AN ESTIMATE OF ULTRASPHERICAL SERIES BY GENERALIZED NÖRLUND MEANS

NEETESH KUMAR

(T.G.T. Science) J.P.N. Inter College,Nawabganj, Bareilly (Uttar Pradesh)-262406

RECEIVED : 26 November, 2020

Definitions and notations

(i) Let $f(\theta, \phi)$ be a function defined for the range $0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi$ on a sphere S . We suppose throughout that the function

$$
\begin{equation*}
f\left(\theta^{\prime}, \emptyset^{\prime}\right)\left[\sin ^{2} \theta^{\prime} \sin ^{2}\left(\varnothing-\emptyset^{\prime}\right)\right]^{\lambda-\frac{1}{2}} \tag{1.1}
\end{equation*}
$$

is absolutely integral (L) over the whole surface of the unit sphere.
A generalized mean value of $f(\theta, \varnothing)$ on the sphere has been defined by KOGBETLIANTZ [4, 5, 6, 7 and 8], we define the generalized mean value of $f(\theta, \varnothing)$ as follows

$$
\begin{equation*}
f(\omega)=\frac{\left.\sqrt{\left(\frac{1}{2}\right)} \sqrt{\left(\frac{1}{2}\right.}+\lambda\right)}{(\lambda) 2 \pi(\sin \omega)^{2 \lambda}} \int_{c_{\omega}} \frac{f\left(\theta^{\prime}, \emptyset^{\prime}\right)}{\left[\sin ^{2} \theta^{\prime} \sin ^{2}\left(\emptyset-\emptyset^{\prime}\right)\right]^{\frac{1}{2}-\lambda}} \tag{1.2}
\end{equation*}
$$

where the integral is taken along the small circle whose centre is (θ, \varnothing) on the sphere and whose curvilinear radius is ω.
(ii) (N, p, q) means of ultraspherical series - It is known that SZEGO [10]

$$
\begin{align*}
\sum(k+\lambda) P_{n}^{(\lambda)}(\cos \theta) & =\frac{1}{2} \frac{(m+2 \lambda) P_{m}^{(\lambda)}(\cos \theta)-P_{m+1}^{(\lambda)}(\cos \theta)(m+1)}{1-\cos \emptyset} \tag{1.3}\\
& =\frac{1}{2}\left[\frac{d}{d x}\left\{P_{m}^{(\lambda)}(x)+P_{m+1}^{(\lambda)}(x)\right\}_{x=\cos \theta}\right]
\end{align*}
$$

So the m th partial sum S_{m} of the series is given by

$$
S_{m}=\frac{\sqrt{(\lambda)}}{2\left(\frac{1}{2}\right)\left(\frac{1}{2}+\lambda\right)} \int_{0}^{\pi} f(\omega)\left[\frac{d}{d x}\left\{p_{m+1}^{(\lambda)}(x)+P_{m}^{(\lambda)}(x)\right\}\right]_{x=\cos \theta}(\sin \omega)^{2 \lambda} d \omega
$$

Now using the orthogonal property of the ultraspherical polynomials we have

$$
\begin{equation*}
S_{m}-f(P)=\frac{\sqrt{(\lambda)}}{2 \sqrt{\left(\frac{1}{2}\right) \sqrt{\left(\frac{1}{2}+\lambda\right)}}} \int_{0}^{\pi} F(\omega)\left[\frac{d}{d x}\left\{p_{m+1}^{(\lambda)}(x)+P_{m}^{(\lambda)}(x)\right\}\right]_{x=\cos \theta}(\sin \omega)^{2 \lambda} d \omega \tag{1.4}
\end{equation*}
$$

where $f(P)$ is the value of the function at a point P on the sphere.
Putting

$$
\begin{equation*}
F(\omega)=[f(\omega)-f(P)](\sin \omega)^{2 \lambda-1} \tag{1.5}
\end{equation*}
$$

Hence, in virtue of the definition of (N, p, q) means, we have

$$
\begin{equation*}
t_{n}^{p, q}-f(P)=\int_{0}^{\pi} F(\omega) L_{n}(\omega) d \omega \tag{1.6}
\end{equation*}
$$

where

$$
L_{n}(\omega)=\frac{\sqrt{(\lambda)}}{2 \sqrt{\left(\frac{1}{2}\right)\left[\left(\frac{1}{2}+\lambda\right)\right.}} \frac{1}{R_{n}} \sum_{k=0}^{\infty} p_{n-k} q_{k}\left[\frac{d}{d x}\left\{p_{m}^{(\lambda)}(x)+P_{m+1}^{(\lambda)}(x)\right\}\right]_{x=\cos \theta} \sin \omega
$$

where $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are positive and $\left\{q_{n}\right\}$ is non increasing sequences of real number such that

$$
\begin{gathered}
R_{n}=(p * q)_{n}=p_{0} q_{n}+p_{1} q_{n-1}+\cdots \ldots \ldots .+p_{0} q_{0}(\neq 0) \\
p_{-1}=q_{-1}=r_{-1}=0
\end{gathered}
$$

We suppose throughout that
and

$$
\begin{aligned}
& R_{n}^{\delta-1} \geq n^{\lambda-1}, n=1,2, \ldots \ldots \\
& \int_{0}^{t} R_{\left(\frac{1}{u}\right)}^{\delta} d u=0\left[R_{\left(\frac{1}{t}\right)}^{\delta}\right.
\end{aligned}
$$

2ntroduction

Gneralizing the theorem of PORWAL [9], GUPTA and PANDEY [3] have proved a theorem on the degree of approximation to a function $f(x)$ by Nörlund means of Fourier series.

Later on, generalizing the theorem of GUPTA and PANDEY [3] BEOHAR [1] has proved a theorem on the degree of approximation of a function by Nörlund means of ultraspherical series in the following form.

Theorem : Let $\left\{p_{n}\right\}$ be a positive non increasing sequence of real numbers such that $\left\{\frac{\left(P_{n}\right)^{\delta}}{n^{\lambda}}\right\}$ is increasing and

$$
\begin{equation*}
\int_{t}^{\delta} \frac{\left(\frac{1}{\phi}\right)^{|F(\varnothing)| P}}{\emptyset^{\lambda+1}}=0\left[t^{\lambda}\left(P_{\left(\frac{1}{t}\right)}\right)^{\delta}\right] \text { for } 0<\lambda<1,0<\delta<1 \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
t_{n}-f(P)=0\left(\frac{1}{P_{n}}\right)^{1-\delta} \tag{2.2}
\end{equation*}
$$

It may be mentioned here that the condition (2.1) is un-natural, because the right hand side approaches to zero $t \rightarrow 0$.
3. The object of the present paper is to improve the theorem on the degree of approximation to a function by its (N, p, q) means of ultraspherical series. However, our theorem is as follows.

Theorem : If $0<\delta \leq \pi, 0<\lambda<1$

$$
\begin{equation*}
\int_{t}^{\delta} \frac{\left(\frac{1}{\omega}\right)^{d \omega}}{\omega^{\lambda+1}}=0\left[\left(R_{\left(\frac{1}{t}\right)}\right)^{\delta}\right] \quad \text { as } t \rightarrow 0 \tag{3.1}
\end{equation*}
$$

and then

$$
\begin{equation*}
t_{n}-f(R)=0 \quad\left[\frac{n^{\lambda-1}}{\left(R_{n}\right)^{1-\delta}}\right]+0\left[\frac{n^{\lambda}}{R_{n}}\right] \tag{3.2}
\end{equation*}
$$

4. For the proof of the theorem we require the following lemmas

Lemma 1: [10] If $0<\lambda<1$ and C is a fixed constant and $n \rightarrow \infty$, then

$$
P_{n}^{(\lambda)}(\cos \theta)=\left\{\begin{array}{cc}
\theta^{-\lambda} 0\left(n^{\lambda-1}\right), & \frac{c}{n} \leq \theta \leq \frac{\pi}{2} \tag{4.1}\\
0\left(n^{2 \lambda-1}\right), & 0 \leq \theta \leq \frac{c}{n}
\end{array}\right\}
$$

Lemma 2: [2] If $0<\lambda<1$ and $0 \leq \omega \leq \pi$, then

$$
\begin{equation*}
L_{n}(\omega)=0\left(n^{2 \lambda+1} \omega\right) \tag{4.2}
\end{equation*}
$$

Lemma 3: [2] If $0<\lambda<1$ and $\pi-\frac{c}{n} \leq \omega \leq \pi$, then

$$
\begin{equation*}
L_{n}(\omega)=0\left(n^{2 \lambda} \sin \omega\right) \tag{4.3}
\end{equation*}
$$

where c is a positive constant
Lemma 4: The condition (3.1) implies that

$$
\begin{equation*}
\int_{o}^{t}|F(\omega)| d \omega=0\left[\frac{t^{\lambda+1}}{\left(R_{\left(\frac{1}{t}\right)}\right)^{1-\delta}}\right] \tag{4.4}
\end{equation*}
$$

Proof of the lemma we write

$$
\phi(t)=\int_{t}^{\delta} \frac{|F(\omega)| R_{\left(\frac{1}{\omega}\right)}^{d \omega}}{\omega^{\lambda+1}}=0\left[R_{\left.\left(\frac{1}{t}\right)^{\delta}\right]}\right.
$$

Hence, on integration by parts, we get

$$
\begin{aligned}
\int_{t}^{\delta}|F(\omega)| R_{\left(\frac{1}{\omega}\right)} d \omega & =\int_{t}^{\delta} u^{\lambda+1} \phi^{\prime}(u) d u \\
& =\left[u^{\lambda+1} \emptyset(u)\right]_{o}^{t}-\int_{o}^{t} u^{\lambda} \emptyset(u) d u \\
& =0\left[t^{\lambda+1}\left(R_{\left(\frac{1}{t}\right)}\right)^{\delta}\right]+0 \int_{o}^{t} u^{\lambda}\left(R_{\left(\frac{1}{u}\right)}\right)^{\delta} d u \\
& =0\left[t^{\lambda+1}\left(R_{\left(\frac{1}{t}\right)}\right)^{\delta}\right]
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\int_{0}^{t}|F(\omega)| R_{\left(\frac{1}{\omega}\right)} d \omega & =0\left[t^{\lambda+1}\left(R_{\left(\frac{1}{t}\right)}\right)^{\delta}\right] \\
R_{\left(\frac{1}{t}\right)} \int_{0}^{t}|F(\omega)| d \omega & =0\left[t^{\lambda+1}\left(R_{\left(\frac{1}{t}\right)}\right)^{\delta}\right] \\
\int_{0}^{t}|F(\omega)| d \omega & =0\left[\frac{t^{\lambda+1}}{\left(R_{\left(\frac{1}{t}\right)}\right)^{1-\delta}}\right]
\end{aligned}
$$

Thus the lemma holds.

PROOF OF THE THEOREM

We have from (1.6)

$$
\begin{align*}
t_{n}^{p, q}-f(P) & =\int_{o}^{\pi}|F(\omega)| L_{n}(\omega) d \omega \\
& =\int_{o}^{c / n}+\int_{c / n}^{\delta}+\int_{\delta}^{\pi-c / n}+\int_{\pi-\frac{c}{n}}^{\pi}|F(\omega)| L_{n}(\omega) d \omega \\
& =I_{1}+I_{2}+I_{3}+I_{4} \quad \text { say } \tag{5.1}
\end{align*}
$$

We first consider,

$$
\begin{aligned}
I_{1} & =\int_{0}^{\frac{c}{n}}|F(\omega)| L_{n}(\omega) d \omega \\
& =0\left(n^{2 \lambda+1}\right) \int_{0}^{\frac{c}{n}}|F(\omega)| \omega d \omega
\end{aligned}
$$

Integrating by parts and using lemma 4 , we get

$$
\begin{align*}
I_{1} & =0\left[n^{2 \lambda+1}\left(\frac{\omega^{\lambda+2}}{R\left(\frac{1}{\omega}\right)^{1-\delta}}\right)_{0}^{c / n}\right] \\
& =0\left[\frac{n^{2 \lambda+1}}{\left(R_{n}\right)^{1-\delta}} \cdot n^{-\lambda-2}\right] \\
& =0\left[\frac{n^{\lambda-1}}{\left(R_{n}\right)^{1-\delta}}\right] \tag{5.2}
\end{align*}
$$

Next we consider I_{2}

$$
I_{2}=\int_{c / n}^{\delta}|F(\omega)| L_{n}(\omega) d \omega
$$

$$
\begin{aligned}
& =0\left(\frac{n^{\lambda-1}}{R_{n}}\right) \int_{c / n}^{\delta}|F(\omega)| R_{\left(\frac{1}{\omega}\right)}\left(\sin \frac{\omega}{2}\right)^{-\lambda-1}\left(\cos \frac{\omega}{2}\right)^{-\lambda} d \omega \\
& \quad+0\left(\frac{n^{\lambda}}{R_{n}}\right) \int_{c / n}^{\delta}|F(\omega)| R_{\left(\frac{1}{\omega}\right)}\left(\sin \frac{\omega}{2}\right)^{-\lambda}\left(\cos \frac{\omega}{2}\right)^{1-\lambda} d \omega \\
& =I_{2.1}+I_{2.2} \quad \text { say }
\end{aligned}
$$

We discuss $I_{2.1}$, first,

$$
\begin{align*}
I_{2.1} & =0\left(\frac{n^{\lambda-1}}{R_{n}}\right) \int_{c / n}^{\delta} \frac{|F(\omega)| R\left(\frac{1}{\omega}\right) d \omega}{\omega^{\lambda+1}} \\
& =0\left(\frac{n^{\lambda-1}}{R_{n}}\right)\left(\left(R_{n}\right)^{\delta}\right) \\
& =0\left[\frac{n^{\lambda-1}}{\left(R_{n}\right)^{1-\delta}}\right] \tag{5.3}
\end{align*}
$$

Next we have

$$
\begin{align*}
I_{2.2} & =0\left(\frac{n^{\lambda}}{R_{n}}\right) \int_{\frac{c}{n}}^{\delta} \frac{|F(\omega)| R\left(\frac{1}{\omega}\right) d \omega}{\omega^{\lambda}} \\
& \left.=0\left(\frac{n^{\lambda}}{R_{n}}\right) \int_{\frac{c}{n}}^{\delta} \frac{\omega|F(\omega)| R\left(\frac{1}{\omega}\right)}{\omega^{\lambda+1}} \frac{n^{\prime}}{\omega^{\lambda+1}}\right] \\
& =0\left(\frac{n^{\lambda}}{R_{n}}\right)\left[\frac{1}{n} \int_{\frac{c}{n}}^{\delta} \frac{|F(\omega)| R}{\left(\frac{1}{\omega}\right) d \omega}\right. \\
& =0\left[\frac{n^{\lambda-1}}{R_{n}}\right]\left[\left(R_{n}\right)^{\delta}\right] \\
& =0\left[\frac{n^{\lambda-1}}{\left(R_{n}\right)^{1-\delta}}\right] \tag{5.4}
\end{align*}
$$

Combining (5.3) and (5.4), we get

$$
\begin{equation*}
I_{2}=0\left[\frac{n^{\lambda-1}}{\left(R_{n}\right)^{1-\delta}}\right] \tag{5.5}
\end{equation*}
$$

Now, we consider I_{3},

$$
\begin{aligned}
I_{3}= & \int_{\delta}^{\pi-\frac{c}{n}}|F(\omega)| L_{n}(\omega) d \omega \\
= & 0\left(\frac{n^{\lambda-1}}{R_{n}}\right) \int_{\delta}^{\pi-\frac{C}{n}} \frac{|F(\omega)| R\left(\frac{1}{\omega}\right) d \omega}{\left(\sin \frac{\omega}{2}\right)^{\lambda+1}\left(\cos \frac{\omega}{2}\right)^{\lambda}} \\
& +0\left(\frac{n^{\lambda}}{R_{n}}\right) \int_{\delta}^{\pi-\frac{C}{n}} \frac{|F(\omega)| R\left(\frac{1}{\omega}\right) d \omega}{\left(\sin \frac{\omega}{2}\right)^{\lambda}\left(\cos \frac{\omega}{2}\right)^{\lambda-1}}
\end{aligned}
$$

$$
\begin{equation*}
=0\left[\frac{n^{\lambda-1}}{\left(R_{n}\right)^{1-\delta}}\right]+0\left[\frac{n^{\lambda}}{R_{n}}\right] \tag{5.6}
\end{equation*}
$$

At last, we consider I_{4},

$$
I_{4}=\int_{\pi-\frac{c}{n}}^{\pi}|F(\omega)| L_{n}(\omega) d \omega
$$

By lemma 3, we have

$$
I_{4}=0\left[n^{2 \lambda} \int_{\pi-\frac{c}{n}}^{\pi}|F(\omega)| \sin \omega d \omega\right]
$$

Putting $\omega=\pi-t$, we obtain

$$
\begin{align*}
I_{4} & =0\left[n^{2 \lambda} \int_{o}^{\frac{c}{n}} t d t\right] \\
& =0\left[n^{2 \lambda-2}\right] \tag{5.7}
\end{align*}
$$

Combining (5.2), (5.5), (5.6) and (5.7), we get

$$
t_{n}-f(R)=0\left[\frac{n^{\lambda-1}}{\left(R_{n}\right)^{1-\delta}}\right]+0\left[\frac{n^{\lambda}}{R_{n}}\right]
$$

Hence the theorem holds

REFERENCES

1. BEOHAR, N. - Ph.D. Thesis, Vikram University, Ujjain (1971)
2. GUPTA, D.P.- On the Cesáro summability of the ultraspherical series (2), Proc. Nat. Inst. Sc. Of India, Vol. 24, 419-440 (1958).
3. GUPTA, S.R. AND PANDEY, D.S. - Degree of approximation of function $f(x)$ by Nörlund means of its Fourier series, Vikram University, Jour VI, (1986)
4. KOGBETLIANTZ, E, - Sur la sommation des seriés ultrasphériques, C.R. 164, 510, 626, 778 (1917)
5. \qquad - Sur la sommation des séries ultrasphériques, lbid, 169, 54 (1919).
6. \qquad - Sur les séries trigonométriques et la série Laplace. These présentées a la Faculte' des Sciences de Paris, (1923).
7. \qquad - Recherches sur la sommabilité des séries ultrasphériques des moyennes arthemetiques. Jour de Mathematiques, (9) 3 (1924), 107-187
8. \qquad - Recherches sur 1' Unieite' des series ultrasphériques, lbid (9), 5, (1926), 125-196.
9. PORWAL, J.P. - Ph.D. Thesis, Vikram University, Ujjain (1975).
10. SZEGO, G. - Orthogonal polynomials, American Math. Soc. Colloquim Publication, Vol. XIII (1939)
