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current in RCD chromo magnetic superconductor has been 
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INTRODUCTION 

Quantum chromo dynamics (QCD) is the most favored color gauge theory of strong   

interaction where as superconductivity is a remarkable manifestation of quantum mechanics 

on a truly macroscopic scale. In the process of current understanding of superconductivity, 

Rajput et al [1-4]  have conceived its hopeful analogy with QCD and demonstrated that the 

essential features of superconductivity i.e., the Meissner effect and flux quantization, provided 

the vivid models [5-9]  for actual confinement mechanism in QCD. Mandelstam [10-12]   

propounded that the color confinement properties may result from the condensation of 

magnetic monopoles in QCD vacuum. In a series of papers [13-16]  Izawa and Iwazaki made 

an attempt to analyze a mechanism of quark confinement by demonstrating that the Yang-

Mills vacuum is magnetic superconductor and such a superconducting state is considered to be 

a condensed state of magnetic monopole. The condensation of magnetic monopole 

incorporates the state of magnetic superconductivity [17]   and the notion of chromo magnetic 

superconductor where the Meissner effect confining magnetic field in ordinary 
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superconductivity would be replaced by the chromo-electric Meissner effect (i.e., the dual 

Meissner effect), which would confine the color electric flux. As such one conceives the idea 

of correspondence between quantum chromo dynamic situation and chromo-magnetic 

superconductor. However, the crucial ingredient for condensation in a chromo magnetic 

superconductor would be the non-Abelian force in contrast to the Abelian ones in ordinary 

superconductivity. Topologically, a non-Abelian gauge theory is equivalent to a set of Abelian 

gauge theories supplemented by monopoles [18]. The method of Abelian projection is one of 

the popular approaches to confinement problem, together with dual superconductivity [19,20]  

picture, in non-Abelian gauge theories. Monopole condensation mechanism of confinement 

(together with dual superconductivity) implies that long-range physics is dominated by 

Abelian degrees of freedom [21] (Abelian dominance). 

Evaluating Wilson loops under the influence of the Abelian field due to all monopole 

currents, monopole dominance has been demonstrated [21, 22]. In the Abelian projection the 

quarks are the electrically charged particles and, if monopoles are condensed, the dual 

Abrikasove string carrying electric flux is formed between quark and anti-quark. Due to non-

zero tension in this string, the quarks are confined by the linear potential. The conjecture that 

the dual Meissner effect is the color confinement mechanism is realized if we perform Abelian 

projection in the maximal gauge where the Abelian component of gluon field and Abelian 

monopoles are found to be dominant [23, 24]. Then the Abelian electric field is squeezed by 

solenoidal monopole current [25]. The vacuum of gluodynamics behaves as a dual 

superconductor and the key role in dual superconductor model of QCD is played by Abelian 

monopole. Therefore an important problem, before studying the vacuum properties of non-

Abelian theories, is to abelianize them so as to make contribution of the topological magnetic 

degrees of freedom to the partition function explicit. To meet this end, a dual gauge theory 

called restricted chromo dynamics (RCD) (i.e., an Abelian version of non-Abelian QCD) has 

been constructed out of QCD in SU(2) theory [26-29] by imposing an additional internal 

symmetry named magnetic symmetry [30-34] which reduces the dynamical degrees of 

freedom. Attempts have been made [1-4] to establish an analogy between superconductivity 

and the dynamical breaking of magnetic symmetry, which incorporates the confinement phase 

in RCD vacuum. 

In the present paper this structure of RCD has been used to undertake the study of 

condensation of monopoles and the resultant chromo-magnetic superconductivity in SU(2) 

gauge theory. The RCD Lagrangian density for monopoles has been derived in magnetic 

gauge and the resulting partition function has been computed in terms of string action and the 

action of current around the strings. Using this partition function, the quantum average of 

Wilson loop for monopoles has been computed and the sources of electric flux (i.e. quarks) 

running along the trajectory have been introduced with the help of Wilson loop. 

The monopole current in RCD chromo magnetic superconductor has been derived in 

London limit which corresponds to infinitely deep Higgs potential leading to vanishing 

coherence length. It has been shown that the squared monopole current in RCD chromo 

magnetic superconductor in the London limit has a maximum at the distance of the order of 
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penetration length and it (the penetration length) governs the monopole density around the 

string in RCD chromo-magnetic superconductor.  The monopole current has also been derived 

in RCD chromo magnetic superconductor with non-zero finite coherence length and it has 

been shown that the monopole density is non-zero even in the absence of string. It has also 

been shown that the quantum correction to the squared monopole density is much more than 

its vacuum expectation value measured far outside the string. It has been demonstrated that in 

the chromo magnetic superconductors with finite (non-zero) coherence length the quantum 

corrections to squared monopole density control the leading behavior of the total monopole 

density in the vicinity of the RCD string. It has also been shown that the leading behavior of 

the monopole density at large distances from the string is controlled by the coherence length 

and not by the penetration length. 

SUPERCONDUCTIVITY DUE TO CONDENSATION OF MONOPOLES IN SU(2) 

GAUGE THEORY 

In SU(2) gauge theory of QCD the Abeliazation may be achieved by the constraint given 

by[1-4] 

    


ˆ ˆ 0D m m igV m    


    ... (2.1) 

where Dµ is covariant derivative for the gauge group, µ = 0, 1, 2, 3, V    is the generalized 

gauge potential and g is magnetic charge on monopole. The vector sign and cross product in 

this equation are taken in internal group space and m̂  characterizes the additional Killing 

symmetry (magnetic symmetry) which commutes with the gauge symmetry itself and is 

normalized to unity i.e.  

      2ˆ 1m   

This magnetic symmetry obviously imposes a strong constraint on the connection and 

hence may be regarded as symmetry of gauge potential. This gauge symmetry restricts not 

only the metric but also the gauge potential. Such a restricted theory (RCD) may be extracted 

from full QCD on restricting the dynamical degrees of freedom of theory, keeping full gauge 

degrees of freedom intact, by imposing magnetic symmetry which ultimately forces the 

generalized non-Abelian gauge potential ( , )V A B    of monopole to satisfy a strong 

constraint given by eqn. (2.1) which gives the following form of the generalized restricted 

potentials, 

with     
* 1

ˆ ˆ ˆ    

B A m m m

g
 ... (2.2) 

    
* ˆA B m


   

where A  and B  are the electric and magnetic constituents of gauge potential. These 

equations give 
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*ˆˆ .m A B   

and    
*ˆˆ .m B A   ... (2.3) 

as unrestricted Abelian components of the restricted potentials. If 0A 

  in the original QCD 

then unrestricted potential is only 
*B  and the restricted part of the potential is given as  

        
1

ˆB m m
g

  
 
   ... (2.4)  

              W  
r

 

where W is the potential of topological monopoles in magnetic symmetry which is entirely 

fixed by m̂  up to Abelian gauge degrees of freedom. The unrestricted part 
*B of the gauge 

potential describes the monopole flux of color isocharges. The unrestricted part 
*B  is the dual 

potential associated with charged gluons W 
  and leads to condensation of monopoles and the 

resultant state of chromo magnetic superconductivity as shown in our earlier papers[1-4]. 

In the presence of a complex scalar field  (Higg’s field) and in the absence of quarks or 

any colored object, the RCD Lagrangian in magnetic gauge may be written as  

    21 1
| | ( * )

4 2
L H H D V

       ... (2.5) 

where          
* 2 2 2( ) (| | )V         , ... (2.6) 

                ( )D igW      , ... (2.7)                                                         

and    , ,H W W       ... (2.8) 

with  as coupling constant of Higgs field and v as the vacuum expectation value i.e.  

           v = <>0  

In Prasad – Sommerfeld limit[35] 

    V () = 0  

but          v  0. ... (2.9) 

Here Wµ may be identified as the potential of topological monopoles in magnetic 

symmetry entirely fixed by m̂  up to Abelian gauge degrees of freedom. Thus in the magnetic 

gauge, the topological properties of m̂  can be brought down to the dynamical variable Wµ by 

removing all non-essential gauge degrees of freedom and hence the topological structure of 

the theory may be brought into dynamics explicitly where monopoles appear as point-like 

Abelian ones and the gauge fields are expressible in terms of purely time-like non-singular 
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physical potential Wµ. Under the condition (2.9) the monopoles have lowest possible energy 

for given magnetic charge. 

The Langarian (2.5) of RCD in the absence of quark or any colored object looks like 

Ginsburg – Landau Lagrangian for the theory of superconductivity. The dynamical breaking 

of the magnetic symmetry, due to the effective potential V(*), induces magnetic  

condensation of vacuum leading to the magnetic super current which  screens the magnetic 

flux that confines the electric color iso-charges (due to dual Meissner effect). In other words, 

the dual Meissner effect expels the electric field between static colored charges into a narrow 

flux tube, giving rise to a linearly rising potential and to confinement. In this Abelian Higgs 

model of RCD in magnetic symmetry the Wµ, defined by equation (2.8), is dual gauge field 

with the mass of dual gauge boson given by   

             MB =gv,                 ...(2.10) 

and  is the monopole field with charge g and mass 

             M = (8)v ... (2.11) 

With these two mass scales the coherence length  and the penetration length  are given 

by  

                = 1/M = 1/ [(8)v] 

and               = 1/MB = 1/ (gv)  ...(2.12) 

The region in phase diagram space, where   = , constitutes the border between type-I 

and type-II superconductors. The dual superconductivity model proposed recently by 

Alessandro et al [20] places the Yang-Mills vacuum close to the border between type-I and 

type II superconductors and marginally on the type-II side. Comparing this penetration length 

 with that of relativistic superconducting model i.e. 

    
1

2 | | 2s
s

M e ev


    , 

we get     2 cot
s





  ... (2.13) 

where                  cot /e g  ,   

e being the electric charge of gluons W 


. This relation shows that with a suitable choice of 

the charge-space parameter , the tube of confining flux can be made thin giving rise to a 

higher degree of confinement of color flux by magnetically condensed vacuum. 

BEHAVIOUR OF MONOPOLES AROUND RCD STRINGS IN SU(2) THEORY 

Lagrangian, given by eqn. (2.5), yields the following field equations 
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† 0H i D j

       ... (3.1)  

and       2 24 [| | 1]D       ... (3.2) 

where         
0 †[ ]j i iW      , 

            
2g


   

and          
†[ ]a aj i D     

               
†[ ( ] ]ai iW       

with a = 1, 2, 3 and 
a
, Pauli matrices , constitute the conserved Notherian current. Using 

relation (2.8), we may write equation (3.1) as  

    †W W i iW


   


 



 
    

 
 ... (3.3) 

which reduces to the following form in the Lorentz gauge 

     †W i iW


 


 



 
  

 
 

which further reduces in to following simple form for the small variation in  

    
2| | 0W W     ...(3.4) 

which is a massive vector type equation where the equivalent mass of the vector particle state 

(i.e. condensed mode) may be identified as  

    M = || 

with its expectation value  

    <M > =  

which gives   
1

BM g M vg


     ... (3.5) 

where  is penetration length. Thus the penetration length directly follows from the field 

equation (3.1) obtained from the Lagrangian (2.5) of the extended Abelian Higgs model in 

restricted chromo- dynamics. 

Magnetically condensed vacuum of action of Lagrangian of eqn. (2.5) is characterized by 

the presence of two massive modes. The mass of scalar mode, M given by equation (2.11), 

determines how fast the perturbative vacuum around a colored source reaches the 

condensation and the mass MD of the vector mode determines the penetration length of the 

colored flux. The masses of these magnetic  glue balls may be estimated [32, 36, 37] by 
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evaluating string tension of the classical string solutions of quark pairs, since the extended 

Abelian Higgs model in restricted chromo dynamics, admits string-like solutions [38]. Let us 

examine the behavior of monopoles around such RCD strings. The classical field equations 

(3.1) and (3.2) contain a solution corresponding to the RCD string with a quark and an anti-

quark at its ends. We consider such strings which are stationary and translationaly invariant 

along the third direction Z = x
3
 of the reference frame used in Lagrangian (2.5). Let us 

consider the following ansatz [39, 40] for the four components of the vector field Ŵ  and the 

two complex components 1 and 2 of the Higgs field ; 

    Wµ = {Wi (), W ()} ... (3.6) 

and    2( ) ( )( )[ ]     ii w x i p
i if e e  ... (3.7)  

where i = 1, 2,  = 3, 4, fi () are complex functions of  = 
2 2 1/ 2
1 2( )x x and 3 and 4 are 

real parameters. Here 4 is the relative rotation and 3 is the relative twist along z-axis 

between the components 1 and 2 of the Higg’s field .  This ansatz breaks the originally 

present global SU(2) symmetry to U(1) and the various terms of the Lagrangian (2.5) reduce 

from four-dimensional configuration to the two-dimensional configuration in the following 

manner; 

    2 2[( )( )], 
    ij i iH H H W W

 

               
2 2 2

2( )( ) ( 2 ) | | | | | | ,  
            i a aD D W D W W  

and    
2 2 2 2[| | 1] [| | 1]a     ... (3.8) 

where  i, j and a = 1, 2, WαWα = 
2 2

3 4 ,W W  and   
2 2
3 4


       

Then the action of Lagrangian (2.5) reduces to  

   
2

4 3 2 2 2

2

1
[ | | ( 2 ) | |

2| |
aA dx dx d x W W W

q

 
  


        

 2 2 2 21 1 1
| | ( )( ) (| | 1) ]

2 4 2
i a ij i i aD H W W 

            ... (3.9)  

where  2 1
12 21

1 2

W W
H H

x x

 
   

 
 

With this Ansatz the field equation (3.1) and (3.2) take the following forms in the 1 2x x

plane 

    
2 2

2| | | | ,       aW W  ... (3.10) 

   [ ]j jk a k aH i D    ... (3.11)  
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and      2 2
1 1 14 [| | 1] 2i aD W W    

      ... (3.12) 

and     2 2
2 2 2 2 24 [| | 1] 2 ( 2 )aD W W W      

           ...(3.13)  

where equation (3.10) may also be written as  

     
2 2

2| | | | ,       aW W  ... (3.14) 

with              = –  

Let us consider the solutions of these equations in the following simple case of the ansatz 

used in equations (3.6) and (3.7)  

          2 1
1 2 3 42 2

ˆ ˆ( ) ( )
; ; 0; 0

x h x h
W W W W

g g

 

 
      ... (3.15) 

where 1x̂  and 2x̂  are unit vectors along x1   and  x2 directions. In this case equation (3.14) 

gives  

           α = 0  ...(3.16) 

and then equations (3.12) and (3.13) reduce to  

    
2 24 [| | 1]i a a aD        ... (3.17) 

and relation (3.7) becomes 

    
( )( ) i

i if e     ... (3.18) 

showing that there is neither relative rotation nor relative twist between the components of 1 

and 2 of the Higgs field .  The solutions (3.15) and (3.18) are static and untwisted semilocal 

solutions. Here  is the transverse distance to the string  

and    1 2arg( )  x ix , ... (3.19) 

        
0 0

lim ( ) lim ( ) 0,
 

 
 

 f h  

       
0

lim ( ) lim ( ) 1
  

 
 

 f h  ... (3.20) 

where   1( ) ( )f f      and    2( ) ( )h f    ...(3.20a) 

From equation (3.1) the monopole current as 

    2Im[ ] | | [ arg ]k g D g gW           ... (3.21) 

Equation (3.19) gives 

    1

2
1

x

x






 


   and    2

2
2










x

x
 ... (3.22) 

Substituting relations (3.18), (3.15), (3.19), (3.20a) and (3.22) into equation (3.21), we get 
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2
2

2

( )
( )[1 ( )]


 




  

ij j
i

x
k gf h  

    3 0k     and   4 0k   ... (3.23)   

where 12 = -21 = 1   and 11 = 22 = 0 , summation over repeated index is conventionally 

involved. Substituting relations (3.18), (3.15) and (3.22) into field equation (3.17), we have 

 

2
2 2 2( ) ( ) / ( ) / [1 ( )] [1 ( )] ( ) 0

2

M
f f f h f f


       

 
       
 
 

 ...(3.24) 

where dash devotes derivatives with respect to . At large distance, in view of equations 

(3.20), we may have  

    ( ) 1 ( ),   f  ... (3.25) 

where  () is infinitesimally small at large distance such that  

    lim ( ) 0


 


  

Then equation (3.24) may be written as  

   
2( ) ( ) / ( ) 0M             

Substituting r = M into this equation, we have  

   
2

2

( ) 1 ( )
( ) 0

d r d r
r

r drdr

 


 
   
 

 

which is modified Bessel’s equation of zero order, with its solution given as  

   0 0( ) ( ) ( )r AI r AI M   , ... (3.26) 

where 0I  is the modified Bessel’s function of zero order. In the similar manner, the field 

equation (3.3) may be written into the following form by using relations (3.15) and (3.23); 

   
2 2( ) ( ) / [1 ( )] ( ) 0Bh h M h f          ... (3.27) 

At large distance we may have 

    ( ) 1 ( ),   h  ...(3.28)  

where   lim ( ) 0


 


  

Then equation (3.27) reduces to  

    
2

2

( ) ( )
( ) 0

d r d r
r

drdr

 
   . 

where Br M  . Let us substitute ( ) ( )r r r   in to this equation. Then we have  
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2

2 2

( ) ( ) 1
( ) 1 0

d r d r
r r

drdr r

 


 
    

 
 

which is modified Bessel’s equation [41] of order-one with its solution given by  

    1

( )
( ) ( )

r
r BI r

r


    ... (3.29)  

where 1( )I r  is  modified Bessel’s function of order one. Thus we have  

    1( ) ( ) ( )B BB M I M    , ... (3.30)      

Substituting relations (3.26) and (3.30) into equations (3.25) and (3.28), we have at large 

value of , 

    0( ) 1 ( )f AI M     ... (3.31) 

and    1( ) 1 ( ) ( )B Bh B M I M     

Substituting these results in to equation (3.15) and (3.18) with equation (3.19), we get the 

solution of classical field equations (3.2) and (3.17) corresponding to the RCD string with a 

quark and an anti-quark at its ends. The infinitely separated quark and anti-quark correspond 

to an axially symmetric solution of the string. For such a string solution with a lowest non-

trivial flux, the coefficient A in the solution (3.26) is always equal to one while the coefficient 

B in the solution (3.30) is unity in the Bogomolnyi limit exactly on the border between the 

type I and type II superconductors where MB = M i.e. coherence length and the penetration 

length coincide with each other. Thus in RCD close to border, we set B = 1 besides A = 1 and 

then we have  
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The RCD string is well defined by these solutions. 

DISCUSSION 

The Lagrangian, given by equation (2.5) for RCD in magnetic gauge in the absence of 

quarks or any colored objects, establishes an analogy between superconductivity and the 

dynamical breaking of magnetic symmetry which incorporates the confinement phase in RCD 

vacuum where the effective potential V(* ), given by equation (2.6), induces the magnetic 

condensation of vacuum.  This gives rise to magnetic super current which screens the 
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magnetic flux and confines the color iso-charges as the result of dual Meissner effect. The 

confinement of color is due to the spontaneous breaking of magnetic symmetry which yields a 

non-vanishing magnetically charged Higg’s condensate, where the broken magnetic group is 

chosen by Abelianization process and hence the magnetic condensation mechanism of 

confinement in RCD is dominated by Abelian degrees of freedom. Such Abelian dominance in 

connection with monopole condensation has recently been demonstrated by Boykov et al [42]. 

The similar result has also been obtained more recently in a dual superconductivity model 

[20].
 

In the confinement phase of RCD, the monopoles are condensed under the condition (2.9) 

where the transition from <>0 = 0 to <>0 = v 0 is of first order, which leads to the vacuum 

becoming a chromo magnetic superconductor in the analogy with Higg’s- Ginsburg-Landau 

theory of superconductivity. Magnetically condensed vacuum is characterized by the presence 

of two massive modes given by equations (2.10) and (2.11) respectively, where the mass of 

scalar mode M determines how fast the perturbative vacuum around a color source reaches 

condensation and the mass MB of vector mode determines the penetration length of the colored 

flux. With these two scales of dual gauge boson and monopole field, the coherence length  

and the penetration length  have been constructed by equations (2.12) in RCD theory.  These 

two lengths coincide at the border between type – I and type –II- superconductors. 

The ansatz given by relations (3.6) and (3.7) shows that there is a non-trivial coordinate 

dependent relative phase between the components of SU(2) doublets. This anastz breaks the 

originally present global SU(2) symmetry to U(1) and reduces the four-dimensional action of 

Lagrangian (2.5) to the two dimensional one given by equation (3.9) with the field equation 

given by equations (3.10), (3.11), (3.12) and (3.13).  For the special case with the static 

solution given by equations (3.15), (3.17) and (3.18) there is neither a relative rotation nor a 

relative twist between the components of Higg’s field. Substituting relations (3.32) into 

equations (3.15) and (3.18), the solutions of classical field equations (3.1) and (3.2), 

corresponding to the RCD string with a quark and antiquark at its ends, readily follows. The 

RCD string is well defined by solutions (3.32) where the monopole current given by equation 

(3.21) near the RCD string, is zero at the center of the string and also zero at points far away 

from the string. 
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