ALMOST INCREASING SEQUENCES AND THEIR APPLICATIONS

NEETESH KUMAR

(T.G.T. Science, J.P.N. Inter College, Nawabganj, Bareilly (Uttar Pradesh)-262406

RECEIVED : 26 November, 2020

Definitions and notations:

】et $\sum_{n=0}^{\infty} a_{n}$ be a given infinite series with $\left\{S_{n}\right\}$ as the sequence of its partial sums. Let $\left(\sigma_{n}\right)$ and $\left(t_{n}\right)$ denote the n-th $(C, 1)$ means of the sequence $\left\{S_{n}\right\}$ and $\left\{n a_{n}\right\}$ respectively. The series $\sum_{n=0}^{\infty} a_{n}$ is said to be summable $|C, 1|_{k}, k \geq 1$, if [4]

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\sigma_{n}-\sigma_{n-1}\right|_{k}<\infty \tag{1.1}
\end{equation*}
$$

In view of the fact that $t_{n}=n\left(\sigma_{n}-\sigma_{n-1}\right)[6]$, equation (1.1) can be written as

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|t_{n}\right|^{k}}{n}<\infty \tag{1.2}
\end{equation*}
$$

Let $\left\{p_{n}\right\}$ be a sequence of positive real numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \text { as } n \rightarrow \infty\left(p_{-i}=p_{-i}=0, i \geq 1\right) \tag{1.3}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\omega_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.4}
\end{equation*}
$$

defines the sequence $\left\{\omega_{n}\right\}$ of the $\left(\bar{N}, p_{n}\right)$ means of the sequence $\left\{S_{n}\right\}$ generated by the sequence of coefficients $\left(p_{n}\right)$ [5]. The series $\sum_{n=0}^{\infty} a_{n}$ is said to be summable $\left(\bar{N}, p_{n}\right)_{k}, k \geq 1$, if [2]

$$
\begin{equation*}
\sum_{v=0}^{n}\left(\frac{p_{n}}{P_{n}}\right)^{k-1}\left|\omega_{n}-\omega_{n-1}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

Let $\left\{\phi_{n}\right\}$ be any sequence of positive real constants. Then the series $\sum_{k=0}^{\infty} a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \phi_{n}, \delta, \beta\right|_{k} k \geq 1, \delta \geq 0$ and $\beta \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{n} \phi_{n} \beta^{(\delta k+k-1)}\left|\omega_{n}-\omega_{n-1}\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

For $\delta=0$ and $\beta=1$, our definition reduces to (1.5) [2]
We need the concept of almost increasing sequence. A positive sequence $\left\{b_{n}\right\}$ is said to be almost increasing if there exists a positive increasing sequence $\left\{c_{n}\right\}$ and two positive constant A and B such that

$$
\begin{equation*}
A c_{n} \leq b_{n} \leq B c_{n} \tag{1}
\end{equation*}
$$

Obviously every increasing sequence is almost increasing sequence but the converse need not be true as can be seen from the example $b_{n}=n \exp (-1)^{n}$

Titroduction

Generalizing the theorem of BOR [3] for $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of an infinite series TRIPATHI and PATEL [8] proved the following theorem for $\left|\bar{N}, p_{n}, \phi_{n}\right|_{k}$ summability.

Theorem : Let $\left\{X_{n}\right\}$ be a almost increasing sequence and the sequences $\left\{\lambda_{n}\right\}$ and $\left\{p_{n}\right\}$ are such that
and

$$
\begin{align*}
& P_{n}=0\left(n p_{n}\right) \text { as } n \rightarrow \infty \tag{2.1}\\
& \lambda_{m} X_{m}=0(1) \text { as } m \rightarrow \infty \tag{2.2}\\
& \sum_{n=1}^{m} n X_{n}\left|\Delta^{2} \lambda_{n}\right|=0(1) \tag{2.3}\\
& \sum_{n=1}^{m} \phi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k}=0\left(X_{m}\right) \text { as } m \rightarrow \infty \tag{2.4}
\end{align*}
$$

where $\left\{\phi_{n}\right\}$ be a sequence of positive real constants such that $\left\{\frac{\phi_{n} p_{n}}{P_{n}}\right\}$ is non-increasing sequence, then the series $\sum_{k=0}^{\infty} a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}, \phi_{n}\right|_{k}, k \geq 1$.
3. The object of this paper is to generalize above theorem for $\left|\bar{N}, p_{n}, \phi_{n}, \delta, \beta\right|_{k}$ summability. However, we shall prove the following theorem.

Thoerem : Let $\left\{X_{n}\right\}$ be an almost increasing sequence and the sequences $\left\{\lambda_{n}\right\}$ and $\left\{p_{n}\right\}$ are such that the conditions (2.1)- (2.3) of above theorem are satisfied and

$$
\begin{equation*}
\sum_{n=1}^{m} \phi_{n}^{\beta(\delta k+k-1)}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k}=0\left(X_{m}\right) \text { as } m \rightarrow \infty \tag{3.1}
\end{equation*}
$$

where $\left\{\phi_{n}\right\}$ be a sequence of positive real constants such that $\left\{\frac{\phi_{n} p_{n}}{P_{n}}\right\}$ is non-increasing sequence, then the series $\sum_{k=0}^{\infty} a_{n}$ is summable $\left|\bar{N}, p_{n}, \phi_{n}, \delta, \beta\right|_{k} \geq 1, \delta \geq 0$ and $\beta \geq 1$.
4. We need the following lemma for the proof of our theorem.

Lemma [7] : Under the condition on $\left\{X_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ which are taken in the statement of our theorem, the following conditions hold:
(i) $n X_{n}\left|\Delta \lambda_{n}\right|=0(1)$ as $n \rightarrow \infty$
(ii) $\sum_{n=1}^{m} X_{n}\left|\Delta \lambda_{n}\right|<\infty$
(iii) $\quad X_{n}\left|\lambda_{n}\right|=0(1)$ as $n \rightarrow \infty$

$\boldsymbol{P}_{\text {roof of the theorem: }}$

凹et $\left\{T_{n}\right\}$ be the sequence of $\left(N, p_{n}\right)$ means of the series $\sum_{k=0}^{\infty} a_{n} \lambda_{n}$. Then, by definition, we have

$$
\begin{aligned}
T_{n} & =\frac{1}{P_{n}} \sum_{v=1}^{n} p_{v} s_{v}=\frac{1}{P_{n}} \sum_{v=1}^{n} p_{v} \sum_{z=0}^{n} a_{v} \lambda_{z} \\
& =\frac{1}{P_{n}} \sum_{v=0}^{n}\left(p_{n}-p_{v-1}\right) a_{v} \lambda_{v}
\end{aligned}
$$

Then, for $n \geq 1$, we get

$$
\begin{equation*}
T_{n}-T_{n-1}=\frac{P_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} \lambda_{v}=\frac{P_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} \lambda_{v} v a_{v}}{v} \tag{5.1}
\end{equation*}
$$

Now applying Abel's transformation to the right hand side of (5.1), we get

$$
\begin{aligned}
T_{n}-T_{n-1}= & \frac{(n+1) p_{n} t_{n} \lambda_{n}}{n P_{n}}-\frac{P_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} a_{v} \lambda_{v} \frac{v+1}{v} \\
& +\frac{P_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} a_{v} \Delta \lambda_{v} \frac{v+1}{v}+\frac{P_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} t_{v} \lambda_{v+1} \frac{1}{v} \\
= & T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}
\end{aligned}
$$

To complete the proof of the theorem, it is enough to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \phi_{n}^{\beta(\delta k+k-1)}\left|T_{n, z}\right|^{k}<\infty \quad f \text { or } z=1,2,3,4 \tag{5.2}
\end{equation*}
$$

For we have

$$
\begin{aligned}
& \sum_{n=1}^{m} \phi_{n}^{\beta(\delta k+k-1)}\left|T_{n, 1}\right|^{k}=\sum_{n=1}^{\infty} \phi_{n}^{\beta(\delta k+k-1)}\left|\frac{(n+1) p_{n} t_{n} \lambda_{n}}{n P_{n}}\right|^{k} \\
&=0(1) \sum_{n=1}^{m} \phi_{n}^{\beta(\delta k+k-1)}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k}\left|\lambda_{n} \| \lambda_{n}\right|^{k-1} \\
&=0(1) \sum_{n=1}^{m} \phi_{n}^{\beta(\delta k+k-1)}\left|\lambda_{n}\right|\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k} \\
&= 0(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{n=1}^{n} \phi_{v}^{\beta(\delta k+k-1)}\left|t_{v}\right|^{k}\left(\frac{p_{n}}{P_{n}}\right)^{k} \\
& \quad+0(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \phi_{n}^{\beta(\delta k+k-1)}\left|t_{n}\right|^{k}\left(\frac{p_{v}}{P_{v}}\right)^{k} \\
&=0(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| X_{n}+0(1)\left|\lambda_{m} \| X_{m}\right| \\
&=0(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+0(1)\left|\lambda_{m} \| X_{m}\right| \\
&=0(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by condition (4.2) and (4.3) of lemma.

Again for $\mathrm{k}>1$ and applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, as in $\left|T_{n, 1}\right|$, we have

$$
\begin{align*}
& \sum_{n=2}^{m+1} \phi_{n}^{\beta(\delta k+k-1)}\left|T_{n, 2}\right|^{k}=\sum_{n=2}^{m+1} \phi_{n}^{\beta(\delta k+k-1)}\left|-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=2}^{n-1} p_{v} t_{v} \lambda_{v} \frac{v+1}{v}\right|^{k} \\
&=0(1) \sum_{n=2}^{m+1} \phi_{n}^{\beta(\delta k+k-1)}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
&=0(1) \sum_{n=2}^{m+1} \phi_{n}^{\beta(\delta k+k-1)}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\right\} \\
&=0(1) \sum_{v=1}^{m} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{P_{n-1}}\left\{\sum_{n=1}^{m} \phi_{n}^{\beta(\delta k+k-1)}\left(\frac{p_{n}}{P_{n}}\right)^{k}\right\} \frac{p_{n}}{P_{n} P_{n-1}} \\
& \quad=0(1) \sum_{v=1}^{m}\left\{\left(\phi_{n}\right)^{\beta(\delta k+k-1)}\left(\frac{p_{v}}{P_{v}}\right)^{k}\right\} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \sum_{n=1}^{v+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& \quad=0(1) \sum_{v=1}^{m} \phi_{n} \beta(\beta k+k-1)\left|\lambda_{v}\right|\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|t_{v}\right|^{k} \\
& \quad=0(1) \sum_{v=1}^{m} \Delta\left|\lambda_{v}\right| \sum_{v=1}^{m} \phi_{n}^{\beta(\beta k+k-1)}\left|t_{i}\right|^{k}\left(\frac{p_{i}}{P_{i}}\right)^{k} \\
&= 0(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+0(1)\left|\lambda_{m}\right| X_{m} \\
&=0(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+0(1)\left|\lambda_{m}\right| X_{m} \tag{3.1}\\
&= m \rightarrow \infty
\end{align*}
$$

by condition (4.2) and (4.3) of lemma.
Again we have

$$
\sum_{n=2}^{m+1} \phi_{n}^{\beta(\delta k+k-1)}\left|T_{n, 3}\right|^{k}
$$

$$
\begin{aligned}
& =0(1) \sum_{n=2}^{m+1} \phi_{n}{ }^{\beta(\delta k+k-1)}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \times \\
& \qquad\left\{\sum_{v=1}^{n-1} v\left|\Delta \lambda_{v}\right|^{k} p_{v}\left|t_{v}\right|^{k}\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =0(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right|^{k} p_{v}\left|t_{v}\right|^{k} \sum_{v=1}^{n-1}\left\{\left(\phi_{n}\right)^{\beta(\delta k+k-1)}\left(\frac{p_{n}}{P_{n}}\right)^{k}\right\} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =0(1) \sum_{v=1}^{m}\left\{\left(\phi_{v}\right)^{\beta(\delta k+k-1)}\left(\frac{p_{v}}{P_{v}}\right)^{k}\right\} v\left|\Delta \lambda_{v}\right|^{k} p_{v}\left|t_{v}\right|^{k} \frac{1}{P_{v}} \\
& =0(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|\Delta \lambda_{v}\right|\right)\right| \sum_{i=1}^{v} \phi_{i}{ }^{\beta(\delta k+k-1)}\left|t_{i}\right|^{k}\left(\frac{p_{i}}{P_{i}}\right)^{k} \\
& =0(1) \sum_{v=1}^{n-1} v X_{v}\left|\Delta^{2} \lambda_{v}\right|+0(1) \sum_{v=1}^{m-1} X_{v}\left|\Delta \lambda_{v+1}\right|+0(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =0(1) \text { as } m \rightarrow \infty \text { by (2.3), (4.1) and (4.2) }
\end{aligned}
$$

Finally, using the fact $P_{n}=O\left(n p_{n}\right)$ by (2.1) as in $\left|T_{n, 1)}\right|$, we have that

$$
\begin{aligned}
& \sum_{n=1}^{m+1} \phi_{n}^{\beta(\delta k+k-1)}\left|T_{n, 4}\right|^{k}=\sum_{n=1}^{m+1} \phi_{n}^{\beta(\delta k+k-1)}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} t_{v} \lambda_{v+1} \frac{1}{v}\right|^{k} \\
& \quad=0(1) \sum_{v=1}^{m} \phi_{n}^{\beta(\delta k+k-1)}\left|\lambda_{n+1}\right|\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|t_{v}\right|^{k} \\
& \quad=0(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

Therefore, we get

$$
\sum_{n=1}^{\infty} \phi_{n}^{\beta(\delta k+k-1)}\left|T_{n, z}\right|^{k}<\infty \text { for } z=1,2,3,4
$$

This is the complete proof of our theorem.

References

1. Zhang, Z.G., Vickson, R.G. and Love, G.E. (2001): The optimal service policies in an M/G/I queuing system with Multiple vocation types : INFOR, 39, 357-366.
2. ALJANCIC, L.S. AND ARANDELOVIC, D. - Publ. Inst. Math., 22, 5-22 (1977). BOR, H. - Math. Proc. Camb phil. Soc. 97, 147-149 (1985).
\qquad - Proc. Amer Math. Soc., 118, No. 1, (1993), 71-75

FLETT, T.M. -Proc. London Math. Soc., 7, (1957), 113-141.
HARDY, G.H. - Divergent Series, Oxford University Press.
KOGBETLIANTZ, E.- Bull. Sci. Math., 49, 234-256 (1925).
MAZHAR, S.M. - Indian J. Math., 40, No.2, 123-131 (1998).
TRIPATHI, S. AND PATEL, N.V. - Almost increasing sequences and their applications, Indian J. pure appl. Math, 32(7), 995-1001 (2001).

