AN ESTIMATE OF ORTHOGONAL SERIES BY GENERALIZED ($\mathbf{N}, \mathbf{p}, \mathbf{q}$) MEANS
 NEETESH KUMAR

(T.G.T. Science) J.P.N. Inter College, Nawabganj, Bareilly (Uttar Pradesh)-262406

RECEIVED : 26 November, 2020

Definitions and notations

】et $\left\{\varphi_{n}(x)\right\}$ be an Orthogonrmal system defined in the interval (a, b). We suppose that $f(x)$ belongs to $L^{2}(a, b)$ and

$$
f(x) \sim \sum_{n=0}^{\infty} a_{n} \varphi_{n}(x)
$$

We also write

$$
\begin{gathered}
B_{n}=(\epsilon * \lambda)_{n}=\sum_{v=0}^{n} \epsilon_{n-v} \lambda_{v}=\sum_{v=0}^{n} \epsilon_{n-v} \delta_{v} \\
B_{n}^{j}=\sum_{k=j}^{n} \epsilon_{n-k} \lambda_{k} \text { and } B_{n}^{n+1}=0
\end{gathered}
$$

Then we have $B_{n}^{o}=B_{n}$

クintroduction

KUYAMA [1] proved the following theorem
Theorem : If the series

$$
\sum_{n=1}^{\infty}\left\{\sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{1 / 2}
$$

Converges, then the orthogonal series

$$
\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x) \text { is summable }\left|N, p_{n}, q_{n}\right| \text { almost everywhere }
$$

3. The object of the present paper is to prove the following theorem by using $G(N, p, q)$ means of the Fourier series of function f. However, our theorem is as follows:

Theorem : If the series

$$
\sum_{n=1}^{\infty}\left\{\sum_{j=1}^{n}\left(\frac{B_{n}^{j}}{B_{n}}-\frac{B_{n-1}^{j}}{B_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{1 / 2}
$$

Converges, then the orthogonal series

$$
\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x) \text { is summable }|G(N, p, q)| \text { almost every where. }
$$

$\boldsymbol{P}_{\text {roof of the theorem:- }}$

Let $g_{n}^{p, q}(x)$ be the n - th G (N, p, q) mean of the series

$$
\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x) . \text { Then }
$$

we have
where

$$
\begin{aligned}
g_{n}^{p, q}(x) & =\frac{1}{B_{n}} \sum_{k=0}^{\infty} \epsilon_{n-k} \mu_{k} s_{k}(x) \\
& =\frac{1}{B_{n}} \sum_{k=0}^{n} \epsilon_{n-k} \mu_{k} \sum_{j=0}^{k} a_{j} \varphi_{j}(x) \\
& =\frac{1}{B_{n}} \sum_{j=0}^{n} a_{j} \Psi_{j}(x) \sum_{k=j}^{n} \epsilon_{n-k} \mu_{k} \\
& =\frac{1}{B_{n}} \sum_{j=0}^{n} B_{n}^{j} a_{j} \varphi_{j}(x) \\
s_{k}(x) & =\sum_{k=0}^{n} a_{k} \varphi_{k}(x)
\end{aligned}
$$

Thus we obtain

$$
\begin{aligned}
g_{n}^{p, q}(\mathrm{x})-g_{n-1}^{p, q}(x) & =\frac{1}{B_{n}} \sum_{j=0}^{n} B_{n}^{j} a_{j} \varphi_{j}(x)-\frac{1}{B_{\mathrm{n}-1}} \sum_{j=0}^{n-1} B_{n-1}^{j} a_{j} \varphi_{j}(x) \\
& =\frac{1}{B_{n}} \sum_{j=1}^{n} B_{n}^{j} a_{j} \varphi_{j}(x)-\frac{1}{B_{\mathrm{n}-1}} \sum_{j=1}^{n-1} B_{n-1}^{j} a_{j} \varphi_{j}(x) \\
& =\frac{1}{B_{n}} \sum_{j=1}^{n} B_{n}^{j} a_{j} \varphi_{j}(x)-\frac{1}{B_{\mathrm{n}-1}} \sum_{j=1}^{n-1} B_{n-1}^{j} a_{j} \varphi_{j}(x) \\
& =\sum_{j=1}^{n}\left(\frac{B_{n}^{j}}{B_{n}}-\frac{B_{n-1}^{j}}{B_{n-1}}\right) a_{j} \varphi_{j}(x)
\end{aligned}
$$

Using the Schwarz's inequality and the orthogonality, we obtain
$\int_{a}^{b}\left|\Delta g_{n}^{p, q}(x)\right| d x \leq(b-a)^{\frac{1}{2}}\left\{\int_{a}^{b}\left|\Delta g_{n}^{\in, \mu}(x)\right|^{2} d x\right\}^{\frac{1}{2}}$

$$
=(b-a)^{\frac{1}{2}}\left\{\sum_{j=1}^{n}\left(\frac{B_{n}^{j}}{B_{n}}-\frac{B_{n-1}^{j}}{B_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{\frac{1}{2}}
$$

and then, $\quad \sum_{n=1}^{\infty} \int_{a}^{b}\left|\Delta g_{n}^{p, q}(x)\right| d x \leq(b-a)^{\frac{1}{2}} \sum_{n=1}^{\infty}\left\{\sum_{j=1}^{n}\left(\frac{B_{n}^{j}}{B_{n}}-\frac{B_{n-1}^{j}}{B_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{\frac{1}{2}}$
which is convergent by the assumption and from the Beppo-Leni lemma.

References

1. OKUYAMA, Y. On absolute generalized Nörlund summability of orthogonal series, Tamkang Journal of Mathematics, Vol. 33, Number 2, summer, 161-165 (2002).
