HYPER PARTIAL HOMOMORPHISMS IN BCH-ALGEBRAS

SHILPA KUMARI

shilparakhie@gmail.com

SATYENDRA PRAJAPAT

satyendraprajapat614@gmail.com

R.L. PRASAD

Department of Mathematics, Magadh University, Bodh-Gaya.

RECEIVED : 16 February, 2021
The concept of partial homomorphism in BE-algebras has been studied by Pandey, llyas and Prasad [2] in 2018. Here we have developed a method to extend a BCK/BCIalgebra into a BCH -algebra. The concept of hyper partial homomorphism in a BCH-algebra has been considered with some results and suitable examples.

Keywords : BCK/BCI/BCH- algebras, partial and hyper partial homomorphism, disjoint elements.

Preliminaries

Definition (1.1) :- Let $\left(X ;{ }^{*}, 0\right)$ be a system where X is a non-empty set, '*' is a binary operation and ' 0 ' is a fixed element.

Then $(X ; *, 0)$ is called.
(a) a BCI - algebra [3] if the elements of X satisfy the following conditions:
$(\mathrm{P} 1) .\left(\left(x^{*} y\right) *\left(x^{*} z\right)\right) *(z * y)=0$
(P2). $(x *(x * y)) * y=0$
(P3). $x * x=0$
(P4). $x^{*} y=0$ and $y^{*} x=0$ imply $x=y$,
for all $x, y, z \in X$;
(b) a BCK-algebra [3] if the elements of a system $\left(X ;{ }^{*}, 0\right)$, in addition to above conditions, also satisfy:
(P5). $0 * x=0$, for all $x \in X$.
Lemma (1.2) :- Elements of a BCK/BCI- algebra also satisfy the following conditions:
(P6). $x * 0=x$,
(P7). $\left(x^{*} y\right) * z=\left(x^{*} z\right) * y$,
(P8). $x *(x *(x * y))=x * y$,
(P9). $x \leq y$ implies $x^{*} z \leq y^{*} z$ and $z^{*} y \leq z^{*} x$, for all $x, y, z \in X$,
where $x \leq y$ means $x^{*} y=0$.
Definition (1.3) :- A system $\left(X ;{ }^{*}, 0\right)$ is called a BCH-algebra [5] if the elements of X satisfy only conditions (P3), (P4) and (P7).

Further, X is a positive BCH -algebra if elements of X also satisfy (P5).
Remark (1.4) :- The concept of a BCH -algebra is a generalization of the concepts BCK/BCI-algebra.

Definition (1.5) :-A subset M of a BCH -algebra $(X ; *, 0)$ is called a subalgebra if $x, y \in M \Rightarrow x^{*} y \in M$. A subalgebra M is called a maximal subalgebra if it not contained in any subalgebra other than X.

Definition (1.6) :-A pair $\{x, y\}$ of distinct elements of X is said to be.
(a) mutually disjoint [7] if $x^{*} y=x$ and $y^{*} x=y$;
(b) semi-mutually disjoint if either $x^{*} y=x$ and $y^{*} x=0$ or $x^{*} y=0$ and $y^{*} x=y$
(c) co-equal if either $x^{*} y=x$ and $y^{*} x=x$ or $x^{*} y=y$ and $y^{*} x=y$.

Lemma (1.7) :- If a system $\left(X ;{ }^{*}, 0\right)$ with properties (P3), (P5), (P6) contains a pair $\{x, y\}$ of non-zero co-equal elements then (P1) can not be satisfied.

Proof :- Suppose that $x^{*} y=x$ and $y^{*} x=x$. Then $\left(\left(y^{*} x\right) *\left(y^{*} 0\right)\right) *(0 * x)$ $=(x * y) * 0=x \neq 0$ implies that (P1) is not satisfied.

We present here some extension theorems as follows :
Theorem (1.8) [9] :- Let $(X ; *, 0)$ be a BCH-algebra and let $t \notin X$.
Let

$$
Y=X \cup\{t\}
$$

We define a binary operation \otimes in Y as

$$
\begin{align*}
& x \otimes y=x^{*} y \text { if } x, y \in X, . \\
& x \otimes t=x \text { for } x \neq 0 ; x \in X \text { and } t \otimes x=t ; x \in X . \\
& 0 \otimes t=t, t \otimes 0=t, t \otimes t=0
\end{align*}
$$

Then $(Y ; \otimes, 0)$ is a BCH-algebra iff X is a positive BCH-algebra.
Corollary (1.9) :- In case X is not a positive BCH -algebra then taking $0 \otimes t=0$ in $(1.3),(Y, \otimes, 0)$ becomes a BCH-algebra.

Theorem (1.10) :-Every BCK/BCI-algebra with a pair of non-zero mutually disjoint elements can be extended to a BCH -algebra, by adjoining one element and defining a binary operation suitably, which is not a BCK/BCI-algebra.

Proof :- Let $(X ; *, 0)$ be a BCK/BCI-algebra and let $u, v \in X$, be non-zero mutually disjoint elements of X. Let b be an element not in X and let $Y=X \cup\{b\}$. We define a binary operation \otimes in Y as follows:

$$
\begin{align*}
& x \otimes y=x^{*} y \text { if } x, y \in X, \tag{1.4}\\
& x \otimes b=x \text { if } x \neq u, x \neq v, x \in X, \tag{1.5}\\
& u \otimes b=b \text { and } v \otimes b=0, \tag{1.6}\\
& 0 \otimes b=0, b \otimes 0=b, b \otimes b=0, \tag{1.7}\\
& b \otimes u=0, b \otimes y=b \text { for } y \neq u . \tag{1.8}
\end{align*}
$$

For elements of $X \subseteq Y$, all conditions of a BCH-algebra are satisfied. Also from the given definitions of $\otimes,(\mathrm{P} 3)$ and $(\mathrm{P} 4)$ are satisfied. So it remains to check condition (P7) for elements, $0, u, v$ and b,

We have
and

$$
\begin{array}{ll}
(u \otimes v) \otimes b=u \otimes b=b, & (u \otimes b) \otimes v=b \otimes v=b ; \\
(b \otimes u) \otimes v=0 \otimes v=0, & (b \otimes v) \otimes u=b \otimes u=0 ; \\
(v \otimes b) \otimes u=0 \otimes u=0, & (v \otimes u) \otimes b=v \otimes b=0 ; \\
(0 \otimes u) \otimes b=0 \otimes b=0, & (0 \otimes b) \otimes u=0 \otimes u=0 ;
\end{array}
$$

If x and y are different from u and v then $(x \otimes y) \otimes b=t \otimes b=t, \quad$ where $x \otimes y=x^{*} y=t$ (say) and $(x \otimes b) \otimes y=x \otimes y=t$.

Also $(b \otimes x) \otimes y=b \otimes y=b$ and $(b \otimes y) \otimes x=b \otimes x=b$.
So, $\quad(Y, \otimes, 0)$ is a BCH-algebra.
Since $\quad((v \otimes u) \otimes(v \otimes b)) \otimes(b \otimes u)=(v \otimes 0) \otimes 0=v \neq 0$,
Y is not a BCK-algebra.
Remark (1.11) :-(i) In the above theorem pair $\{u, v\}$ may be taken as semi-mutually disjoint.
(ii) In the equation (1.7) we may take $0 \otimes b=b$.

THPER PARTIAL HOMOMORPHISM

Definition (2.1) :-Let $(X ; *, 0)$ be a BCH-algebra and let $f: X \rightarrow X$ be a mapping.
(a) If $f\left(x^{*} y\right)=f(x)^{*} f(y)$ for all $x, y \in X$ then f is called a homomorphism.
(b) If there exists a subalgebra M of X such that $f\left(x^{*} y\right)=f(x) * f(y)$ for all $x, y \in M$ but $f(x * y) \neq f(x) * f(y)$ for some $x, y \in X$ then f is called a partial homomorphism on X with respect to subalgebra M.
(c) If M is a maximal subalgebra of X then partial homomorphism defined on X with respect to M is called a hyper partial homomorphism.

Lemma (2.2):- If $f: X \rightarrow X$ is a homomorphism or partial homomorphism then $f(0)=0$ and K_{f} is a subalgebra of X where $K_{f}=\{x \in X: f(x)=0\}$.

Example (2.3) [9] :-Let $\quad S=\{a, b, c, d, e\} \quad$ and let $\quad X=\{0, A, B, C, D, E, F, 1\} \quad$ where $0=\phi, A=\{a, b\}, B=\{a, b, c\}, C=\{c\}, D=\{c, d, e\}, E=\{d, e\}, F=\{a, b, d, e\},, 1=S$.

A binary operation ' o ' is defined in X as follows :
For $L, K \in X, L o K=L \cap K^{c}$.

The binary operation table for ' o ' is given as.

Table (2.1)

o	0	A	B	C	D	E	F	1
0	0	0	0	0	0	0	0	0
A	A	0	0	A	A	A	0	0
B	B	C	0	A	A	B	C	0
C	C	C	0	0	0	C	C	0
D	D	D	C	E	0	C	C	0
E	E	E	E	E	0	0	0	0
F	F	E	E	F	A	A	0	0
1	1	D	E	F	A	B	C	0

The system $(X ; o, 0)$ is a BCH -algebra.
(a) Let M be the collection of those elements which do not contain a. For $K, L \in M$, $K o L=K \cap L^{c}$ does not contain a. So $K o L \in M$. This proves that M is a subalgebra of X.

We consider a mapping $f_{a}: X \rightarrow X$ as

$$
f_{a}(L)=\left\{\begin{array}{l}
L \text { if } a \notin L \\
L^{c} \text { if } a \in L .
\end{array}\right.
$$

Then for $L, K \in M, \quad f_{a}(L)=L$ and $f_{a}(K)=K$.
Also $f_{a}(L o K)=f_{a}\left(L \cap K^{c}\right)=L \cap K^{c}, a \notin L \cap K^{c}$.

Futher, $\quad f_{a}(L)$ o $f_{a}(K)=L o K=L \cap K^{c}$.
This proves that $f_{a}(L o K)=f_{a}(L) o f_{a}(K)$ for all $L, M \in M$.
So, f_{a} is a homomorphism on sub algebra M.
Now

$$
\begin{aligned}
f_{a}(A) & =A^{c}=D, f_{a}(C)=C, \\
f_{a}(A o C) & =f_{a}(A)=D
\end{aligned}
$$

and

$$
f_{a}(A) o f_{a}(c)=D o C=E \neq D,
$$

which means that

$$
f_{a}(A o C) \neq f_{a}(A) o f_{a}(c)
$$

So f_{a} is a partial homomorphism on X with respect to subalgebra M such that $f_{a}(0)=0$.
(b) Let $f, g: X \rightarrow X$ be defined as

$$
\begin{align*}
& f(x)=x \text { for all } x \neq 1, f(1)=0 \tag{2.2}\\
& g(x)=0 \text { for all } x \neq 1, g(1)=1 \tag{2.3}
\end{align*}
$$

Then f and g are homomorphisms on subalgebra

$$
L=\{0, A, B, C, D, E, F\} .
$$

But

$$
\begin{aligned}
& f(C o 1)=f(0)=0 \text { and } f(C) o f(1)=C o 0=C \\
& g(1 o E)=g(B)=0 \text { and } g(1) o g(E)=1 o 0=1
\end{aligned}
$$

imply that f and g are not homomorphisms on X.
Since L is a maximal subalgebra of X, f and g are hyper partial homomorphisms w.r.t. L.

Some exampies.

We recall BCH-algebras X and Y discussed in theorem (1.8) and define:
Definition (3.1) :-For a given function f from X into itself, we define h_{1}, h_{2}, h_{3} on Y as
and

$$
h_{1}(x)=h_{2}(x)=h_{3}(x)=f(x) ; x \in X ;
$$

$$
h_{1}(t)=0, h_{2}(t)=t \text { and } h_{3}(t)=z \text { for some fixed } z \neq 0, z \in X .
$$

Now, we see that
Lemma (3.2) :- h_{1} and h_{2} are homomorphisms in Y iff f is a homomorphism in X.
Proof :- Suppose that h_{1} and h_{2} are homomorphisms on Y. Then

$$
h_{1}(x)=h_{2}(x)=f(x) ; x \in X
$$

implies that f is a homomorphism in X.
Suppose that f is a homomorphism in X. Then

$$
\begin{aligned}
f(0) & =0 . & \text { Now for } x \in X, \text { we have } \\
h_{1}(x \otimes t) & =h_{1}(x)=f(x), &
\end{aligned}
$$

$$
\begin{gathered}
h_{1}(x) \otimes h_{1}(t)=f(x) * 0=f(x), \\
h_{1}(t \otimes x)=h_{1}(t)=0 \\
h_{1}(t) \otimes h_{1}(x)=0 * f(x)=0,
\end{gathered}
$$

since X is positive.
Also

$$
\begin{array}{r}
h_{1}(0 \otimes t)=h_{1}(t)=0 \\
h_{1}(0) \otimes h_{1}(t)=f(0) \otimes 0=0
\end{array}
$$

This proves that h_{1} is a homomorphism on Y.
Again, For $x \in X$, we have

$$
\begin{gathered}
h_{2}(x \otimes t)=h_{2}(x)=f(x), \\
h_{2}(x) \otimes h_{2}(t)=f(x) \otimes t=f(x) ; \\
h_{2}(t \otimes x)=h_{2}(t)=t, \\
h_{2}(t) \otimes h_{2}(x)=t \otimes f(x)=t .
\end{gathered}
$$

Also, $\quad h_{2}(0 \otimes t)=h_{2}(t)=t$,

$$
h_{2}(0) \otimes h_{2}(t)=0 \otimes t=t . \text { So } h_{2} \text { is a homomorphism on } Y .
$$

Lemma (3.3) :- h_{3} is a hyper partial homomorphism on Y.
Proof:- Since $h_{3}(0 \otimes t)=h_{3}(t)=z$ and $h_{3}(0) \otimes h_{3}(t)=0 * z=0$,
we see that h_{3} is not a homomorphism on Y.
Also $h_{3}(x)=f(x)$ is a homomorphism in X and X in a maximal subalgebra of Y. This proves that h_{3} is a hyper partial homomorphism on Y.

We recall the BCH -algebras X and Y, elements u, v, b and binary operation*and \otimes discussed in the proof of theorem [1.10] and define:

Definition (3.4) :- Let f be a homomorphism on X. We consider functions $g_{1}, g_{2}, g_{3}, g_{4}, g_{5}$ on Y defined as

$$
g_{1}(x)=g_{2}(x)=g_{3}(x)=g_{4}(x)=g_{5}(x)=f(x) \text { for } x \in X
$$

and $g_{1}(b)=0, g_{2}(b)=b, g_{3}(b)=u, g_{4}(b)=v$ and $g_{5}(b)=t$ for some fixed $t \in X$.
Lemma (3.5) :- g_{1} is a homomorphism on Y iff $f(u)=0$, and $f(v)=0$.
Proof :- Suppose that g_{1} is a homomorphism on Y. Then $u \otimes b=b \quad$ (Relation(1.6))

$$
\begin{array}{lc}
\Rightarrow & g_{1}(b)=g_{1}(u \otimes b)=g_{1}(u) \otimes g_{1}(b) \\
\Rightarrow & 0=f(u) * 0 \Rightarrow f(u)=0 \tag{3.1}
\end{array}
$$

Again, $\quad v \otimes b=0$
$\Rightarrow \quad g_{1}(0)=g_{1}(v \otimes b)=g_{1}(v) \otimes g_{1}(b)$
$\Rightarrow \quad f(0)=f(v) * 0$
$\Rightarrow \quad f(v)=0$.
Conversely, suppose that $f(u)=0$ and $f(v)=0$. Then g_{1} is a homomorphism can be proved by simple calculation.

Remark (3.6) :- Above result shows that if f is a homomorphism such that either $f(u) \neq 0$ or $f(v) \neq 0$ then g_{1} is not a homomorphism on Y, but it is a homomorphism w.r.t. X. So in this case g_{1} is a hyper partial homomorphism on Y, because X is a maximal BCH-subalgebra of Y.

Lemma (3.7) :- g_{2} is a homomorphism on Y iff conditions
(i) $\quad f(u)=u$
(ii) $f(v)=v$
and (iii) $f: X-\{u, v\} \rightarrow X-\{u, v\}$ are satisfied.
Proof :- Let g_{2} be a homomorphism on Y. Then $v \otimes b=0$

$$
\begin{array}{ll}
\Rightarrow & g_{2}(0)=g_{2}(v \otimes b)=g_{2}(v) \otimes g_{2}(b) \\
\Rightarrow & 0=f(v) \otimes b \tag{3.3}
\end{array}
$$

again,

$$
b \otimes v=b
$$

$$
\begin{equation*}
\Rightarrow \quad b \otimes f(v)=b \tag{3.4}
\end{equation*}
$$

From the definition of binary operation \otimes given in (1.4) to (1.8), (3.3) and (3.4) are possible only when $f(v)=v$.
again,
$u \otimes b=b$
$\Rightarrow \quad g_{2}(u \otimes b)=g_{2}(b)$
$\Rightarrow \quad g_{2}(u) \otimes g_{2}(b)=b$
$\Rightarrow \quad f(u) \otimes b=b$
Also,

$$
\begin{equation*}
b \otimes u=0 \tag{3.5}
\end{equation*}
$$

$$
\Rightarrow \quad g_{2}(b \otimes u)=g_{2}(0)=f(0)=0
$$

$$
\begin{equation*}
\Rightarrow \quad g_{2}(b) \otimes g_{2}(u)=0 \tag{3.6}
\end{equation*}
$$

$\Rightarrow \quad b \otimes f(u)=0$
From the definition of binary operation \otimes given in theorem (1.10), (3.5) and (3.6) are possible only when $f(u)=u$.

Further,

$$
\begin{align*}
& x \otimes b \\
& =x \text { and } b \otimes x=b \text { for } x \neq u, x \neq v \\
\Rightarrow & g_{2}(x \otimes b)=g_{2}(b) \text { and } g_{2}(b \otimes x)=g_{2}(b) \tag{3.7}\\
\Rightarrow & f(x) \otimes b=b \text { and } b \otimes f(x)=b
\end{align*}
$$

The definition of binary operation \otimes imply that (3.7) can the satisfied only when $f(x) \in X-\{u, v\}$,
i.e, $\quad f:(X-\{u, v\}) \rightarrow(X-\{u, v\})$

So conditions (i), (ii) and (iii) are satisfied.
Conversely, suppose that conditions (i), (ii) and (iii) are satisfied. Then simple computation shows that g_{2} is a homomorphism.

Remark (3.8) :- From the above lemma it follows that if we take a homomorphism f not satisfying any one of the conditions of the above lemma, then g_{2} is not a homomorphism on Y and in that case f is a hyper partial homomorphism on Y.

Lemma (3.9) :- g_{3} is not a homomorphism on Y.
Proof :- If possible, suppose that g_{3} is a homomorphism on Y, then the condition $b \otimes y=b$ for $y \neq u$.

$$
\begin{align*}
& g_{3}(b \otimes y) & =g_{3}(b)=u \\
\Rightarrow & g_{3}(b) \otimes g_{3}(y) & =u \\
\Rightarrow & u^{*} f(y) & =u \tag{3.8}
\end{align*}
$$

Again the condition, $y \otimes b=b$ for $y \neq u, y \neq v, y \in X$.

$$
\begin{array}{cc}
\Rightarrow & g_{3}(y \otimes b)=g_{3}(b)=u \\
\Rightarrow & g_{3}(y) \otimes g_{3}(b)=u \\
\Rightarrow & f(y) * u=u \tag{3.9}
\end{array}
$$

Thus for $y \neq u, y \neq v$, condition (3.8) and (3.9) imply that

$$
((f(y) * u) *(f(y) * 0)) *(0 * u)=(u * f(y)) * 0=u * 0=u \neq 0
$$

This contradicts our assumption that X is a BCK/BCI-algebra. Hence g_{3} is not a homomorphism.

Remark (3.10) :- From the above result it follows that for every homomorphism f defined on X, g_{3} is not a homomorphism on Y. Since X is a maximal subalgebra of Y, g_{3} is a hyper partial homomorphism on Y w.r.t. X. (Since every BCK/BCI-algebra is a BCH -algebra).

Remark (3.11) :-Similar arguments show that g_{4} and g_{5} are not homomorphisms on Y . So g_{4} and g_{5} are also hyper partial homomorphism on Y w.r.t. X.

References

1. Chakravarti, R.K.; Kumari, Shilpa and Prasad, R.L.; Some specific BCH-algebras, Acta Ciencia Indica, Vol. XLIII, No.2, 159-163 (2017).
2. Gautam Kumar Pandey, Md. Ilyas and R.L. Prasad : Homomorphism, Partial Homomorphism sand Pair Homomorphism in BE-Algebras, Acta Ciencia Indica, Vol. XLIVM. No. 1, PP 7-11 (2018).
3. Imai, Y. and Iseki, K.; On axioms systems of propositional alculi, XIV Proc. Japan Academy 42 (1966), 19-22.
4. Iseki, K. and Tanaka, S., An introduction to the theory of BCK-algebras, Math Japonica 23 (1978), 1-26.
5. Hu, Q.P. and Li, X., On BCH-algebras, Math Seminar Notes, 11, 313-320 (1983).
6. Kumari, Shilpa, Ilyas, M. and Prasad, R.L., Some structural properties in BCH-algebras, Acta Ciencia Indica, Vol. XLII, No. 2,/85-92 (2017).
7. Rashmi Rani, Disjoint Elements in a BCK-algebra, Acta Ciencia Indica, Vol. XXXIXM No,, 459-462 (2013).
8. Rashmi Rani, Puja, BCK/BCH algebras with mutually disjoint elements, ICCIASH (2020).
9. Shilpa Kumari, A study to the theory of Fuzzy Ideals and Fuzzy Soft Ideals of BCH-algebras, Ph.D. Thesis, (2018), Magadh University, Bodhgaya.
