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The studies of superconductivity, dual superconductivity 

and color superconductivity have been undertaken through 

the breaking of supersymmetric gauge theories which 

automatically incorporate the condensation of monopoles 

and dyons leading to confining and superconducting 

phases. Constructing the total effective Lagrangian of N=2 

SU(2) gauge theory with Nf=2 quark multiplets and quark 

chemical potential at classical and quantum levels, it has 

been demonstrated that baryon number symmetry is 

spontaneously broken as a consequence of the SU(2) 

strong gauge dynamics and the color superconductivity 

dynamically takes space at the non-SUSY vacuum. 
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INTRODUCTION 

All supersymmetric theories with holomorphic super-potentials have moduli space as 

the result of flat directions in such potentials[1-7]. All points located on these flat directions 

represent degenerate but physically inequivalent ground states. Such a moduli space 

incorporates Higgs, Coulomb and confinement phases in the theory where superconductivity, 

dual superconductivity and color superconductivity occur in confinement phase. 

Supersymmetric quantum field theories are easier to analyze and are much more tractable than 

non-supersymmetric theories due to the constraints which follow from supersymmetry. In 

particular, the homomorphicity of the superpotential when combined with global symmetries 

enables one to find many exact results[8,9]. In all these exact solutions, the singularities of 

quantum moduli space of the theory correspond to the appearance of mass less monopoles and 

dyons. Consequently, the microscopic superpotential, explicitly breaking N=2 to N=1 
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supersymmetry, has been introduced [10,11] to explore physics near N=2 singularities and it 

has been found that the generic N=2 vacuum is lifted leaving only a singular loci of moduli 

space at the N=1 vacua where monopole and dyons can condensate leading to confinement 

and superconductivity. 

In the present paper we have undertaken the studies of superconductivity and dual 

superconductivity through the breaking of supersymmetric gauge theories which automatically 

incorporate the condensation of monopoles and dyons leading to confinement phase and 

superconducting phase. Constructing the effective Lagrangian near singularity u = 
2
 in 

moduli space for N=2 supersymmetric theory with SU(2) gauge group, it has been shown that 

when the mass term is added to this Lagrangian, the N=2 supersymmetry is reduced to N = 1 

supersymmetry containing mass less monopoles (0, 1) at u = 
2
. The addition of a mass less 

term to the low energy Lagrangian near the singularity u=-
2
 has been shown to yield the 

dyonic condensation which leads to confinement and superconductivity as the consequence of 

generalized Meissner effect [12-14]. 

SUPERSYMMETRIC DYONS IN N = 2 THEORY 

The simplest four dimensional supersymmetric model in which boundary terms enter as 

central charge[15] may be constructed in terms of the following N = 2 supersymmetric dyonic 

Lagrangian[16] in SU(2) gauge theory with the generalized gauge field strength G ; 

   
1 1

( ) ( ) ( ) ( )
4 2 2

a a a
a a aL G G D D D P D P 

    


     

   5( ) | | | | ( , )
             a c b a b c

a abc abci a D q P i q P V P    ...(2.1) 

where 

  
2 21 1

( , ) (| | ) [| | ]
4 4

     b c b c
abc abcV P q q P P  

    
21

(| | )
4

  b c
abcq P  ... (2.2)  

 is Dirac spinor,  is scalar field and P is pseudo scalar field (all these fields are in the 

adjoint representation of the gauge group). In this model the vacuum energy V (, P) is 

independent of values of  and P in certain directions in field space. As long as  and P 

commute, the vacuum energy is classically zero.  and/or P may have non-zero vacuum 

expectation values, spontaneously breaking some of gauge symmetries.  
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The nature of dyons is strongly perturbed by fermionic sector which couples with them 

since the zero energy solutions for dyons continue to exist for both isospinor and isovector 

fermions. The simplest four-dimensional model, in which boundary terms enter as external 

electric and magnetic charges in N = 2 supersymmetric theory, may be obtained [17,18] in 

terms of the Lagrangian density given by equation (2.1) where fields are in adjoint 

representation of SU(2) and the classical potential V(, P) is given by  

    2

2

1
( , ) ( , )

| |
rV P t P

q
   ...(2.3) 

In Prasad – Sommerfield limit [19], we have  

    ( , ) 0V P   ... (2.4) 

but                 0 | | 0 0     ... (2.4a) 

where          a a aA BP    ... (2.5) 

with A and B as constants satisfying the condition  

    2 2 1A B   

Then the Lagrangian density (2.1) yields the following expressions for electric and 

magnetic fields as zero order solution of equations (2.4); 

            ( ) sina a
i iE D    

            ( ) cos a a
i iB D  ... (2.6) 

where 1tan /e g     

In the classical potential (2.3) of N = 2 theory without hypermultiplets (i.e. without 

quarks) let us set †P   such that  

    † 2

2

1
( , ) | | ( , )

( )
V P V tr

g
    


 ... (2.7) 

where g   is the gauge coupling constant of the underlying microscopic theory. As long as  

and †  commute, the scalar potential ( ) 0V   , even for non-vanishing expectation value of 

, given by equation (2.4a), which spontaneously breaks SU(2) to U(1) showing that the 

theory has a continuum of gauge in-equivalent vacua called the classical moduli space 

parameterized by[7] 
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    2 21

2
u tr v   ... (2.8) 

where for SU(2) gauge group we have set 

    31

2
v   

with    3 1 0

0 1


 
  

 
 

This parameter u is a good local coordinate on the classical moduli space. Such a classical 

moduli space is the consequence of existence of flat directions along which the scalar potential 

(2.7) vanishes. All points located on these flat directions represent degenerate but physically 

inequivalent ground states. Defining electric and magnetic charge numbers en  and mn  

respectively, as follows in the classical moduli space; 

    
2

e

e
n       and     

2

,
8 2

 
   
 

i

m

g g
n  ... (2.9) 

the dyonic charge may be written as  

    
2

8
2 m

e i

in
q e ig n

g

 
     

 

 ... (2.10) 

and the dyonic mass may be written as  

     
2

8
2 2 | |,


   



m
e e cl m

in
M v n v n n

g
 ... (2.11) 

where     
2

8
cl

i

g


 


 ...(2.12) 

Then equation (2.10) may also be written as 

        2( ) ( , )e cl m e mq n n n n    ... (2.13) 

 Setting       v a   

and    cl Dv a   , ... (2.14) 

the equation (2.11) for mass of BPS state  may be written as   

    2 | |M Z  ... (2.15) 

where    e D mZ an a n   ... (2.16) 
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is the central charge of supersymmetric algebra.  The explicit form of ( )a u  and ( )Da u is 

given by the following relations [17, 18, 20] 

     
1 1 1 2

( ) , ,1;
2 2 2 1

u
a u F

u

  
  

 
 ... (2.17)  

and    
1 1 1 1

( ) , ,1;
2 2 2 2

D

u u
a u i F

  
  

 
 ... (2.18) 

where F (,, ; x) is usual hyper geometric function defined as  

        
1 1 1

0

1
( , , , ) (1 ) (1 )

( , )
F x t t xt dt

B

     
 

     
  

 

with B (, -) as the usual -function. From these equations we get  

         11

1 1 1
, , 1;

2 2 1

1 1 2
, ,1;

2 2 1

D

u
iF

da u

da
F

u

 

 
 

 
  

 
 

 

 ... (2.19)  

which blows up at u = 1 and u = , showing that the branch points u = 1 are the 

singularities of the moduli space.  

For the dynamically generated mass scale  different from 1, we get the following 

generalization of equations (2.17) and (2.18) 

      
2

2

1 1 2
( ) , , 1;

2 2 2 1 /

u
a u F

u

   
  

  
 ... (2.20)  

and   
2 2 2

2 2

1 1 1 1
( ) , , 1; , , 1;

2 2 2 2 2 

       
                 

D

u u u
a u i F F

u
 ... (2.21)  

             
2 21 1 1 /

, , 2; ,
2 2 2 2

   
   

 

u u
i F  ... (2.22)  

where we have used the linear transformations of hyper-geometric functions. From these 

relations we get  

       

2

2

11 2

2

1 1
, , 1;

2 2

1 1 2
, , 1;

2 2

D

u
iF

ua

a
F

u



  
     

 
  

    

 ... (2.23) 
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which is simple generalization of equation (2.19). It blows up at the cuts u = 
2
. At a point 

near the infinity, the asymptotic behavior of the functions ( )a u  and ( )Da u , given by 

equations (2.17) and (2.18), for  =1, may readily be derived using the asymptotic form of 

hyper- geometric function. We thus get the following asymptotic behavior of these functions; 

     ( )
2

u
a u   

                  ( ) 2 [ln 3ln 2 2]D

i
a u u u


    ... (2.24)    

      Relation (2.14) may also be written as 

     ,





D

F
a

a
 

where   
2

2

4
( )

iv
F v

g





 ... (2.25) 

is a holomorphic function.  

   Under the duality transformation  

    1cl cl    ... (2.28)  

we have           ( , ) ( , )e m e m mn n n n n   ...(2.29)  

which incorporates the transformation of a monopole (0, nm) to a dyon (–nm , nm) and the 

transformation of a dyon (1,1) to a monopole (0,1). 

In Coulomb gauge the gauge theory has a massless photon and hence it is subject to the 

standard electric–magnetic-duality, 

    
1

( , ) ( , )e m m e
cl

q n n n n q


 
     

 
 ... (2.30)  

which incorporates the inversion of cl .  The transformations (2.28) and (2.30) generate an 

infinite duality group SL(2,Z). Thus there is a natural family of parameters related by SL(2, Z) 

and in classical moduli space the singular points are associated with extra massless particles. 

If a general matrix (2, )SL Z  is taken as  

                 ,
 

 

 
  
 

M  ... (2.31)  

then the transformation  
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    ,
     

      
     

D D Da a a
M

a a a
 ... (2.32) 

gives    D Da a a    ...(2.33)  

      

which give the following transformation of the periodic matrix  11 

    11
11

11r

 


 


 


 ... (2.34) 

It gives the following modular transformation of the holomorphic function F (a); 

                2 21 1
( ) ( ) ( )

2 2
D DF a F a a a a a F a          ... (2.35)  

 Thus for   
0 1

1 0
M S

 
   

 
 ... (2.36)  

we get    ; ;   D Da a a a  ...(2.37) 

    11 11
11

1S 


     ...(2.38)  

and                ( ) ( ) ( )s
s DF a F a aa F a      ... (2.39)  

Similarly, for   
1 1

0 1
M T

 
   

 
 ... (2.40)  

we have   T
D D Da a a a    ; 

     11 11; 1Ta a a        ... (2.41)  

and               
21

( ) ( ) ( )
2

T
TF a F a a F a     ... (2.42)  

The transformation (2.30) incorporates the transformation of an electric charge (1, 0) to a 

monopole (0, 1) i.e. it leads to the monopole region. On the other hand the transformation 

(2.28) transforms a monopole (0, 1) to a dyon (–1, 1) i.e. it leads to the dyon region.  The 

corresponding equations (2.37) and (2.41) show that in these monopole and dyon regions the 

natural independent variables to be used are   

    ( )m
Da a   ... (2.43)  

and    ( )d
Da a a   ... (2.44)  

' Da a a  
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respectively, with the corresponding prepotentials
( )

( )m

m

a
F  and 

( )

( )d

d

a
F , given by equations 

(2.39) and (2.42) respectively. 

SUPERCONDUCTIVITY THROUGH BREAKING OF N = 2 SUPERSYMMETRY 

TO N=1 THEORY IN THE ABSENCE OF HYPERMULTIPLETS 

In the absence of flavor degree of freedom, the effective Lagrangian near the singularity 

2u    in the mass less theory contains the monopole fields ( , )M M  [21]. For the 

prepotential ( )F a , given by equation (2.25) with v a  as the scalar component of vector 

multiplet A

 associated with the generators of SU(2) and superpotential W

a
, the effective 

Lagrangian is [8,11]
 
 

    eff HM VML L L   ... (3.1) 

where   
2

4 2

2

1 1

4 2
VM m

F F
L I d A d W W

A A

  
  

   
 


 


 ... (3.2)  

and                    (2 2 ) ( 2 2 )4 [ ]m D e m D en V n V n V n V
HML d M e M M e M

      

    2 {( ) . }m D ed n A n A M M H C     ... (3.3) 

where VD is the dual of vector superfield V and AD is the dual of chiral superfield A, and the 

effective coupling  in the vacuum parameterized by a  is given by equation (2.12) which may 

also be written as 
2

2
( )

F
v

v






 with v a . The variable  in these equations denotes the 

vacuum deformation due to SU(2) strong gauge dynamics such that the relations (2.12) 

becomes  

     
2 2

2 2 2

8

2

F F i

a A g

 




 
   

 
 ... (3.4)  

AD, dual of A, in these relations is the chiral multiplet in N = 2 vector multiplet of the dual 

photon with A as its scalar component. ne and nm are the electric and magnetic charge numbers 

defined by equations (2.9).  Let us add the mass term   

            2 | |F Fm mU   ... (3.5)  
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to the Lagrangian (3.1). Let us denote this mass as adjoint mass mad, then the equation (3.1) for 

Lagrangian takes the following form  

    ,  eff HM VM softL L L L  ...(3.6)  

where   2 2 . .soft adL m d trA H C    ...(3.7)  

 Then the exact full superpotential (in absence of hyper multiplets) is  

    2( ) ( , )m D e DV n A n A M M mU A A    ... (3.8)  

and the supersymmetry N = 2 is reduced to N = 1 supersymmetry. 

At the singularities u = 
2
 of the quantum moduli space, a monodromy arises from the 

massless monopole (0, 1) (i.e. for ne = 0). Then the condition of masslessness, when imposed 

on equation (2.11) for mass, gives  

    0Da  , ... (3.9) 

which implies that  

    0DA    ...(3.10) 

 The same result may be obtained by extremizing V of equation (3.8) with respect to M 

for ne = 0, i.e.  

    0
V

M





  

which implies 0DA  . 

Extremization of V of equation (3.8) with respect to AD, yields the monopole condensation  

    1/ 2[ ( ) / 2]M M mU o     

               1/ 2(2 ) im  ... (3.11)  

where U’(0) is the derivative with respect to AD at AD =0. The value of condensation  

      2u tr   , ... (3.12)  

is fixed at 
2
. This monopole condensation at singularity u =

2
 of quantum moduli space leads 

to confinement and superconductivity as the consequence of dual Meissner effect [22,23].

 Similarly at the singularity u = –
2
, another monodromy arises from the vanishing mass 

of dyons (1, –1) for which equations (2.41) become 

    D D Da a a a     
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indyonic region. Thus near the singularity u  = –
2 

of the quantum moduli space, the low 

energy Lagrangian has the same structure as (3.1) with the replacement  

    , , ,    
 

D D DM M N N A A A A  ...(3.13)   

where ,


N N  denotes dyonic field. The addition of mass term (3.5) here yields the dyonic 

condensation  

     1/ 2[ ( ) / 2]N N mU o     ... (3.14)  

where ( )U o  is the derivative with respect to DA   at 0DA   . This dyonic condensation in the 

breaking of N = 2 supersymmetry to N =1 theory leads to confinement and superconductivity 

as the consequence of generalized Meissner effect[12-14]. 

DISCUSSION 

The simplest four-dimensional model, in which boundary terms enter as external electric 

and magnetic charges in N = 2 supersymmetric theory, has been obtained in terms of the 

Lagrangian density given by equation (2.1) where fields are in adjoint representation of SU(2) 

and the classical potential V(, P) is given by equation (2.3). Equation (2.15) gives the mass of 

BPS state in terms of supersymmetric central charge given by equation (2.16).   Equation 

(2.29) incorporates the transformation of a monopole (0, nm) to a dyon (-nm, nm) and the 

transformation of a dyon (1,1) to a monopole (0,1) under the duality transformation (2.28). In 

Coulomb gauge the gauge theory has a massless photon and hence it is subject to the standard 

electric – magnetic-duality given by equation (2.30)  which incorporates the inversion of cl. 

The transformations (2.28) and (2.30) generate an infinite duality group SL(2,Z). Thus there is 

a natural family of parameters related by SL(2, Z ) and in classical moduli space the singular 

points are associated with extra massless particles. The transformation (2.30) incorporates the 

transformation of an electric charge (1, 0) to a monopole (0, 1) i.e. it leads to the monopole 

region. On the other hand the transformation (2.28) transforms a monopole (0, 1) to a dyon 

(–1, 1) i.e. it leads to the dyon region.  The transformation (2.30) incorporates the 

transformation of an electric charge (1, 0) to a monopole (0, 1) i.e. it leads to the monopole 

region. On the other hand the transformation (2.28) transforms a monopole (0, 1) to a dyon 

(–1, 1) i.e. it leads to the dyon region.  The corresponding equations (2.37) and (2.41) show 

that in these monopole and dyon regions the natural independent variables to be used are  

those given by  equations (2.43) and (2.44) respectively, with the corresponding prepotentials 

( )

( )m

m

a
F  and

( )

( )d

d

a
F , given by equations (2.39) and (2.42) respectively. 
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Monopole condensation given by equation (3.11) at singularity u=
2
 of quantum moduli 

space leads to confinement and superconductivity as the consequence of dual Meissner effect. 

Similarly at the singularity u = –
2
, another monodromy arises from the vanishing mass of 

dyons (1,-1) in the dyonic region.Thus near the singularity u = -
2 

of the quantum moduli 

space, the low energy Lagrangian has the same structure as (3.1) with the replacement given 

by equation (3.13). The addition of mass term (3.5) here yields the dyonic condensation given 

by equation (3.14). This dyonic condensation in the breaking of N = 2 supersymmetry to N =1 

theory leads to confinement and superconductivity as the consequence of generalized 

Meissner effect. 
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