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INTRODUCTION 

Physicists were fascinated by magnetic monopole since its ingenious idea was given by 

Dirac [1,2] and also by Saha [3,4] by showing that the mere existence of monopole implies the 

quantization of electric charge in the Abelian theory.  In the mean time, it became clear [5-7] 

that monopole and dyon [8-9] (a particle carrying electric and magnetic charges) can be 

understood better in non-Abelian gauge theories. Such non-Abelian monopoles are known to 

arise as classical solutions in field theoretical models like the Georgi-Glashow model and also 

in pure Yang-Mills theories where the role of fundamental Higgs scalars could eventually be 

played by some composite fields. In any case, these non-Abelian monopoles can be 

understood, in the framework of these models, as defects in space-time of U(1) gauge fields 

which arise once the unitary gauge is chosen [10-11]. Julia and Zee [8] extended the idea of 

non-Abelian monopole proposed by t’ Hooft [5] and Polyakov [6] and constructed classical 

solutions for non-Abelian dyons. Now it is widely recognized [12] that SU(5) grand unified 

model is a gauge theory that contains monopole solution and it has been demonstrated by 

Witten [13]  that non-Abelian monopoles are necessarily dyons which arise as quantum 

mechanical excitation of fundamental monopoles. Thus monopoles and dyons became 

intrinsic part of all current grand unified theories (GUT’s) and super symmetrical models 

[14-19]. Perhaps the most important aspect of monopoles and dyons in physics is their role in 

the mechanism of quark confinement [20-25] along the lines of dual Meissner effects [26-30] 

leading to dual superconductivity as discussed in our recent papers [31-36]  by employing dual 
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gauge potential where magnetic degree of freedom manifestly appears in the partition 

function. 

Embedded monopoles are gauge-invariant composite objects made of quark and gluon 

fields. These monopoles constitute a new class of defects of quantum chromo-dynamics 

(QCD) and proliferate in the quark-gluon plasma phase.  This proliferation is associated with 

the well defined boundary [37] known as Kretesz-line, which separates the hadronic phase 

(i.e. the confinement phase) and the quark-gluon phase (i.e. deconfinement phase) of QCD 

with realistic quark masses and vanishing chemical potential . Hence these embedded 

monopoles are also called quark-monopoles [37]. At larger chemical potential, the phase 

transition reemerges at a tricritical point and then continues as the first-order phase transition.  

At even higher temperature, more exotic phases such as color superconductivity and the color-

flavor locking appear [38]. Quark-monopoles (i.e., embedded monopoles) in QCD are 

analogues of the embedded Nambu-monopoles [39, 40] in standard Electro-Weak model[40].  

There should be an indirect relation between quark monopoles and confining properties 

including superconductivity since the confinement phenomenon and the chiral symmetry are 

intimately related in QCD and the quark monopoles (embedded monopoles) are considered as 

agents of chiral symmetry restoration [41]. 

Extending the restricted  chromodynamics (RCD) [31, 32] in SU(2) gauge theories in the 

present paper by including quarks and gluons, the study of dyonic condensation, quark 

confinement and superconductivity (dual superconductivity as well as color 

superconductivity) has been undertaken in extended RCD. In this  paper the study of  

superconductivity due to embedded monopoles [37, 41] in  these gauge theories has also been 

carried out by exploring the role of quark monopoles (i.e. embedded monopoles) in restoration 

of chiral symmetry and the related confining properties. The bilinear functions of the fermion 

fields have been constructed in SU(2) theory as scalar and axial vector from the point of view 

of space-time transformations. The corresponding Georgi-Glashow multiplets have been used 

to construct gauge invariant t’ Hooft tensors in color space and the currents of quark-

monopoles of three types have been shown to possess - singularities at the corresponding 

world lines. These quark monopoles have been shown to carry the magnetic charges with 

respect to scalar, axial and chiral invariant components of gauge fields in SU(2) theory. It has 

been shown that these quark monopoles are tightly related to the chiral symmetry restoration 

and the resulting color superconductivity in QCD. 

SUPERCONDUCTIVITY DUE TO CONDENSATION OF EMBEDDED 

MONOPOLES IN SU(2) THEORY 

   Monopole condensation mechanism of confinement, together with dual 

superconductivity, implies that long range physics is dominated by Abelian degrees of 
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freedom and the method of Abelian projection (i.e. Abelianization) is one of the popular 

approaches to the problem of confinement, and hence superconductivity, in non-Abelian 

gauge theories. In SU(2) gauge theory of QCD this Abeliazation is achieved by the constraint 

given by [31-33] 

    ˆ ˆ 0D m m igV m


    


                                 ...(2.1) 

where D  is covariant derivative for the gauge group,µ = 0, 1, 2, 3, V  is the generalized 

gauge potential and g is magnetic charge on monopole. The vector sign and cross product in 

this equation are taken in internal group space and ˆcm characterizes the additional Killing 

symmetry  (magnetic symmetry) which commutes with the gauge symmetry itself and is 

normalized to unity i.e. 

          2ˆ 1m  

This magnetic symmetry obviously imposes a strong constraint on the connection and 

hence may be regarded as symmetry of gauge potential. This gauge symmetry restricts not 

only the metric but also the gauge potential. Such a restricted theory (RCD) may be extracted 

from full QCD on restricting the dynamical degrees of freedom of theory, keeping full gauge 

degrees of freedom intact, by imposing magnetic symmetry which ultimately forces the 

generalized non-Abelian gauge potential ( , )  V A B  of monopole to satisfy a strong 

constraint given by eqn. (2.1) which gives the following form of the generalized restricted 

potentials, 

     * 1
ˆ ˆ ˆB A m m m

g



         ...(2.2) 

with    * ˆ 

A B m  

where A  and B  are the electric and magnetic constituents of gauge potential. These 

equations give 

    *ˆˆ .  m A B  

and    *ˆˆ .  m B A                                                           (2.3) 

as unrestricted Abelian components of the restricted potentials. If 0 

A  in the original QCD 

then unrestricted potential is only *
B  and the restricted part of the potential is given as  

                
1

ˆ   
 
B m m

g
 ...(2.4)  
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             


W  

where W is the potential of topological monopoles in magnetic symmetry which is entirely 

fixed by m̂  up to Abelian gauge degrees of freedom. The unrestricted part *
B of the gauge 

potential describes the monopole flux of color isocharges. The unrestricted part *
B  is the dual 

potential associated with charged gluons W 
  and leads to condensation of monopoles and the 

resultant state of chromomagnetic superconductivity as shown in our earlier papers [31-36]. 

In the presence of a complex scalar field  (Higg’s field) and in the absence of quarks or 

any colored object, the RCD Lagrangian in magnetic gauge may be written as  

     21
| | ( * )

4 2


   


  L H H D V  ... (2.5) 

where            * 2 2 2( ) (| | ) ,V V       ... (2.6) 

                 ( ) ,     D igW      ...(2.7) 

and                 , ,     H W W   ...(2.8) 

In the presence of quarks (and gluons), the RCD Lagrangian (2.5) may be generalized to 

the following form ; 

   
21 1

( ) ( )
4 2

 
             a a a

R a a aL H H i D m D V  ,        ...(2.9)                            

where a = 1, 2, 3,  represents quark field with mass m, and H

  has been constructed as        

3H H


   in the magnetic gauge by aligning m̂ along a space- time independent direction 

(say 3  in isospin space) on imposing a gauge transformation U such that  

     3

0

ˆ ˆ 0

1



 
 

  
 
 

U

m  ... (2.10)  

with H  defined by eqn. (2.8) where Wµ may be identified as the potential of topological 

dyons in magnetic symmetry which is entirely fixed by m̂  up to Abelian gauge degrees of 

freedom. Thus in the magnetic gauge, the topological properties of m̂  can be brought down to 

the dynamical variable Wµ by removing all non-essential gauge degrees of freedom and hence 

the topological structure of the theory may be brought into dynamics explicitly. It assures a 

non-trivial dual structure of the theory of monopoles in magnetic gauge in which these objects 

appear as  point-like Abelian ones and the gauge fields are expressible in terms of purely time-
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like non-singular physical potential Wµ.  Lagrangian (2.9) can be used to represent the 

interactions between quarks and monopoles in the theory. It can be viewed as the effective 

Lagrangian used to describe the dual dynamics of RCD at the phenomenological level just as 

the Ginsburg – Landau Lagrangian is used in the theory of superconductivity. With this 

Lagrangian in hand, we have two phases in our theory. The first one is the unconfinement 

phase (quark-gluon plasma phase), where magnetic symmetry is preserved and the second one 

is the confinement phase (hadronic phase), where magnetic symmetry is broken dynamically. 

These two phases are separated by the well defined boundary [37], known as Kreteszline, with 

which there is associated the proliferation of embedded monopoles which are gauge-invariant 

composite objects made of quark and gluon fields. Hence these embedded monopoles are also 

called quark-monopoles [37]. 

 In order to explore the role of quark monopoles (i.e., embedded monopoles) in 

restoration of chiral symmetry and the related confining properties and superconductivity, in 

SU(2) theory, let us start with the quark field (i.e. fermion field) , introduced through eqn. 

(2.9), which transforms in the fundamental representation of gauge group SU(2) in Yang-Mills 

theory. Then the bilinear functions of this fermion fields may be defined as  

     ˆ ( ) ( )
aaS x x


    ...(2.11) 

     5
ˆ ( )( ) ( )

aaA x iy x


    ...(2.12)  

where ˆa  are the Pauli matrices and Ŝ and Â  (the real valued composite fields) are scalar and 

axial (i.e., pseudo scalar) fields from the point of view of space-time transformations. Both 

these fields transform as adjoint three- component quantities with respect to the action of the 

gauge group.  

Let (x) used in equation (2.11) and (2.12) be c-valued function as an eigen mode of mass 

less Dirac operator D̂ ,  

    ˆ ( ) ( )  D x x  ...(2.13) 

where             
1ˆ
2

   
 

   
 

a aD i B    ...(2.14) 

with
aB  (x) as the gauge fields. Let us consider the axial transformations UA(1) defined by the 

global Abelian parameter  as  

   5   
i r

e      and     5    
i

e  ... (2.15)                                                              
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Under these transformations UA (1), the color vector ˆaS  and ˆaA  given by equation (2.11) 

and (2.12), transform as 

    ˆ ˆ ˆ ˆcos2 sin2   a a a aS S S A  

    ˆ ˆ ˆ ˆsin2 cos2    a a a aA A S A  ... (2.16) 

Let us construct the following three unit color vectors in terms of adjoint fields ˆaS and 

ˆaA ; 

     1ˆ ˆ ˆ; ;
| | | | | |

s A

S A S A
n n n

S A S A


  



   

    ,  ... (2.17) 

where the symbol denotes vector in color space and | |S


and | |A


are norms of color vectors 

ˆS S


  and  ˆA A


 

    

1/ 2

1/ 2

ˆ ˆ| | , ,

ˆ ˆ| | ,

S S S

A A A







   

The last relation in equation (2.17) gives the normalized vector product (in color space) of 

the scalar and axial color vectors Ŝ and Â  respectively.  Using equations (2.17) and (2.16), it 

may readily be shown that the unit vector 1̂n  is invariant under the axial transformations 

(2.15) and (2.16). Unit vectors of equation (2.17) may be interpreted as the directions of the 

composite adjoint Higgs field.  Then we get following three Georgi-Glashow multiplets in 

SU(2) gauge theory with Higgs fields; 

   ˆ ˆ ˆ( , ); ( , ); ( , )  
a a a a a a
s A In B n B n B  ... (2.18) 

These multiplets can be used to construct the gauge invariant, t Hooft tensors[5] in the 

following form in color space: 

    
1

ˆ ˆ ˆ( ) ( ) ;  

 
    

 



s

s s s sn H D n D n
g

 

    
1

ˆ ˆ ˆ( ) ( ) ;A
A AA

n H D n D n
g

 
    

 



     

    
1

ˆ ˆ ˆ( ) ( ) ;   

 
    

 



I

I II
n H D n D n

g
 ...(2.19) 

where   ( )          
    

H B B g B B  ...(2.20) 
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is the field strength of the gauge field 


B  with magnetic charge g and  

    ( ) c
ab ab abcD g B       ...(2.21) 

is the adjoint covariant derivative. t’ Hooft tensors of equation (2.19) are the gauge invariant 

field strength tensors for the diagonal components 

           

ˆ( , );

ˆ( , );

ˆ( , );

s
s

A
A

I
I

B B n

B B n

B B n













 

 

 

                   ...(2.22) 

of the gauge field with respect to the color directions. The current of the quark monopole of S
th

 

type is then given by  

           ( )
,

2

s d sg
k

k
     

                 (4)( )
[ ( )]

s
s

s

C
C

C

X
d x X 
  




 

  ...(2.23) 

where 
( )d s
 , dual of  

s
 , is given by  

      
( ) 1

2

d s s
       ... (2.24)  

and sC  is the corresponding world-line while monopole world-line is parameterized by the 

vector ( )
sCX X    and the parameter . This current, given by equation (2.23), has a -like 

singularity at the world-line C
s
. Similarly, the currents of quark monopoles of A

th
 and I

th
 type 

have -like singularities at the world lines C
A
 and C

I
 respectively.  

The quark monopoles defined by equation (2.23) are quantized and the corresponding 

monopole charge is conserved. In other words the world lines C
S
, C

A
 and C

I
 are closed. . In 

the corresponding unitary gauges 

    
3 3,a a a a

s An n      and    
3a a

In   ... (2.25) 

the quark monopoles correspond to monopoles embedded into the diagonal components given 

by equations (2.22).  

 

 


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DISCUSSION 

In equations (2.11) and (2.12), the bilinear functions of the fermion fields have been 

constructed to explore the role of quark monopoles (i.e., embedded monopoles) in restoration 

of chiral symmetry and the related confining properties and superconductivity in SU(2) gauge 

theory. These scalar and axial fields transform according to equations (2.16) under the axial 

transformations given by equations (2.15). The unit vectors of equations (2.17) may be 

interpreted as the direction of the composite Higgs field and consequently, equations (2.18) 

give three Georgi-Glassow multiplets in SU(2) gauge theory with Higgs field. These 

multiplets have been used to construct gauge invariant t’ Hooft tensors in the form given by 

equation (2.19) in color space. These tensors are gauge invariant field strength tensors for 

diagonal components of the gauge field with respect to the color direction.  The current of the 

quark monopole of S
th

 type, given by equation (2.23), has a -like singularity at the world line

SC . In the similar manner the currents of quark monopoles of A
th

 and I
th

 type may be 

constructed and these currents also may be shown to have -like singularities on the world 

lines C
A
 and C

I
 respectively.  The quark monopoles described by equations (2.23) are 

quantized and the world lines C
S
, C

A
  and C

I
 are closed. Thus the quark monopoles of S

th
, A

th
 

and I
th

 types carry the magnetic charges with respect to scalar, axial and chiral invariant 

components of gauge fields given by equations (2.22). In the corresponding unitary gauges, 

defined by equations (2.24a), the quark monopoles correspond to monopoles embedded into 

the diagonal field components given by equations (2.22). In the gauges, where these diagonal 

components are regular, such monopoles are hedgehogs[41] in the composite quark-antiquark 

fields. The corresponding quark condensates are characterized by the typical hedgehog 

behavior ~a a
sn x  etc. in the local transverse vicinity of monopoles. The existence of these 

monopoles and their condensate in QCD is a kinematical consequence of the existence of 

adjoint real valued fields of equations (2.11), (2.12) and (2.17). There is an infinite number of 

equivalent formulations of the embedded monopoles (i.e., quark monopoles) associated with 

triplet isovectors given by chiral rotation (2.16) of isovectors Ŝ  and Â  with an arbitrary 

angle 2. Because of the hedgehog behavior of embedded QCD monopoles in quark – 

antiquark condensates, these monopoles are rightly called ‘quark monopoles’. These quark 

monopoles are tightly related to the chiral symmetry restoration and the resulting color 

superconductivity in RCD. 
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