COMPLEXES OF 3-ACETYL-6-METHYL-2H PYRAN-2,4-(3H)-DIONE

DR. BINAY KUMAR JHA

Deptt. of Chemistry +2 Ram Julum High School

DR. ANIL PATHAK

Deptt. of Chemistry +2 Raj High School, Darbhanga

RECEIVED : 22 September, 2020

Introduction

All the complexes of ligand 3-acetyl-6-methyl-2H-pyran-2,4-(3H) –dione with metal (II) ions (Cr^{2+} , Mn^{2+} , Fe^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} and Zn^{2+}) are anhydrous as also supported from analytical and spectral studies. All these complexes are stable upto 150°C. The complexes are generally soluble in water and ethanol but sparingly soluble in DMSO and DMF and insoluble in benzene, ether and acetone.

All these complexes with Cr^{2+} , Mn^{2+} and Fe^{2+} were found to be non-electrolytic in nature. The molar conductance of these complexes have been recorded in nitrobenzene in digital systonic conductivity meter-304 and are given in following table.

Complexes	Colour	M.Pt. (°C)	Soluble	µeff	Conductance (Ω-1cm ² mol ⁻¹)
[CrL(H ₂ O) ₂]	Red	158	In benzene and ethanol	3.48	4.02
[MnL(H ₂ O) ₂]	Light yellow	172	In benzene and ethanol	3.60	4.50
[FeL(H ₂ O) ₂]	Brick red	198	In benzene and ethanol	1.61	3.91
[Co(L)]	Orange	182	In benzene and ethanol	1.71	2.21
[Ni(L)]	Green	216	In benzene and ethanol	Diamagnetic	3.78
[Cu(L)]	Light Green	160	In benzene and ethanol	1.73	3.94
[Zn(L)]	Colourless	140	In benzene and ethanol	Diamagnetic	4.01

PCM0200120

EXPLANATION:

Compound	v _(CO) lactone	V _(C=N)	ν _(CO) α, β- unsatura- ted	ν _(CO)	V _(NH)	ν (MO)	V _(MN)	ν _(H2O)
AMPD	1780	1600	1685	1620	3250			770
[CrL(H ₂ O) ₂]	1778	1590	1640	1625	3248	454	605	780
[MnL(H ₂ O) ₂]	1775	1585	1665	1615	3245	430	550	750
[FeL(H ₂ O) ₂]	1780	1540	1630	1618	3245	425	590	810
[Co(L)]	1775	1560	1650	1620	3253	450	565	835
[Ni(L)]	1775	1565	1660	1620	3250	455	575	870
[Cu(L)]	1777	1550	1645	1615	3250	445	580	845
[Zn(L)]	1778	1545	1665	1615	3248	440	585	860

The IR spectral data and assignment of bands of transition metal (II) complexes are given in following table.

The ligand 3-acetyl-6-methyl-2H-pyran-2,4-(3H)-dione has many donor sites such as α , β unsaturated carbonyl group, –NH group, C=N group, carbonyl amide group and carbonyl group. However, the infrared frequencies in the ligand 3-acetyl-6-methyl-2H-pyran-2,4-(3H)-dione associated with the α , β unsaturated carbonyl group and C=N group have been influenced on complex formation with Metal (II) ions.


The infrared spectra of complexes of ligand 3-acetyl-6-methyl-2H-pyran-2,4-(3H)-dione with Metal (II) ions and the ligand 3-acetyl-6-methyl-2H-pyran-2, 4-(3H)- dione were recorded in the range of 400 – 4000 cm⁻¹. The highest frequency of the bands of the ligand at ~1600 cm⁻¹ can be assigned to the v_{CN} vibration. This band is shifted to lower frequency 1590 –1540 cm⁻¹ on complexation indicating the involvement of –C=N group in complex formation. The shift of v_{CO} of α , β unsaturated carbonyl group to lower frequency from 1685 to 1665 – 1630 cm⁻¹ on complexation suggests coordination through –C=N group. The absence of a band at 2885 cm⁻¹ characteristics of 3° hydrogen in all complexes, suggest that 6, 7-enolization takes place before coordination with metal ions. The occurrence of bands at 605 – 550 cm⁻¹ (M–N) and 455 – 430 cm⁻¹ (M–O) proves the bonding of nitrogen and oxygen to the metal ions. The spectra of the complexes exhibited a broad band about 3600 -3400 cm⁻¹ which may be due to water molecules. The presence of a band in the range of 870 – 750 cm⁻¹ indicates the coordinated water molecules in the complexes.

Thus on account of infrared spectral properties we can say that 3-acetyl-6-methyl-2H-pyran-2,4-(3H)-dione acts as quadridentate ligand.

In the spectra of the Cr^{2+} , Mn^{2+} and Fe^{2+} complex there are an additional band observed at ~ 720 - 705 cm⁻¹. These bands can be assigned to the coordinated chloride ion.

Acta Ciencia Indica, Vol. XLVI C, No. 2 to 4 (2020)

The singlet peak at $\delta = 4.70$ ppm of 3° hydrogen of the lactone ring is disappeared in all complexes of M^{2+} ions with ligand 3-acetyl-6-methyl-2H-pyran-2,4-(3H)-dione. It may be due to the enolization of the carbonyl group before the complexation as :

The spectral data for the solution of transition metal (M^{2+}) ion complexes with ligand 3-acetyl-6-methyl-2H-pyran-2,4-(3H)-dione investigated in acetonitrile are presented in the following table.

CONCLUSION :

DABLE : Electronic spectral data of 3-acetyl-6-methyl-2H-pyran-2,4-(3H)-dione with M^{2+} ions in cm⁻¹.

M ²⁺ complexes	Spectral bands (in cm-1)	Transitions		
$[CrL(H_2O)_2]$	14,000	${}^{5}\text{Eg} \rightarrow {}^{5}\text{T}_{2g}$		
[MnL(H ₂ O) ₂]	18590, 22800,	${}^{6}E1g \rightarrow {}^{4}T_{1g}, {}^{4}T_{2g}(G)$		
	24850, 24910,			
	25250, 27850,			
	29550, and			
	32550	${}^{4}E_{g}$, ${}^{4}A_{1g}$ and ${}^{4}T_{2g}(D)$		
$[FeL(H_2O)_2]$	10,000	${}^{5}T_{2g} \rightarrow {}^{5}E_{g}$		
[Co(L)]	8000, 19,600 and	${}^{4}T_{1g} \rightarrow {}^{4}T_{2g}, {}^{4}T_{1g}$		
	21,600	and ${}^{4}A_{2g}$		
[Ni(L)]	8,700, 14,500 and	${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}, {}^{3}T_{1g} (F)$		
	25,300	and ${}^{3}T_{1g}(P)$		
[Cu(L)]	12,000	${}^{2}E_{2g} \rightarrow {}^{2}T_{2g}$		

References

- 1. C.N. Banwell and E. McCash Fundamentals of Molecular Spectroscopy, 4th ed., p.- 86, (2002).
- 2. P. Altreuther *Data on Chemistry and Toxicology of Baytri*, Veterinary Medical, Review, 2, 87-89, (1987).
- 3. W. Kemp Org. Spectroscopy, 3rd ed. (2004).
- 4. O. Augusto, E.L. Cavalieri and E.G. Rogan J. Biol. Chem., 256, 22093 22096, (1990).
- 5. J. R. Dyer Applications of Absorption Spectroscopy of Org. Compounds p. 29 32, 11th printing, Oct. (2002).

106