SPECTRAL STUDIES M²⁺ COMPLEXES WITH SALICYLALDEHYDE (NH)- PHENYL THIOSEMICARBAZONE

DR. BINAY KUMAR JHA

Deptt. of Chemistry +2 Ram Julum High School

DR. ANIL PATHAK

Deptt. of Chemistry +2 Raj High School, Darbhanga

RECEIVED: 7 September, 2020

Introduction

All the complexes of ligand Salicylaldehyde (NH)- phenyl thiosemicarbazone with metal (II) ions (Cr^{2+} , Mn^{2+} , Fe^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} and Zn^{2+}) are anhydrous as also supported from their analytical and spectral studies. All these complexes are stable upto 180°C. The complexes are generally soluble in water and ethanol, sparingly soluble in DMSO and DMF and insoluble in benzene, ether and acetone. All these complexes with Cr^{2+} , Mn^{2+} and Fe^{2+} were found non-electrolytic in nature. The molar conductance of these complexes have been recorded in nitrobenzene in digital systonic conductivity meter-304 and given in following table.

Complexes	Colour	M.Pt. (°C)	Soluble	µeff	Conductance (Ω-1cm2mol-1)	
[CrL(H ₂ O) ₂]	Deep red	192	In benzene and ether	3.48	4.02	
[MnL(H ₂ O) ₂]	Light yellow	210	In benzene and ether	3.60	4.50	
[FeL(H ₂ O) ₂]	Red	225	In benzene and ether	1.61	3.91	
[Co(L)]	Orange	240	In benzene and ether	1.71	3.17	
[Ni(L)]	Green	220	In benzene and ether	Diamagnetic	3.43	
[Cu(L)]	Light Green	215	In benzene and ether	1.72	4.23	
[Zn(L)]	Colourless	230	In benzene and ether	Diamagnetic	3.68	

PCM0200119

EXPLANATION:

Compound	v _(C=N)	$\nu_{(OH)}$ phenolic	$\nu_{(CS)}$	$\nu_{(NH)}$	$\nu_{(MO)}$	$\nu_{(MN)}$	$\nu_{(H_2O)}$	$\nu_{(C1)}$
AMPD	1610	3590	1110	3300				
[CrL(H ₂ O) ₂]	1595		1090	3250	450	600	885	705
[MnL(H ₂ O) ₂]	1580		1060	3240	435	580	880	710
[FeL(H ₂ O) ₂]	1550		1080	3265	430	595	875	708
[Co(L) ₂]	1565		1070	3245	455	590	882	700
[Ni(L) ₂]	1555		1075	3260	465	570	890	705
$[Cu(L)_2]$	1570		1040	3250	475	585	880	700
$[Zn(L)_2]$	1575		1065	3265	460	575	860	710

The IR spectral data and assignment of bands of transition metal (II) complexes are given in following table.

The ligand Salicylaldehyde (NH)-phenyl thiosemicarbazone has many donor sites such as phenolic hydroxyl group, –NH group, C=N group, thiocarbonylamide group and carbonyl lactone group. However, the infrared frequencies in the ligand Salicylaldehyde (NH)- phenyl thiosemicarbazone associated with the phenolic hydroxyl group and C=N group have been influenced on complex formation with Metal (II) ions.

The infrared spectra of complexes of ligand salicylaldehyde (NH)-phenyl thiosemicarbazone with Metal (II) ions and the ligand Salicylaldehyde (NH)-phenyl thiosemicarbazone were recorded in the range of $400 - 4000 \text{ cm}^{-1}$. The highest frequency of the bands of the ligand at ~1610 cm⁻¹ can be assigned to the v_{CN} vibration. This band is shifted to lower frequency 1595 – 1550 cm⁻¹ on complexation indicating the involvement of -C=N group in complex formation. The absence of a band at 3590 cm⁻¹ characteristics of phenolic hydroxyl group in all complexes, suggest that the hydroxyl group participate in coordination with metal ions. The band at 110 cm⁻¹ shifted to lower frequency 1090 – 1040 cm⁻¹ in complexes, indicating the involvement of thiocarbonyl group in complexation. The band at 3300 cm⁻¹ shifted to lower frequency in complexes in the range of 3265 – 3240 cm⁻¹. It may be due to the participation of the –NH group in complexation. The occurrence of band at 600 – 570 cm⁻¹ (M–N) and 450 – 430 cm⁻¹ (M–O) prove the bonding of nitrogen and oxygen to the metal ions. The spectra of the complexes exhibited a broad band about 3600 -3400 cm⁻¹ which may be due to water molecules. The presence of a band at about 890 – 860 cm⁻¹ indicates the coordinated water molecules in the complexes.

Thus on account of infrared spectral properties it can be said that ligand Salicylaldehyde (NH)-phenyl thiosemicarbazone acts as quadridentate ligand.

Acta Ciencia Indica, Vol. XLVI C, No. 2 to 4 (2020)

The singlet peak at $\delta = 9$ ppm of phenolic hydroxyl hydrogen of the lactone ring is disappeared in all complexes of M^{2+} ions with ligand Salicylaldehyde (NH)-phenyl thiosemicarbazone. It may be due to the deprotonation of the hydroxyl group before the complexation as :

The spectral data for the solution of transition metal (M^{2+}) ion complexes with ligand Salicylaldehyde (NH)-phenyl thiosemicarbazone investigated in in acetonitrile are presented in the following table.

CONCLUSION :

TABLE : Electronic spectral data of Salicylaldehyde (NH)-phenyl thiosemicarbazone with M^{2+} ions in cm⁻¹.

M ²⁺ complexes	Spectral bands (in cm ⁻¹)	Transitions		
[CrL(H ₂ O) ₂]	14, 450	${}^{5}E_{g} \rightarrow 5T_{2g}$		
[MnL(H ₂ O) ₂]	16500, 22300,	${}^{6}E_{1g} \rightarrow {}^{4}T_{1g}, {}^{4}T_{2g} (G)$		
	24800, 24850,			
	25200, 27800,			
	29500, and			
	32000	${}^{4}E_{g}$, ${}^{4}A_{1g}$ and ${}^{4}T_{2g}(D)$		
[FeL(H ₂ O) ₂]	10,250	${}^{5}T_{2g} \rightarrow {}^{5}E_{g}$		
[Co(L) ₂]	7850, 19,00 and	${}^{4}T_{1g} \rightarrow {}^{4}T_{2g}, {}^{4}T_{1g}$		
	21,400	and ${}^{4}A_{2g}$		
[Ni(L) ₂]	8,400, 14,200 and	${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}, {}^{3}T_{1g} (F)$		
	25,000	and ${}^{3}T_{1g}(P)$		
$[Cu(L)_2]$	12,210	$^{2}E_{2g} \rightarrow ^{2}T_{2g}$		

References

- 1. Muhammad Imran, Javed Iqbal, Tariq Mohammad and Shoomaila Latif *Journal of Biological Science*, Vol.- **6**, Issue-5, 946 949, (2006).
- K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 6th ed., John Wiley and Sons Inc, New York, (2009).
- 3. L. J. Bellany Infrared Spectra of complex molecules, Methun, London, (1954).
- E. H. Sousa, L.A. Basso, D.S. Sanots, I.C. Diogenes, E. Longhinotti, L.G. Lopes and S. Ide Moreiran – J. Biol. Inorg. Chem., Feb. 17(2), 275-283, (2012).
- 5. Figgis B.N. and Lewis J. *The Magnetic Properties of Transition Metal Complexes in Progress in Inorg. Chem.*, Vol.- 6, edn.

94