
Acta Ciencia Indica, Vol. XLVI-M, No. 1 to 4 (2020) 43 

UNSTEDY MHD FLOW OF AN INCOMPRESSIBLE CONDUCTING 

FLUID THROUGH CYLINDRICAL POROUS DUCTS WITH 

PARABOLIC SECTION 
 

DR. VISHVAS CHAND 

School of Basic and Applied Science , Shobhit University Gangoh Saharanpur 247341 (U.P.) INDIA  

Email: vishvas.chand@ shobhituniversity.ac.in 

RECEIVED : 29 December, 2020 

In the present chapter we have investigated the 

unsteady flow of an incompressible conducting fluid 

through cylindrical porous ducts with parabolic section. The 

exact solution of the fluid equations for constant pressure 

distribution has been found. Some observations about the 

vorticity of the flow have been made. 
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INTRODUCTION: 

The subject of homogeneous flow through porous media has many technical and 

engineering applications in fields such as Petroleum industry and surface water hydrology. 

Muscut [18], Brydon and Dickey [3] have discussed the flow through porous media in 

connection with filtration. Ahamadi and Manavi [1] have derived the general equation of 

motion for the flow of a viscous fluid through a rigid porous medium and applied the results 

obtained to some basic flow problems. Mittal and Raina [13, 14] studied the vorticity of 

hydrodynamic and MHD flow of viscous incompressible fluid through porous media. 

Varshney and Sharma [25] investigated the theoretical analysis of steady viscous 

incompressible flow through porous medium in an inclined channel.  

 Narshima Murthy et al [19] have discussed the influences of magnetic field on the 

velocity of a conducting fluid in a porous media. Kumar  et al [11] have given a theoretical 

analysis of an unsteady laminar flow of viscous incompressible and electrically conducting 

fluid through a porous medium in a channel in the presence a radial magnetic field and time 

dependent pressure gradient. Recently Mittal et al [15, 16, 17] investigated the vorticity of 

hydrodynamic and MHD flow of a steady viscous conducting fluid downs an inclined porous 

conducting plane with a bed of varying permeability. Shukla, P.K., Dhasmana V. and 

Bijalwan, M. [23] has recently studied the MHD flow of incompressible conducting fluid 

through cylindrical   porous duct with parabolic section.  
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 The purpose of this chapter is to discuss the influences of an incompressible conducting 

fluid through cylindrical porous duct with parabolic section while constant pressure is applied. 

In this case we have derived closed form solution of the governing equations and the effects of 

uniform applied magnetic field are indicated. Some observations have been made about the 

velocity and the vorticity of the flow. 

NOMENCLATURE: 

     = Density 

   v  = Velocity Vector  

   p  = Pressure.  

     = Fluid Viscosity   

   k  = Permeability    

   J  = Current density vector   

   H  = Magnetic and Induction    

   Ho  = Magnetic Field 

FORMULATION OF THE PROBLEM: 

Let us consider the motion of an incompressible, viscous, electrically conducting fluid, 

Permeated by an applied magnetic field in an isotropic porous medium. The equations 

governing the motion are 
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Let us consider the flow in a cylindrical porous tube with parabolic cross-section. The 

three impervious surface are given by  

   2 2 constant –  parabolic cylinder 2y x    
  

   2 2 constant –  parabolic cylinder 2y x    
 

...(3) 

    constant –  z  plane normal to the cylinder axis.
  

Let   denotes the coordinate parallel to the flow direction,   the coordinate 

perpendicular to the flow and z the coordinate perpendicular to   and   coordinates. The 

applied magnetic field Ho is uniform and is transverse to the flow. Let us consider the uniform 
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unsteady motion of an incompressible fluid through the cylindrical porous tube with parabolic 

cross-section. Let 0u represents the suction velocity at the axis of the tube, then from equation 

of continuity 0
v

z





 with the condition that at 00,z v u   everywhere. From the symmetry 

of the problem all physical variables will be functions of z only. Let the pressure p be constant. 

For simplicity we assume that mR  the magnetic Reynolds number is small, there by rendering 

Maxwell’s equations redundant.  

Now the equation of motion thus reduces to  
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Then the equation (4), becomes 
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The boundary conditions of the problem are  

    0( ,0)v z v  

    (0, ) 0xv t 

 

    

( , ) 0v a t 
 

...(7) 

Applying Laplace transforms on each term of equation (4), we get 
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By equation (7) this reduces to  
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Also on applying Laplace transforms on conditions given by (7), we get 

    (0, ) 0xv p   

    ( , ) 0v a p   ...(9) 

The solution of equation (8) will be  
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By applying condition (9), we get  
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Hence solution (10), becomes 
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where,   
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Taking Inverse Laplace transform of the equation (12), the velocity distribution is given 

by 
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NUMERICAL RESULTS AND DISCUSSION 

Table-(1) 

  k΄=0.1, t=0.1 

 Z 0.0 0.2 0.4 0.6 0.8 1.0 

M=0 v΄ -0.1403 0.0652 0.0097 0.0848 0.1592 0.2348 

M=.5 v΄ -0.1383 -0.0651 0.0081 0.0812 0.1544 0.2276 

M=2 v΄ -0.1095 -0.0593 -0.0089 0.0413 0.0916 0.1418 

M=5 v΄ -0.0212 0.0151 -0.0089 -0.0027 0.0034 0.0095 
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Table-(2) 

   k΄=0.2, t=0.1 

 Z 0.0 0.2 0.4 0.6 0.8 1.0 

M=0 v΄ -0.1790 -0.0553 0.0683 01920 0.3157 0.4394 

M=.5 v΄ -0.1773 -0.0566 0.0639 0.1846 0.3053 0.4259 

M=2 v΄ -0.1483 -0.0654 -0.0175 0.1004 0.1833 0.2662 

M=5 v΄ -0.0324 0.0222 -0.0121 -0.0019 0.0082 0.0183 

Table-(3) 

   k΄=0.1, t =0.1 

 Z 0.0 0.2 0.4 0.6 0.8 1.0 

M=0 v΄ -0.2435×10
-8 

-0.2434×10
-8 

-0.2432×10
-8 

-0.2431×10
-8 

-0.2430×10
-8 

-0.2428×10
-8 

M=.5 v΄ -0.1479×10
-8 

-0.1478×10
-8 

-0.1477×10
-8

 -0.1476×10
-8

 -0.1475×10
-8

 -0.1474×10
-8

 

M=2 v΄ -0.8272×10
-12 

-0.8267×10
-12 

-0.8262×10
-12 

-0.8257×10
-12 

-0.8252×10
-12 

-0.8247×10
-12 

M=5 v΄ -0.4770×10
-30 

-0.4767×10
-30 

-0.4765×10
-30 

-0.4762×10
-30 

-0.475×10
-30 

-0.4756×10
-30 

Table-(4) 

   k΄=0.2,  t=0.1 

 Z 0.0 0.2 0.4 0.6 0.8 1.0 

M=0 v΄ -0.4833×10
-4 

-0.4830×10
-4 

-0.4827×10
-4 

-0.4824×10
-4 

-0.4820×10
-4 

-0.4818×10
-4 

M=.5 v΄ -0.2967×10
-4 

-0.2965×10
-4 

-0.2963×10
-4 

-0.2961×10
-4 

-0.2959×10
-4 

-0.2957×10
-4 

M=2 v΄ -0.1786×10
-7 

-0.1785×10
-7 

-0.1783×10
-7 

-0.1782×10
-7 

-0.1781×10
-7 

-0.1780×10
-7 

M=5 v΄ -0.1051×10
-25 

-0.105×10
-25 

-0.1049×10
-25 

-0.1048×10
-25 

-0.1048×10
-25 

-0.1047×10
-25 

Table-(5) 

   k΄=0.1, t=0.1 

 Z 0.0 0.2 0.4 0.6 0.8 1.0 

M=0 y  0.000 -0.1707 -0.3414 -0.5121 -0.6828 -0.8535 

M=.5 y  0.000 -0.1665 -0.3330 -0.4994 -0.6559 -0.8324 

M=2 y  0.000 -0.1144 -0.2280 -0.3433 -0.4577 -0.5721 

M=5 y  0.000 -0.0140 -0.0280 -0.0420 -0.0560 -0.0701 

Table-(6) 

   k΄=0.2, t=0.1 

 Z 0.0 0.2 0.4 0.6 0.8 1.0 

M=0 y  0.000 -0.2814 -0.5628 -0.8443 -1.1257 -1.4071 

M=.5 y  0.000 -0.2745 -0.5489 -0.8225 -1.0979 -1.3724 

M=2 y  0.000 -0.1886 -0.3773 -0.5659 -0.7546 -0.9432 

M=5 y  0.000 -0.0231 -0.0462 -0.0693 -0.0924 -0.1155 

Table-(7) 

   k΄=0.1, t=0.1 

 Z 0.0 0.2 0.4 0.6 0.8 1.0 

M=0 y  0.000 -0.3505×10
-11

 -0.7010×10
-11

 -1.0516×10
-11

 -1.4021×10
-11

 -1.7526×10
-11

 

M=.5 y  0.000 -0.2126×10
-11

 -0.4251×10
-11

 -0.6378×10
-11

 -0.8504×10
-11

 -1.0630×10
-11

 

M=2 y  0.000 -0.1156×10
-14

 -0.2352×10
-14

 -0.2352×10
-14

 -0.4703×10
-14

 -0.5879×10
-14

 

M=5 y  0.000 -0.6761×10
-33

 -1.3521×10
-33

 -2.0282×10
-33

 -2.7043×10
-33

 -3.3804×10
-33
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Table-(8) 

   k΄=0.2, t=0.1 

 Z 0.0 0.2 0.4 0.6 0.8 1.0 

M=0 y  0.000 -0.7721×10
-7

 -1.5442×10
-7

 -2.3163×10
-7

 -3.0884×10
-7

 -3.8605×10
-7

 

M=.5 y  0.000 -0.4683×10
-7

 -0.9366×10
-7

 -1.4049×10
-7

 -1.8732×10
-7

 -2.3415×10
-7

 

M=2 y  0.000 -0.2590×10
-10

 -0.5180×10
-10

 -0.7770×10
-10

 -1.0360×10
-10

 -1.295×10
-10

 

M=5 y  0.000 -0.1489×10
-28

 -0.2978×10
-28

 -0.4467×10
-28

 -0.5957×10
-28

 -0.7446×10
-28

 

 

Fig. (1) Vorticity Profile at t=0.1 

 

Fig. (2) Vorticity Profile at t=0.1 
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Fig. (3) Vorticity Profile at t=2 

 

Fig. (4) Vorticity Profile at t=2 

 

Fig. (5) Vorticity Profile at t=0.1 
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Fig. (6) Vorticity Profile at t=0.1 

 

Fig. (7) Vorticity Profile at t=2 

 

Fig. (8) Vorticity Profile at t=2 
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RESULTS & DISCUSSION: 

From Tables 1 to 4 and figs. (1), (2), (3), (4) we observe that 

As we move away from the axis of the tube the velocity decreases. Somewhere near the 

axis the velocity of flow becomes zero and then it again increases continuously. They region 

of zero velocity exists slightly away from the axis. As the value of M increases the rate of 

increase of velocity is almost constant. It is noticeable that at the moment when velocity is 

zero, vorticity  does not vanish.   

As the value of magnetic parameter M increases the velocity of flow decreases 

throughout. For small values of t, with increases in magnetic the parameter M, the velocity 

decreases slowly. The effect of the permeability parameter k΄ is to increases the velocity of the 

fluid. For large value of t, the velocity of fluid decreases sharply. 

From Tables 5 to 8 and figs (5), (6), (7), (8) we observe that 

Vorticity is zero at the axis of the cylindrical tube (with elliptic section ), i.e., the flow is 

irrotational  at the axis of the tube , and as we move away from the axis of the tube vorticity 

comes into picture and increases with the increases in distance from the axis of the tube. For 

fixed t and  k΄ with increases in magnetic parameter M the vorticity decreases slowly. For the 

fixed t and M the vorticity increases with increases in k΄, the permeability parameter. For fixed 

k΄ with increases in time t the vorticity decreases sharply. As the value of t and k΄ increases, 

value of vorticity although increase but its rate of increase decreases continuously. But for 

increased k΄ and t the role of vorticity does not remain predominant and the flow remains 

almost irrotational. 
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