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DEFINITIONS AND NOTATIONS: 
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  be a given infinite series with { }nS  as the sequence of its partial sums. Let 

( )n  and ( )nt  denote the n-th (C, 1) means of the sequence { }nS  and { }nna  respectively. 
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In view of the fact that 1( )[6]n n nt n     , equation (1.1) can be written as 
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Let { }np  be a sequence of positive real numbers such that 
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The sequence-to-sequence transformation  

    
0

1 n

n v v
n v

p s
P




   …(1.4) 

defines the sequence { }n  of the ( , )nN p  means of the sequence { }nS  generated by the 

sequence of coefficients ( )np  [5]. The series 
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Let { }n  be any sequence of positive real constants. Then the series 
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summable | , , , , | 1, 0n n kN p k      and 1  ,  if   
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For 0   and 1  , our definition reduces to (1.5) [2]  

We need the concept of almost increasing sequence. A positive sequence { }nb  is said to 

be almost increasing if there exists a positive increasing sequence { }nc  and two positive 

constant A and B such that  

    n n nAc b Bc       [1] 

Obviously every increasing sequence is almost increasing sequence but the converse need 

not be true as can be seen from the example nb n  exp ( 1)n  

INTRODUCTION 

 Generalizing the theorem of BOR [3] for | , |n kN p  summability factors of an infinite 

series TRIPATHI and PATEL [8] proved the following theorem for | , , |n n kN p   

summability. 

Theorem : Let { }nX  be a almost increasing sequence and the sequences { }n  and { }np  

are such that 

    0( )n nP np  as n  …(2.1) 
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where { }n  be a sequence of positive real constants such that n n
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 is non-increasing 

sequence, then the series  
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3.  The object of this paper is to generalize above theorem for | , , , , |n n kN p     

summability. However, we shall prove the following theorem. 

 Thoerem : Let { }nX  be an almost increasing sequence and the sequences { }n  and 

{ }np  are such that the conditions (2.1)- (2.3) of above theorem are satisfied and 
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where { }n  be a sequence of positive real constants such that n n
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 is non-increasing 

sequence, then the series 
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  is summable | , , , , | 1, 0n n kN p       and 1  . 

4. We need the following lemma for the proof of our theorem. 

Lemma [7] : Under the condition on { }nX  and { }n  which are taken in the statement of 

our theorem, the following conditions hold: 

(i)  | | 0(1)n nnX    as n  …(4.1) 

(ii) 
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(iii) | | 0(1)n nX    as n  …(4.3) 

PROOF OF THE THEOREM:  

 Let { }nT  be the sequence of (N, np ) means of the series 
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Now applying Abel’s transformation to the right hand side of (5.1), we get 
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To complete the proof of the theorem, it is enough to show that 
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by condition (4.2) and (4.3) of lemma. 
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Again for k > 1 and applying Hölder’s inequality with indices k and k  , where 
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This is the complete proof of our theorem. 
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