ON GENERALIZED ($\mathrm{N}, \mathrm{p}_{\mathrm{n}}, \mathrm{q}_{\mathrm{n}}$) SUMMABILITY

 NEETESH KUMAR

 NEETESH KUMAR}
(T.G.T. Science) J.P.N. Inter College, Nawabganj, Bareilly (Uttar Pradesh)-262406

RECEIVED : 26 November, 2020

Definitions and notations

A series $\sum a_{n}$ is said to be strongly summable $G(N, p, \lambda)$ with index $\sigma(\sigma \geq 1)$ to s , or simply summable $\left[G(N, p, \lambda]_{\sigma}\right.$, if

$$
\frac{1}{\left|\sum_{v=0}^{n} \in_{n-v} \mu_{v}\right|} \sum_{v=0}^{n}\left|B_{v}\right|\left|J_{v}^{*}-s\right|^{\sigma}=0(1)
$$

or
where

$$
\begin{gathered}
\frac{1}{\left|(\epsilon * \mu)_{n}\right|} \sum_{v=0}^{n}\left|B_{v}\right|\left|J_{v}^{*}-s\right|^{\sigma}=0(1) \\
(\epsilon * \mu)_{n}=\sum_{v=0}^{n} \epsilon_{n-v} \mu_{v}
\end{gathered}
$$

we shall also use the notations
and

$$
\begin{aligned}
(\xi * \mu)_{n} & =\sum_{v=0}^{n} \xi_{n-v} \mu_{v} \\
(\psi * \mu)_{n} & =\sum_{v=0}^{n} \psi_{n-v} \mu_{v}
\end{aligned}
$$

We define the sequences of constants $\left\{c_{n}\right\},\left\{k_{n}\right\}$ and $\left\{l_{n}\right\}$ by means of the following identities [5]

$$
\begin{align*}
& c(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=p(z)^{-1}, \quad c_{-1}=0 \tag{1.1}\\
& k(z)=\sum_{n=0}^{\infty} k_{n} z^{n}=q(z) p(z)^{-1}, \quad k_{-1}=0 \tag{1.2}\\
& l(z)=\sum_{n=0}^{\infty} l_{n} Z^{n}=p(z) q(z)^{-1}, \quad l_{-1}=0 \tag{1.3}
\end{align*}
$$

2ntroduction

eneralizing the theorems of BORWEIN and CASS [2] for Nörlund summability of infinite series SINHA and KUMAR [6] and CHANDRA [3] proved the following theorems.

Theorem I : If $p_{n}>0$ for all $n q_{o}>0, q_{n} \geq 0$ for all $n>0, \lambda \geq 1(N, q, \alpha)$ is regular.
and

$$
\begin{gathered}
\sum_{n=0}^{\infty} a_{n}=0[N, p, \alpha]_{\lambda} \\
\sum_{n=0}^{\infty} \mathrm{b}_{n} \text { is bounded }(N, q, \alpha)
\end{gathered}
$$

then

$$
\sum_{n=0}^{\infty} c_{n}=0(N, r, \alpha)
$$

Theorem II: If $p_{n}>0$ for all $n, q_{o}>0, q_{n} \geq 0$ for all $n>0, \lambda \geqq 1(N, p, \alpha)$ and (N, p, α) are regular.

$$
\sum_{n=0}^{\infty} a_{n}=s[N, p, \alpha]
$$

and

$$
\sum_{n=0}^{\infty} b_{n}=t[N, q, \alpha]
$$

then

$$
\sum_{n=0}^{\infty} \mathrm{c}_{n}=s t[N, r, \alpha]
$$

Theorem III: If $p_{n}>0, q_{n}>0$ and $\alpha_{n}>0$ for all $\mathrm{n}, \lambda \geqq 1(N, q, \alpha)$ is regular,

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n}=0[N, p, \alpha]_{\lambda} \\
& \sum_{n=0}^{\infty} b_{n} \text { is bounded }[N, q, \alpha]_{\lambda}, \text { then } \\
& \sum_{n=0}^{\infty} \mathrm{c}_{n}=0[N, r, \alpha]_{\lambda}
\end{aligned}
$$

3. The object of this paper is to establish these theorems for $\mathrm{G}(\mathrm{N}, \mathrm{p}, \mathrm{q})$ summability.

Theorem 1: If $p_{n}>0$ for all $n, q_{o}>0, q_{n} \geq 0$ for all $\mathrm{n}>0, \sigma \geqq 1 \quad[G(N, q, \lambda)]$ is regular.

$$
\sum_{n=0}^{\infty} a_{n}=0[\mathrm{G}(N, q, \alpha)]_{\sigma}
$$

and

$$
\begin{aligned}
& \sum_{n=0}^{\infty} b_{n} \text { is bounded }[G(N, q, \lambda)], \\
& \sum_{n=0}^{\infty} c_{n}=0[G(N, r, \lambda)]
\end{aligned}
$$

Theorem 2: If $p_{n}>0$ for all $\mathrm{n} q_{o}>0, q_{n} \geq 0$ for all $\mathrm{n}>0, \sigma \geqq 1[G(N, p, \lambda)]$ and [$G(N, p, \lambda)]$ is regular.
and

$$
\sum_{n=0}^{\infty} a_{n}=s[G(N, p, \lambda)]_{\sigma}
$$

$$
\sum_{n=0}^{\infty} b_{n}=t[G(N, q, \lambda)]
$$

then

$$
\sum_{n=0}^{\infty} \mathrm{c}_{n}=\operatorname{st}[G(N, r, \lambda)]
$$

Theorem 3: If $p_{n}>0, q_{n}>0$ and $\alpha_{n}>0$ for all $\mathrm{n}, \sigma \geqq 1,[G(N, q, \lambda)]$ is regular.
and

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n}=0[\mathrm{~g}(N, p, \lambda)]_{\sigma} \\
& \sum_{n=0}^{\infty} b_{n} \text { is bounded }[\mathrm{g}(N, q, \lambda)]_{\sigma} \\
& \sum_{n=0}^{\infty} \mathrm{c}_{n}=0[\mathrm{~g}(N, r, \lambda)]_{\sigma}
\end{aligned}
$$

4. We shall use the following lemma for the proof of our theorem:

Lemma- Let $\lambda_{n} \neq 0$ for $n \geq 0$. Then the necessary and sufficient conditions that $G(N, p, \lambda)$ should imply $G(N, p, \lambda)$ are that

$$
\begin{equation*}
\sum_{i=0}^{n}\left|(\epsilon * \mu)_{i} \sum_{v=i}^{n} \xi_{n-i} C_{b-i}\right|=0\left((\xi * \mu)_{n}\right) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{n-i}=\sum_{v=i}^{n} \xi_{n-i} \mathrm{C}_{v-i}=0\left((\xi * \mu)_{n}\right) \tag{4.2}
\end{equation*}
$$

$\boldsymbol{P}_{\text {roof of the lemma }}$

$W_{\text {riting }}$

$$
J_{n}^{(\alpha)}=(\epsilon * \mu)^{-1} \sum_{v=0}^{n} \epsilon_{n-v} t_{v}^{\alpha} \mu_{v}
$$

we have by a similar inversion formula

$$
t_{n}^{\alpha}=\mu_{n}^{-1} \sum_{v=0}^{n} c_{n-v}(\epsilon * \mu)_{v} J_{v}^{(\alpha)}
$$

thus
where

$$
\begin{align*}
\zeta_{n}^{(\alpha)} & =(\xi * \mu)_{n}^{-1} \sum_{v=0}^{n} \xi_{n-v} t_{v}^{\alpha} \mu_{v} \\
& =(\xi * \mu)_{n}^{-1} \sum_{v=0}^{n} \xi_{n-v} \sum_{i=0}^{v} c_{v-i} \times(\xi * \mu)_{i} J_{i}^{(\alpha)} \\
d_{n, i} & =\left\{\begin{array}{ll}
\frac{(\xi * \mu)_{i}}{(\xi * \mu)_{n}} \sum_{v=1}^{n} \xi_{n-v} c_{v-i} & (i \leq n) \\
0 & (i>n)
\end{array}\right\} \tag{4.3}
\end{align*}
$$

If, $s_{n}=1$ for all n, then $J_{n}^{(\alpha)}=1$ and $\zeta_{n}^{(\alpha)}=1$, so that

$$
\begin{equation*}
\sum_{i=0}^{n} d_{n, i}=1 \text { for every } n \tag{4.4}
\end{equation*}
$$

Hence it follows from TOEPLITZ'S theorem [5] (Th. 2) that the transformation (4.3) is regular if and only if conditions (4.1) and (4.2) of the lemma are satisfied.

For $\alpha=1$, this lemma reduces to the DAS's lemma [[4], lemma 1]

Proof of the theorem 1 :

$U_{\text {sing }}$ Hölder's inequality, it is easy to show that $\sigma>1$,

$$
\begin{equation*}
[G(N, p, \lambda)]_{\sigma} \Rightarrow[G(N, p, \lambda)]_{1} \tag{1}
\end{equation*}
$$

Thus it is sufficient of prove theorem 1 for case $\sigma=1$.
Let
and

$$
\begin{aligned}
& \omega_{n}^{*}=\frac{1}{(\in * \mu)_{n}} \sum_{v=0}^{n}(\xi * \mu)_{n-v} b_{v} \\
& v_{n}^{*}=\frac{1}{(\Psi * \mu)_{n}} \sum_{v=0}^{n}(\Psi * \mu)_{n-v} c_{v}
\end{aligned}
$$

Now $(\psi * \mu)_{n} v_{n}^{*}$ is the coefficient of x_{n} in the series.

$$
\begin{aligned}
\sum_{n=0}^{\infty}(\Delta \in & * \mu)_{n} J_{v}^{*} \times^{n} \sum_{n=0}^{\infty}(\xi * \mu)_{n} \omega_{n}^{*} \mathrm{x}^{n} \\
& =(\Delta \in * \mu)(x) a(x)(1-x)^{-1}(\Delta \xi * \mu) x b(x) \\
& =(\Delta \in * \mu)(x)(\Delta \xi * \mu)(x)(1-x)^{-1} c(x) \\
& =(\psi * \mu)(x) c(x)
\end{aligned}
$$

Thus
and so

$$
(\psi * \mu)_{n} v_{n}^{*}=\sum_{v=0}^{\infty}(\Delta \in * \mu)_{v} j_{v}^{*}(\xi * \mu)_{v}\left|\omega_{n-v}^{*}\right|
$$

$$
(\psi * \mu)_{n}\left|v_{n}^{*}\right| \leqq \sum_{v=0}^{\infty}(\Delta \in * \mu)_{v}\left|j_{v}^{*}\right|(\xi * \mu)_{n-v}\left|\omega_{n-v}^{*}\right|
$$

since by hypothesis

$$
\sum_{r=0}^{\infty}(\Delta \in * \mu)_{r}\left|j_{v}^{*}\right|=0(\epsilon * \mu)_{n}
$$

and

$$
\left|\omega_{n}^{*}\right|=0(1)
$$

it follow that

$$
\begin{aligned}
(\Psi * \mu)_{n}\left|v_{n}^{*}\right| & \leqq H \sum_{v=0}^{\infty}(\Delta \in * \mu)_{v}\left|j_{v}^{*}\right|(\xi * \mu)_{n-v} \\
& =H \sum_{v=0}^{\infty}(\Delta \xi * \mu)_{n-v} \sum_{r=0}^{\infty}(\Delta \in * \mu)_{r}\left|j_{v}^{*}\right| \\
& =H \sum_{v=0}^{\infty}(\Delta \xi * \mu)_{n-v} 0(\epsilon * \mu)_{r}
\end{aligned}
$$

Since $[G(N, q, \lambda)]$ is regular, the final sum is $0(\psi * \mu)_{n}$.
Thus

$$
\begin{aligned}
v_{n}^{*} & =0(1), \text { and so } \\
\sum_{n=0}^{\infty} c_{n} & =0[G(N, r, \lambda)] \text { as required }
\end{aligned}
$$

Proof of the theorem 2 :

$$
\text { If } s=0 \text { the result is an immediate consequence of theorem } 1 \text {. Suppose } s \neq 0 \text {. Let }
$$

$$
a_{o}^{\prime}=a_{o}-s, a_{n}^{\prime}=a_{n} \quad \text { for } n>0
$$

and
then

$$
\begin{aligned}
c_{n}^{\prime} & =\sum_{v=0}^{n} a_{v}^{\prime} b_{n-v} \\
c_{n}^{\prime} & =c_{n}-s b_{n}
\end{aligned}
$$

Thus, since

$$
\sum_{n=0}^{\infty} a_{n}^{\prime}=0[G(N, p, \lambda)]_{1}
$$

by hypothesis, we have

$$
\sum_{n=0}^{\infty} c_{n}^{\prime}=0[G(N, r, \alpha)]
$$

by theorem 1. Further since $[G(N, p, \lambda)]$ is regular

$$
\begin{aligned}
{[G(N, q, \lambda)] } & \Rightarrow[G(N, r, \lambda)] \\
\sum_{n=0}^{\infty} b_{n} & =t[G(N, r, \lambda)]
\end{aligned}
$$

Hence since

$$
\sum_{n=0}^{m} c_{n}=\sum_{n=0}^{m} c_{n}^{\prime}+s \sum_{n=0}^{m} b_{n} \text { for } m=0,1,2, \ldots \ldots \ldots
$$

it follows that

$$
\sum_{n=0}^{\infty} c_{n}=s t[G(N, r, \lambda)]
$$

This completes the proof.

PROOF OF THE THEOREM 2 :

Det

$$
v_{n}^{*}=\frac{(f * \mu c)_{n}}{(\Delta \psi * \mu)_{n}}
$$

and

$$
\omega_{n}^{*}=\frac{(l * \mu b)_{n}}{(\Delta \xi * \mu)_{n}}
$$

Now

Thus

$$
\begin{gathered}
\sum_{v=0}^{\infty}(\Delta \psi * \mu)_{n} v_{n}^{*} x_{n} \\
=\sum_{v=0}^{\infty}(\Delta \epsilon * \mu)_{n} J_{n}^{*} x^{n} \sum_{n=0}^{\infty}(\Delta \xi * \mu)_{n} \omega_{n}^{*} x_{n} \\
(\Delta \psi * \mu)_{n} v_{n}^{*}=\sum_{v=0}^{\infty}(\Delta \epsilon * \mu)_{v} J_{v}^{*}(\Delta \xi * \mu)_{n-v} \omega_{n-v}^{*}
\end{gathered}
$$

and so we have

$$
\left\{(\Delta \psi * \mu)_{n}\left|v_{n}^{*}\right|\right\}^{\sigma} \leqq\left\{\sum_{v=0}^{\infty}(\Delta \in * \mu)_{v}\left|j_{v}^{*}\right|(\Delta \xi * \mu)_{n-v}\left|\omega_{n-v}^{*}\right|\right\}^{\sigma}
$$

Using Holder's inequality, we find that

$$
\begin{aligned}
&\left\{(\Delta \psi * \mu)_{n}\left|v_{n}^{*}\right|\right\}^{\sigma} \leqq\left\{\left.\sum_{v=0}^{\infty}(\Delta \epsilon * \mu)_{v}| |_{v}^{*}\right|^{\sigma}(\Delta \xi * \mu)_{n-v}\left|\omega_{n-v}^{*}\right|^{\sigma}\right\} \\
& \times\left\{\sum_{v=0}^{\infty}(\Delta \in * \mu)_{v}(\Delta \xi * \mu)_{n-v}\right\}^{\sigma-1}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{n=0}^{\infty}(\Delta \psi * \mu)_{n}\left|v_{n}^{*}\right|^{\sigma} \leqq & \sum_{n=0}^{m} \sum_{v=0}^{n}(\Delta \epsilon * \mu)_{v}\left|j_{v}^{*}\right|^{\sigma}(\Delta \xi * \mu)_{n-v}\left|\omega_{n-v}^{*}\right|^{\sigma} \\
& =\sum_{v=0}^{\infty}(\Delta \epsilon * \mu)_{v}\left|j_{v}^{*}\right|^{\sigma} \sum_{v=i}^{m}(\Delta \xi * \mu)_{n-v}\left|\omega_{n-v}^{*}\right|^{\sigma}
\end{aligned}
$$

Now, by hypothesis
and

$$
\begin{aligned}
\sum_{v=0}^{m}(\Delta \in * \mu)_{v}\left|j_{v}^{*}\right|^{\sigma} & =0(\epsilon * \mu)_{m} \\
\sum_{v=0}^{m}(\Delta \xi * \mu)_{v}\left|\omega_{v}^{*}\right|^{\sigma} & =0(\xi * \mu)_{m}
\end{aligned}
$$

thus

$$
\begin{aligned}
\sum_{v=0}^{m}(\Delta \psi * \mu)_{n}\left|v_{n}^{*}\right|^{\sigma} & \leqq H \sum_{v=0}^{m}(\Delta \in * \mu)_{v}\left|j_{v}^{*}\right|^{\sigma}(\xi * \mu)_{m-v} \\
& =H \sum_{v=0}^{m}(\Delta \xi * \mu)_{m-v} \sum_{\sigma=0}^{v}(\Delta \in * \mu)_{r}\left|j_{r}^{*}\right|^{\sigma} \\
& =H \sum_{v=0}^{m}(\Delta \xi * \mu)_{m-v} o(\Delta \in * \mu)_{v} \\
& =0(\psi * \mu)_{m}
\end{aligned}
$$

Since $[G(N, q, \lambda]$ is regular. Thus

$$
\sum_{n=0}^{\infty} C_{n}=0[G(N, r, \lambda)]_{\sigma} \text { as required. }
$$

References

1. BORWEIN, D. - On strong and absolute summability, Pro. Glasgow Math Assoc. 4, 122-139 (1960).
2. BORWEIN, D. AND CASS, F.P. - Strong Nörlund summability, Math- Zeitschr, 103, 94-111 (1968).
3. CHANDRA, S. - On absolute summability fields of infinite series, Ph.D. Thesis, Rohilkhand University, Bareilly (1984).
4. DAS, G. - On some method of summability I, Quart Jour of Math. 17, 244-256 (1966).
5. HARDY, G.H. - Divergent series, Oxford.
6. SINHA, R. AND KUMAR, N, - Multiplication theorems for strong (N, p, α) summability (communicated).
