IMPACT OF AUTO-EXHAUST LEAD POLLUTION ON VEGETATION

R.S. SAMARPITA, MANOJA DAS

GIET University, Gunpur

P.K. MISRA

Ex-P.G. Department of Chemistry, Ravenshaw College, Cuttack 753003 (India)

RECEIVED : 25 December, 2020

Tetramethyl lead and tetraethyl lead, the antiknock additives to petrol causes of serious effects on human nervous system. There is an alarming high incident of mental retardation (upto 40%). They also cause anaemia. Amounts of lead injected into the atmosphere from burning petrol in driven vehicles, on sedimentation, contaminates the soil as well as vegetation. Interest has grown in recent years on the problem of effects on human health of environmental exposure to lead.

Experiment :

For this experiment ten different locations, each adjacent to a petrol pump, were selected. 'Balipan', 'Birikoli' and 'Maghi' varieties of (Piper betle L) were taken up for study. The otted plants with same variety of soil, were kept at those three locations and one was kept in the Ravenshaw College, Cuttack as control. Leaves were collected after 8 months of planting.

The leaves of the plant from ten locations was analysed in triplicate for lead content using mixture of nutric acid and sulphuric acid (Jackson, 1958). Then they were separately processed on atomic absorption spectrophotometer for the estimation of lead. The results are tabulated under Table 1. Maghi.

Leaves were estimated for chlorophyll content following Amon, 1949. Reducing sugars were estimated by Nelson's 1044 method and total sugar and starch by Yoshida's method, 1972. Nitrogen was estimated by microkjeldahl method.

Protein was calculated by using the conversion factor NX 6.25 (Jackson, 1958). Phenolic compounds were estimated following the procedure of Bray (1954), Vitamin-C by Mapson (1961) and total amino acids by Lee (1966) method.

PCM0200118

Discussion:

The lead content of plants from different locations are presented in Table 2. A, B and C. It is seen from the result that near the petrol pumps the lead content of plants in higher than that of controlled plants.

It is seen from the data, given under Table 2 A, B and C that there is a reduction in the contents of total chlorophyll, protein and amino acid of leaves than to the controlled plants.

The electronic configuration of lead is $6s^2$, $6p^2$, it exhibits valency 2. The vacant as orbitals may be filled up with the formation of covalent bonds. It may combine with sulphur atoms in a protein in a biological system. Biochemical legends like amino groups, carboxyl groups, phenoxy groups and imidazone of biochemical molecules would be altered by lead and hence their biochemical ro

 TABLE 1 : Lead content in plants of the three different varieties of pan (Piper Betle

 L.) plant at ten different location (Mg/G dry wet of lead).

Locations		Lead Content	
	Balipan	Maghi	Birikoli
1. Ravenshaw College (Control)	140	147.63	155
2. Dolamundai	212	217	177.87
3. Jagatpur	220	173.53	187.973
4. Balikuda	306	312	309
5. Telengapentha	144.28	174.573	161.3
6. Fulnakhara petrol pump	311.5	316.65	318
7. Pahala petrol pump	331.873	337	323.5
8. Puri Main Canal (Balianta)	357	369.77	366
9. Rasulgarh	390	396.93	399.67
10. Vani-Vihar crossing	163.67	197.56	201
11. C.R.P.Square	199.789	186.79	147.873

TABLE:	2(A)	:	Biochemical	contents	in	leaves	of	'Balipan'	(Average	of	3

Replications)

	Location	Chlorophyll (%)			5	Sugar (%	()					
		a	b	Total	Reducing	Total	Starch	Phenolic com- pounds' (%)	Vit.C mg/100 gm.	Total nitrogen (%)	Protein (%)	Amino acids (%
1.	Ravenshaw College (Control)	0.427	0.417	0.844	1.88	2.88	1.03	0.51	210.5	0.467	2.921	0.317
2.	Dolamundai	0.382	0.377	0.759	1.86	2.87	1.03	0.503	209.8	0.470	2.74	0.267
3.	Jagatpur	0.376	0.374	0.750	1.89	2.84	1.00	0.50	210.9	0.476	2.726	0.260
4.	Balikuda	0.359	0.361	0.720	1.89	2.86	1.00	0.50	211.0	0.468	2.692	0.249
5.	Telenga- pentha	0.361	0.386	0.747	1.79	2.79	1.009	0.446	198.0	0.476	2.975	0.327

6.	Fulnakhara	0.367	0.392	0.759	1.81	2.67	1.06	0.492	217.0	0.388	2.425	0.317
	petrol pump											
7.	Pahala petrol	0.301	0.480	0.781	1.69	2.91	0.978	0.511	213.9	0.350	2.187	0.303
	Pump											
8.	Puri main	0.383	0.411	0.794	1.82	2.88	0.11	0.509	208.6	0.298	1.862	0.207
	canal											
	(Balianta)											
9.	Rasulgarh	0.389	0.381	0.771	0.803	2.89	0.99	0.516	211.3	0.217	1.356	0.198
10.	Vani Vihar	0.307	0.392	0.699	1.709	2.99	1.02	0.499	198.9	0.428	2.675	0.301
	Crossing											
11.	C.R.P. Square	0.397	0.303	0.700	1.8	3.0	1.08	0.52	1987.8	0.404	2.525	0.297

TABLE:2(B) : Biochemical contents in leaves of 'Maghi' (Average of 3 replications)

		Chlorophyll (%)			1	Sugar (%	5)			_		3
	Location	a	b	Total	Reducing	Total	Starch	Phenolic com- pounds' (%)	Vit.C mg/100 gm.	Total nitro- ger (%)	Pro-tein (%)	Amino acids (%
1.	Ravenshaw College (Control)	0.36	0.38	0.74	1.90	2.9	1.2	0.44	191.0	0.454	2.837	0.415
2.	Dolamundai	0.29	0.31	0.600	1.89	2.9	1.32	0.432	191.0	0.451	2.818	0.287
3.	Jagatpur	0.43	0.26	0.69	1.88	2.87	1.26	0.45	192.0	0.436	2.725	0.299
4.	Balikuda	0.32	0.352	0.672	1.94	2.79	1.187	0.46	186.0	0.344	2.15	0.311
5.	Telenga- pentha	0.42	0.231	0.651	1.94	2.92	1.192	0.446	188.0	0.427	2.668	0.413
6.	Fulnakhara petrol pump	0.387	0.239	0.626	1.93	2.91	1.22	0.436	189.0	0.363	2.268	0.352
7.	Pahala petrol Pump	0.313	0.298	0.611	1.888	2.93	1.22	0.432	188.0	0.329	2.056	0.317
8.	Puri main canal (Balianta)	0.32	0.31	0.630	1.921	2.89	1.19	0.448	192.0	0.261	1.631	0.222
9.	Rasulgarh	0.291	0.32	0.611	1.930	2.88	1.18	0.451	191.0	0.217	1.693	0.201
10.	Vani Vihar Crossing	0.31	0.333	0.643	1.907	2.93	1.16	0.45	189.0	0.407	2.543	0.345
11.	C.R.P. Square	0.30	0.31	0.610	1.908	2.9	1.22	0.438	193.0	0.425	2.656	0.414

TABLE: 2(C) : Biochemical contents in leaves of 'Birikoli' (Average of 3 replications)

		Chlorophyll (%)				Sugar (%)		_			
	Location	a	b	Total	Redu- cing	Total	Starch	Phenolic com pounds' (%)	Vit.C mg/100 gm.	Total nitro- gen (%)	Protein (%)	Amino acids (%)
1.	Ravenshaw College (Control)	0.318	0.387	0.705	1.62	2.59	1.22	0.39	236.6	0.449	2.806	0.424
2.	Dolamundai	0.322	0.26	0.582	1.65	2.46	1.118	0.36	229.96	0.435	2.718	0.429
3.	Jagatpur	0.319	0.29	0.609	1.63	2.46	1.121	0.32	231.61	0.429	2.681	0.417
4.	Balikuda	0.37	0.30	0.670	1.64	2.54	1.23	0.40	230.02	0.361	2.256	0.356
5.	Telenga- pentha	0.318	0.30	0.618	1.64	2.56	1.26	0.39	235.0	0.419	2.618	0.401
6.	Fulnakhara petrol pump	0.318	0.37	0.688	1.69	2.61	1.21	0.38	243.3	0.357	2.231	0.349
7.	Pahala petrol Pump	0.322	0.37	0.692	1.68	2.59	1.22	0.38	233.09	0.343	2.143	0.336
8.	Puri main canal	0.31	0.38	0.690	1.68	2.54	1.19	0.37	236.00	0.329	2.056	0.317

	(Balianta)											
9.	Rasulgarh	0.32	0.29	0.610	1.68	2.56	1.18	0.40	234.00	0.225	1.406	0.219
10.	Vani Vihar	0.29	0.29	0.580	1.59	2.62	1.22	0.39	240.00	0.398	2.487	0.357
	Crossing											
11.	C.R.P.	0.27	0.36	0.630	1.58	2.48	1.23	0.39	239.2	0.403	2.518	0.373
	Square											

Therefore, it may evidently be concluded that the protein synthesis in leaves was depressed by lead, and the alternation in protein synthesis was due to alternation in the concentration of individual amino acids and it might inhibit the protein synthesis.

References

- Arnon, D.I., Copper enzymes in isolated chloroplasts. Polyphenol Oxides in Beta Vulgaris, *Plant Physiol*, 24: 1-15 (1949).
- Bray and Thorpe, Analysis of phenolic compounds of interest in metabolism. *Meth. Biochem. Anal.* 1: 27-32 (1954).
- Jackson, M.L., Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi (1973) 183, 326 pp. (1958).
- Lee, Y.P. and T.Kakahasi, An improved colourimetric determination of Amino acids with the use of ninhydrine. *Anal. Biochem.* 14-71 (1966).
- Mapson, L.W., A note on the estimation of dehydro-L-ascorbic acid in Plant tissues by Roe and Kuether procedure, *Biochem.*, J., 80-93, 459 (1961).
- Nelson, M., Photometric adaptation of the Somogyi method for the determination of glucose, *ibid*. 153, 373-380 (1994).
- Yoshida, S., Fomo, D.A., Cock J.H. and K.A.Gomez, Laboratory manual for physiological studies of rice, *The I.RRI, Lons Bonos*, Philippines (1972).
- Kumar, R., Studies on the effect of water pollution on certain crops with particular reference to sugar mill elluent discharge, *Ph.D Thesis*, C.C.S. University, Meerut, India (1998).