h_1(x) = h_2(x) = f(x); x \in X$$

implies that f is a homomorphism in X.

Suppose that f is a homomorphism in X. Then

$$f(0) = 0.$$

$$h_1(x \otimes t) = h_1(x) = f(x),$$

Now for $x \in X$, we have

Acta Ciencia Indica, Vol. XLVI-M, No. 1 to 4 (2020)

$$h_{1}(x) \otimes h_{1}(t) = f(x)^{*}0 = f(x),$$
$$h_{1}(t \otimes x) = h_{1}(t) = 0$$
$$h_{1}(t) \otimes h_{1}(x) = 0^{*}f(x) = 0,$$

since X is positive.

Also

$$h_1(0\otimes t) = h_1(t) = 0$$

$$h_1(0) \otimes h_1(t) = f(0) \otimes 0 = 0$$
,

This proves that h_1 is a homomorphism on Y.

Again, For $x \in X$, we have

$$h_{2}(x \otimes t) = h_{2}(x) = f(x),$$

$$h_{2}(x) \otimes h_{2}(t) = f(x) \otimes t = f(x);$$

$$h_{2}(t \otimes x) = h_{2}(t) = t,$$

$$h_{2}(t) \otimes h_{2}(x) = t \otimes f(x) = t.$$

Also,

$$h_2(0\otimes t) = h_2(t) = t,$$

 $h_2(0) \otimes h_2(t) = 0 \otimes t = t$. So h_2 is a homomorphism on Y.

Lemma (3.3) :- h_3 is a hyper partial homomorphism on Y.

Proof :- Since $h_3(0 \otimes t) = h_3(t) = z$ and $h_3(0) \otimes h_3(t) = 0 * z = 0$,

we see that h_3 is not a homomorphism on Y.

Also $h_3(x) = f(x)$ is a homomorphism in X and X in a maximal subalgebra of Y. This proves that h_3 is a hyper partial homomorphism on Y.

We recall the BCH-algebras X and Y, elements u, v, b and binary operation * and \otimes discussed in the proof of theorem [1.10] and define:

Definition (3.4) :- Let f be a homomorphism on X. We consider functions g_1, g_2, g_3, g_4, g_5 on Y defined as

$$g_1(x) = g_2(x) = g_3(x) = g_4(x) = g_5(x) = f(x)$$
 for $x \in X$

and $g_1(b) = 0, g_2(b) = b, g_3(b) = u, g_4(b) = v$ and $g_5(b) = t$ for some fixed $t \in X$.

Lemma (3.5) :- g_1 is a homomorphism on Y iff f(u) = 0, and f(v) = 0.

Proof :- Suppose that g_1 is a homomorphism on Y. Then $u \otimes b = b$ (Relation(1.6))

$$\Rightarrow \qquad g_1(b) = g_1(u \otimes b) = g_1(u) \otimes g_1(b)$$

$$0 = f(u) * 0 \Longrightarrow f(u) = 0 \qquad \dots (3.1)$$

Again, $v \otimes b = 0$

$$\Rightarrow \qquad g_1(0) = g_1(v \otimes b) = g_1(v) \otimes g_1(b)$$

$$\Rightarrow \qquad f(0) = f(v) * 0$$

$$\Rightarrow \qquad f(v) = 0. \qquad (3.2)$$

Conversely, suppose that f(u) = 0 and f(v) = 0. Then g_1 is a homomorphism can be proved by simple calculation.

Remark (3.6) :- Above result shows that if f is a homomorphism such that either $f(u) \neq 0$ or $f(v) \neq 0$ then g_1 is not a homomorphism on Y, but it is a homomorphism w.r.t. X. So in this case g_1 is a hyper partial homomorphism on Y, because X is a maximal BCH-subalgebra of Y.

Lemma (3.7) :- g_2 is a homomorphism on Y iff conditions

- (i) f(u) = u
- (ii) f(v) = v

and (iii) $f: X - \{u, v\} \rightarrow X - \{u, v\}$ are satisfied.

Proof :- Let g_2 be a homomorphism on *Y*. Then $v \otimes b = 0$

$$\Rightarrow \qquad g_2(0) = g_2(v \otimes b) = g_2(v) \otimes g_2(b)$$

$$\Rightarrow \qquad 0 = f(v) \otimes b \qquad \dots (3.3)$$

again,
$$b \otimes v = b$$

 $\Rightarrow \qquad b \otimes f(v) = b \tag{3.4}$

 \Rightarrow

From the definition of binary operation \otimes given in (1.4) to (1.8), (3.3) and (3.4) are possible only when f(v) = v.

 $u \otimes b = b$ again, $g_2(u \otimes b) = g_2(b)$ \Rightarrow $g_2(u) \otimes g_2(b) = b$ \Rightarrow $f(u)\otimes b=b$...(3.5) \Rightarrow $b \otimes u = 0$ Also, $g_2(b \otimes u) = g_2(0) = f(0) = 0$ \Rightarrow $g_2(b) \otimes g_2(u) = 0$ \Rightarrow $b \otimes f(u) = 0$...(3.6) \Rightarrow

From the definition of binary operation \otimes given in theorem (1.10), (3.5) and (3.6) are possible only when f(u) = u.

Further,

 \Rightarrow

 \Rightarrow

$$x \otimes b = x \text{ and } b \otimes x = b \text{ for } x \neq u, x \neq v$$

$$\Rightarrow \qquad g_2(x \otimes b) = g_2(b) \text{ and } g_2(b \otimes x) = g_2(b)$$

$$\Rightarrow \qquad f(x) \otimes b = b \text{ and } b \otimes f(x) = b \qquad \dots(3.7)$$

The definition of binary operation \otimes imply that (3.7) can the satisfied only when $f(x) \in X - \{u, v\}$,

i.e.
$$f: (X - \{u, v\}) \rightarrow (X - \{u, v\})$$

So conditions (i), (ii) and (iii) are satisfied.

Conversely, suppose that conditions (i), (ii) and (iii) are satisfied. Then simple computation shows that g_2 is a homomorphism.

Remark (3.8) :- From the above lemma it follows that if we take a homomorphism f not satisfying any one of the conditions of the above lemma, then g_2 is not a homomorphism on Y and in that case f is a hyper partial homomorphism on Y.

Lemma (3.9) :- g_3 is not a homomorphism on Y.

Proof :- If possible, suppose that g_3 is a homomorphism on Y, then the condition $b \otimes y = b$ for $y \neq u$.

$$g_{3}(b \otimes y) = g_{3}(b) = u$$
$$g_{3}(b) \otimes g_{3}(y) = u$$
$$u * f(y) = u \qquad \dots (3.8)$$

... (3.9)

Again the condition, $y \otimes b = b$ for $y \neq u, y \neq v, y \in X$.

f(y) * u = u

$$\Rightarrow \qquad g_3(y \otimes b) = g_3(b) = u$$

$$\Rightarrow \qquad g_3(y) \otimes g_3(b) = u$$

 \Rightarrow

Thus for $y \neq u$, $y \neq v$, condition (3.8) and (3.9) imply that

$$\left(\left(f(y)^{*}u\right)^{*}\left(f(y)^{*}0\right)\right)^{*}(0^{*}u) = \left(u^{*}f(y)\right)^{*}0 = u^{*}0 = u \neq 0.$$

This contradicts our assumption that X is a BCK/BCI-algebra. Hence g_3 is not a homomorphism.

Remark (3.10) :- From the above result it follows that for every homomorphism f defined on X, g_3 is not a homomorphism on Y. Since X is a maximal subalgebra of Y, g_3 is a hyper partial homomorphism on Y w.r.t.X. (Since every BCK/BCI-algebra is a BCH-algebra).

Remark (3.11) :-Similar arguments show that g_4 and g_5 are not homomorphisms on Y . So g_4 and g_5 are also hyper partial homomorphism on Y w.r.t. X.

REFERENCES

- Chakravarti, R.K.; Kumari, Shilpa and Prasad, R.L.; Some specific BCH-algebras, *Acta Ciencia Indica*, Vol. XLIII, No.2, 159-163 (2017).
- Gautam Kumar Pandey, Md. Ilyas and R.L. Prasad : Homomorphism, Partial Homomorphism sand Pair Homomorphism in BE-Algebras, *Acta Ciencia Indica*, Vol. XLIVM. No. 1, PP 7-11 (2018).
- Imai, Y. and Iseki, K.; On axioms systems of propositional alculi, XIV Proc. Japan Academy 42 (1966), 19-22.
- 4. Iseki, K. and Tanaka, S., An introduction to the theory of BCK-algebras, Math Japonica 23 (1978), 1-26.
- 5. Hu, Q.P. and Li, X., On BCH-algebras, Math Seminar Notes, 11, 313-320 (1983).
- Kumari, Shilpa, Ilyas, M. and Prasad, R.L., Some structural properties in BCH-algebras, Acta Ciencia Indica, Vol. XLII, No. 2,/85-92 (2017).
- Rashmi Rani, Disjoint Elements in a BCK-algebra, Acta Ciencia Indica, Vol. XXXIXM No., 459-462 (2013).
- 8. Rashmi Rani, Puja, BCK/BCH algebras with mutually disjoint elements, ICCIASH (2020).
- 9. Shilpa Kumari, A study to the theory of Fuzzy Ideals and Fuzzy Soft Ideals of BCH-algebras, Ph.D. Thesis, (2018), Magadh University, Bodhgaya.