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Constructing the effective action for dyonic field in Abelian 

projection of QCD, it has been demonstrated that any 

charge (electrical or magnetic) of dyon  screens its own 

direct potential to which it minimally couples and anti-

screens the dual potential leading to dual superconductivity 

in accordance with generalized Meissner effect. In this 

Abelian projection of QCD an Abelian Higgs model, 

incorporating dual superconductivity and confinement, has 

been constructed and its string representation has been 

obtained in terms of average of Wilson loop. The study of 

the condensation of monopoles and the resulting chromo 

magnetic superconductivity has been undertaken in 

restricted chromo dynamics (RCD) of SU(2) and SU(3) 

gauge theories. Constructing the RCD Lagrangian and the 

partition function for monopoles in terms of string action 

and the action of the current around the strings, the 

monopole current in RCD chromo magnetic 

superconductor has been derived  and it has shown that in 

London’ limit the penetration length governs the monopole 

density around RCD string in chromo magnetic 

superconductors while with finite (non-zero) coherence 

length the leading behavior of the monopole density at 

large distances from the string is controlled by the 

coherence length and not by the penetration length. 

PACS : 10 

INTRODUCTION 

In the process of current understanding of superconductivity at high 𝑇𝑐  one conceives the 

notion of its hopeful analogy with quantum chromo-dynamics (QCD) which is the most 

favored color gauge theory of strong interaction whereas superconductivity is a remarkable 
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manifestation of quantum mechanics on a truly macroscopic scale. In the process of current 

understanding of superconductivity, Rajput et al [1, 2, 3] and S. Kumar [4] have conceived its 

hopeful analogy with QCD and demonstrated that the essential features of superconductivity 

i.e., the Meissner effect and flux quantization, provided the vivid models [5-9] for actual 

confinement mechanism in QCD. Mandelstam [10-12] propounded that the color confinement 

properties may result from the condensation of magnetic monopoles in QCD vacuum. In a 

series of papers [13-16]  Izawa and Iwazaki made an attempt to analyze a mechanism of quark 

confinement by demonstrating that the Yang-Mills vacuum is magnetic superconductor and 

such a superconducting state is considered to be a condensed state of magnetic monopole. The 

condensation of magnetic monopole incorporates the state of magnetic superconductivity [17]  

and the notion of chromo magnetic superconductor where the Meissner effect confining 

magnetic field in ordinary superconductivity would be replaced by the chromo-electric 

Meissner effect (i.e., the dual Meissner effect), which would confine the color electric flux. As 

such one conceives the idea of correspondence between quantum chromo-dynamic situation 

and chromo-magnetic superconductor. However, the crucial ingredient for condensation in a 

chromo-magnetic superconductor would be the non-Abelian force in contrast to the Abelian 

ones in ordinary superconductivity. Topologically, a non-Abelian gauge theory is equivalent 

to a set of Abelian gauge theories supplemented by monopoles [18]. The method of Abelian 

projection is one of the popular approaches to confinement problem, together with dual 

superconductivity [19-20] picture, in non-Abelian gauge theories. Monopole condensation 

mechanism of confinement (together with dual superconductivity) implies that long-range 

physics is dominated by Abelian degrees of freedom [21,22] (Abelian dominance).The 

conjecture that the dual Meissner effect is the color confinement mechanism is realized if we 

perform Abelian projection in the maximal gauge where the Abelian component of gluon field 

and Abelian monopoles are found to be dominant [23-24]. Then the Abelian electric field is 

squeezed by solenoidal monopole current [25]. The vacuum of gluon-dynamics behaves as a 

dual superconductor and the key role in dual superconductor model of QCD is played by 

Abelian monopole. For the self-dual fields, the Abelian monopoles become Abelian dyons 

[26]. The infra-red properties of QCD in the Abelian projection can be described by the 

Abelian Higgs Model (AHM) in which dyons are condensed. There exists the model [27-30] 

of QCD vacuum in which the non-Abelian dyons are responsible for the confinement. The 

non-Abelian dyons give rise to Abelian dyons in the Abelian projection. Therefore an 

important problem, before studying the vacuum properties of non-Abelian theories, is to 

Abelianize them so as to make contribution of the topological magnetic degrees of freedom to 

the partition function explicit. Such a construction for non-Abelian gauge theories and its 

relevance to topological magnetic charge and hence to confinement are still lacking in spite of 

large amount of recent literature [31-36] on the subject. 
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ELECTROMAGNETIC DUALITY AND DYONIC INTERACTIONS 

A gauge invariant and Lorentz covariant quantum field theory of fields associated with 

dyons has been developed[37-40] in purely group theoretical manner by using two four- 

potentials and assuming the generalized charge, generalized current and generalized four- 

potential as complex quantities with their real and imaginary parts as electric and magnetic 

constituents i.e. 

generalized charge                          q e ig   ... (2.1a) 

generalized four-current               J  = j ik   ... (2.1b) 

and generalized four-potential      V A iB     ... (2.1c) 

where e and g are electric and magnetic charges on dyon; j  and k   are electric and 

magnetic four-current densities and A and B  are the electric and magnetic four-potentials 

associated with dyons. Taking the wave function associated with generalized field as 

    E iH 
 

   ...(2.1d) 

The generalized field equations of these fields may be written as 

                 0. J 
 

 

and              iJ i
t


   




  

     ...(2.2) 

where 0J
 
 and J


 are the temporal and spatial parts of J  defined by eqn. (2.1b). 

 In the compact form these equations may be written as 

                 ,G J    

and                                  , 0dG    ... (2.3) 

where ,G  the generalized field tensor, is given as 

                 
G V V        ... (2.4) 

and 
dG  

is its dual given as 

    

1

2

dG G    ... (2.5) 
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Equation (2.4) may also be written as 

    
G F iH     ... (2.6) 

where   F A A        ... (2.6a) 

and    H B B        ... (2.6b) 

Then eqns. (2.3) reduce to the following form 

    ,F j    ... (2.7)  

and    ,H k    ... (2.7a) 

These equations are symmetrical under the duality transformations 

   ;F H H     ;F  ;j k k j      ... (2.8) 

The Lagrangian density for spin-1 generalized charge (i.e. bosonic dyon) of rest mass 0m  

may be written as follows in the Abelian theory; 

  
2 2

0 , , , , , , , ,

1
[ {( ) ( ) } 2 {( )( )}

4
L m A A B B A A B B                         

     {( ) ( ) }]A B j B A k             

       = P F IL L L   ... (2.9) 

where  and   are real positive unimodular parameters i.e.         

    

2 2
1   , ... (2.10) 

,P FL L and IL  are free-particle, field and interaction Lagrangians respectively. The 

action integral may be written as 

    

2

1

t

P F I

t

S Ldt S S S     ... (2.11) 

Varying the trajectory of particle without changing the field, we get the following 

equation of motion 

               Re( * )mx q G u 
   ... (2.12)                                      

where Re denotes the real part and u is the th component of four- velocity of dyon. 
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An Abelian dyon moving in the generalized field of another dyon carries a residual 

angular momentum [41] (field contribution ) besides its orbital and spin-angular momenta. If 

we consider ith Abelian dyon moving in the field of jth dyon (assumed at rest), its gauge 

invariant rotationally symmetric orbital angular momentum may be written as [41] 

    
( )T

ij ij

r
J r p V

r
   

  
   ... (2.13) 

where r


 is the position vector and p


 is the linear momentum of ith dyon,  TV   is the 

transverse generalized vector potential of the field associated with jth dyon and 
ij    is the 

magnetic coupling parameter defined as 

    ij i j j ie g e g     ...(2.14) 

The last term in eqn. (2.13) is the residual angular momentum carried by ith
 
dyon besides 

its usual orbital angular momentum and spin-angular momentum; 

    
res ij

r
J

r



 ... (2.15) 

For each pair of dyons, this residual angular momentum generates a one dimensional 

representation of the pair of four-momentum associated with these particles. This is the 

subgroup of the Lorentz group which leaves both four-momenta invariant. This residual 

angular momentum leads to chirality dependent multiplicity in the eigen values of angular 

momentum of an Abelian dyon. 

With the development of non-Abelian gauge theories, Dirac monopole has mutated in 

another way as we have to take into account not only electromagnetic U(1) gauge group but 

also the color gauge group SU(3)c describing strong interaction. In QCD, because SU(3) is 

compact, the color electric charges defined with respect to any maximal Abelian subgroup are 

quantized. It implies that we can write down gauge field configurations that asymptotically 

look like magnetic monopole of any chosen Abelian direction. The confinement of color 

electric charge corresponds to the screening of color magnetic charge. There are monopole 

field configurations in any non-Abelian gauge theory. The phase structure of any such theory 

can be probed by adding a scalar field (i.e. Higgs field) in the adjoint representation so long as 

it does not change the nature of flow of the coupling constant with energy. For asymptotically 

free theories, the low energy behavior is dominated by the Abelian monopoles of almost zero 

mass which are almost point-like. The interaction of these point-like monopoles with gluons 

and charged particles can be studied as a dual analogue of point-like charged particle 

interactions. It leads to condensation of monopole. Thus topologically, a non-Abelian gauge 

theory is equivalent to a set of Abelian gauge theories supplemented by monopoles which 
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undergo condensation leading to confinement. Thus the non-Abelian confinement of dyonic 

charge is related to linear Abelian theory in a dyonic superconductor. 

Let us first consider the effective action for dyonic field in this Abelian projection of 

QCD in the following manner [2] 

   4 41
( ) ( )

4
S G x x y G d xd y J V 

       ... (2.16) 

where ( )x y   is the generalized dielectric constant defined as 

  
 ( ) ( ) ( )x y x y i x y       ... (2.17) 

with ( )x y    as ordinary dielectric constant and ( )x y   as magnetic permeability such 

that 

   
4( ) ( ) ( )x y x z d y x z       ... (2.18) 

where ( )x  is Dirac-Delta function. The generalized field tensor ( )G x  of eqn. (2.16) 

satisfies field equations (2.3) or equivalently the field eqns. (2.7). The generalized four-current 

of field equation (2.3) couples to ,V   with the current-correlators given by 

    
S

J
V







    

and     
2

( ) ( )
( ) ( )

S
j x J y

V x V y


 



 
    ... (2.19) 

   Using eqns. (2.17) and (2.19), we have 

          
4

( ) 2 2

4
( ) ( ) [ ] ( )

(2 )

ik x yd k
J x J y e k k k k    



       ... (2.20) 

where 2( )k  is Fourier transform of ( )x y  . For free fields in vacuum, 2( ) 1.k   In the 

perturbation theory the deviation of 2( )k  from 1 can be interpreted as the vacuum 

polarization due to dyon loops. For perturbatively small  2( ),k  we have      

             
2 2( ) 1 ( )k k   ,   ...(2.21) 

where            
2 2 2( ) ( ) ( )e gk k i k     ... (2.22) 
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with 2( )e k  as perturbation related with electric charge loop and 2( )g k  as the 

perturbation related with magnetic charge loop. 

Let us apply eqn. (2.20) to the case of dual superconductivity where   includes fully 

non-perturbative effects. This rigidly excludes generalized electromagnetic field in side dual 

superconductor in conformity with the generalized Meissner effect with its real and imaginary 

constituents as the strict Meissner effect and dual Meissner effect respectively. Then the 

generalized field  V   can penetrate in to a generalized superconductor up to the generalized 

London penetration depth 

    L e gi     ... (2.23) 

where e  is strict penetration depth due to Meissner effect and g is the dual penetration 

depth due to dual Meissner effect. For small values of 2k , we have 

           

2 2
2

2 2
( ) L

L

m ik
k

k m
    ... (2.24) 

where                
1

e gL l L
L

m m im


    ... (2.25) 

or                 
2

1 e g
L

e g L

i
m

i

 

  


 


 ... (2.25a) 

 It gives             
2e

e
L

L

m



  

and               
2g

g
L

L

m



   ... (2.26) 

Equations (2.20) and (2.1b) then give 

 
4

( ) 2 2

4
[ ( ) ( ) ( ) ( )] [ ] ( )

(2 )

ik x yd k
j x j y k x k y e k k k k      



        

and 
4

( ) 4 2 2 2

4
[ ( ) ( ) ( ) ( )] [ ] ( ) /

(2 )

ik x y
L

d k
j x k y j x k y e k k k k k m       



       

      ... (2.27) 

These equations give the generalized propagator associated with generalized field V  .  



98 Acta Ciencia Indica, Vol. XLVI-P, No. 1 to 4 (2020) 

Let us consider electric and magnetic charges on different particles (i.e. not dyons). Then 

field equations (2.3) reduce to the following form 

    , ;F j    

    , 0;dF    

    , ;H k    

    , 0dH     ... (2.28) 

or equivalently        A = j 

and        Bµ = kµ  ...(2.29)                                               

and equation of motion (2.12) becomes 

    
( )mx eF gH u  

    ... (2.30) 

All these equations are dual invariant under the transformations (2.8). The effective action 

in this Abelian projection of QCD may be written as follows from eqn. (2.16) 

        4 41
( ) ( ) ( )

4
S F x x y F y d xd y

     

4 41
( ) ( ) ( )

4
H x x y H y d xd y j A k B  

         ... (2.31) 

The current-correlations (2.19) may then be written as follows 

     ; ;
S S

j k
A B

 
 

 

 
       

       
2

( ) ( ) ;
( ) ( )

S
j x j y

A y A x
 

 



 
  

 

... (2.32) 

      
2

( ) ( )
( ) ( )

S
k x k y

B y B x
 

 



 
     

For the given action in the present case, these relations lead to  

     
4

2 2

4
( ) ( ) [ ] ( )

(2 )

d k
j x j y k k k k    


       

and    
4

2 2

4
( ) ( ) [ ] ( )

(2 )

d k
k x k y k k k k     


       ...(2.33) 

For small perturbations we have 



Acta Ciencia Indica, Vol. XLVI-P, No. 1 to 4 (2020) 99 

     2 2( ) 1 ( )ek k    

and    2 2( ) 1 ( )gk k     ...(2.34) 

where the upper signs in the right hand sides correspond to vacuum polarization due to 

charged particle-loops and the lower signs correspond to that due to monopole-loops. 

Relations (2.33) may also be written as 

   
4

2

4 2
( ) ( )

(2 )
eL

k kd k
j x j y m

k

 
  



 
     

 
  

and   
4

2

4 2
( ) ( )

(2 )
gL

k kd k
k x k y m

k

 
  



 
     

 
   ...(2.35) 

These relations show that charged particles 2[ ( ) 1]e k   produce screening effect for the 

A propagator  , with the corresponding photon acquiring the mass 
eLm and anti-screening 

effect for the .B propagator   On the other hand, the monopole loops produce screening 

effect for ,B propagator  with corresponding photon acquiring the mass 
,gLm , and anti-

screening effect for .A propagator   Thus any particle ( electrically charged or a monopole) 

screens its own direct potential to which it minimally couples, and anti-screens the dual 

potential ( B for electric charge and A  for monopole). This dual anti-screening effect leads 

to dual superconductivity in accordance with generalized Miessner effect. 

SUPERCONDUCTIVITY DUE TO CONDENSATION AND CONFINEMENT OF 

DYONS 

The non-Abelian nature of gauge group [SU(3) or SU(2)] is quite crucial to dyon 

condensation as mechanism of confinement. The method of Abelian projection is one of the 

popular approaches to the confinement problem in the non-Abelian gauge theories. A general 

non-Abelian theory of dyons consists of usual four-space (external) and n - dimensional 

internal group space, where the field associated with dyons has n - fold internal multiplicity 

and the multiplets of gauge field transform as the basis of adjoint representation of n -

dimensional non-Abelian gauge symmetry group. Choosing the internal gauge group as SU(2), 

the generalized dyonic field tensor may be constructed as 

    

a
aG G T


   ... (3.1) 

with the generalized four-potential defined as 
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    a
aV V T


   ...(3.2) 

where repeated indices are summed over 1, 2 and 3 (internal degrees of freedom), vector sign 

is denoted in the internal group space and the matrices aT  are infinitesimal generators of 

group SU(2), satisfying the commutation relation 

             
[ , ]a b abc cT T i T  

with abc  as  structure constant of internal group. We may connect G

  and V


  through the 

following non-Abelian version of eqn. (2.4); 

    

a a a abc
b cG V V q V V           ... (3.3) 

where the dyonic generalized charge q is given by eqn. (2.1a). 

A suitable Lagrangian density of a spontaneously broken non-Abelian gauge theory 

SU(2), yielding the classical dyonic solutions, may be constructed as 

         
1 1

( ) ( ) ( ) ( , , )
4 2

a a
a a dyonL G G D D V L A B 

            

where  Re( ) ( )D i q V ieA igB                 ...(3.4) 

with Re denoting the real part and 

   2 21 1
( ) ( ) ( )

4 2

a a
a aV v       

with        0 0v         ... (3.5) 

which determines the vacuum expectation value of Higgs field. In simplest manner this 

equation may be written as 

   

2
2 2( ) ( )V v      ... (3.6) 

with   as a constant.      

The gauge dependent part of Lagrangian i.e., first term of rhs in eqn. (3.4) is invariant 

under the following  transformations of the fields A  and B ; 

   ( ) ( )
A A A

V V R R V
B BB

            
        

  

  
 

   
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where  
cos sin

( )
sin cos

R
 


 

 
  

 
 ... (3.7) 

with       
1tan

g

e
   
  

 
 

Using the Lagrangian density given by eqn. (3.4) the electric and magnetic fields of dyons 

may be calculated by imposing the following ansatz[42] 

     
2

( ) 1
( ) j

ia aij

K r
V r

q r





  

    0 2

( )
( )a a

J r
V r

q r




 

... (3.8) 

      
2

( )
( )a a

H r
r

q r



   

where the functions K(r ), J(r ) and H(r ) satisfy the following equations 

   2 2( ) 2r H r HK   

   2 2( ) 2r J r JK 
 

... (3.9) 

   2 2 2 2( ) ( 1) ( )r K r K K K H J       

A solution of these equations may be written as follows 

        ( ) ( ); ( ) ( ); ( )
sinh

Cr
J r r H r r K r

Cr
     

where  2 2 1    

and        ( ) ( )coth 1r C r Cr    ... (3.10) 

In the Prasad-Sommerfield limit[43] 

       ( ) 0;V    

but            0v      ... (3.11) 

In this limit the dyons have lowest possible energy for given electric and magnetic 

charges e and g respectively. Thus we get the following expression for dyonic mass 

           

1

2 2 2( )M v e g v q    ... (3.12) 

where the electric and magnetic fields associated with dyons obey the first order equations 
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                   0 0 0 ( ) sin ,a a i a abc a
i i ib c iE G V q V V D        

                  ( ) cosa jka a
i ijk iB G D     

and            0 ( ) 0aD    

where   1tan
e

g
   ... (3.13) 

In these equations i and 0 indicate space and time directions and a is an SU(2) vector 

index. These electric and magnetic fields associated with dyons are non-Abelian in nature 

having external as well as internal components. In the Abelian projection, obtained by setting 

    ( ) 0; ( )K r J r b cr    ... (3.14) 

where b and c are positive constants having the dimensions of charge and mass respectively, 

these fields reduce to the following form in the asymptotic limit; 

     
4 3

3 2
( ) ( ) ( ) ( ) ;a a a

j j j

b c
E r r r r

q r q r
  

   
 

     
4

( ) ( )a
ja

j

r r
B

q r
 

 

 ... (3.15) 

For vanishing c (i.e. vanishing mass) these fields corresponds to point-like mass-less 

dyons with electric charge 
3b

q
 and magnetic charge 

1

q
. Thus non-Abelian dyons give rise to 

the Abelian dyons in the Abelian projection. The infra-red properties of QCD in the Abelian 

projection can be described in the Abelian Higgs Model (AHM)[2] in which dyons are 

condensed. In this model the relevant degrees of freedom are two massive gluons W 


, a 

U(1) gluon (associated with generalized field V  ) and a dyon which we take to be scalar 

represented by complex field .  Then the Lagrangian (3.4) reduces to 

2 2 2 21 1
( , , ) ( ) ( )

4 2
dyonL A B G G ieA igB v

                 ... (3.16)  

In terms of this Lagrangian, the partition function in the Euclidean space-time may be 

written as 

   
4exp{ ( , , )}dyon dyonZ DA DB D d x L A B        ... (3.17) 
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Applying the transformation (3.7) and integrating over the field A , this partition 

function reduces to the following form in AHM; 

   4exp{ ( , )}dyon AHMZ DB D d xL B       

with   
2 2 2 21 1

( , ) ( ) ( )
4 2

AHML B H H igB v
                 ... (3.18) 

where the Higgs field   has the magnetic charge 

    g q  

and               H B B          ... (3.19) 

This model (AHM) incorporates dual superconductivity and hence confinement as the 

consequence of dyonic condensation since the Higgs type mechanism arises here. 

In the dyon theory, specified by partition function (3.17), the quantum average of the 

Wilson loop is[44] 

  41
exp{ ( , , )} ( )c c

l dyon dyon l
dyon

W DA DB D d xL A B W A
Z

           ...(3.20) 

where    
4

0( ) exp{ }c
lW A ie d x A

    ...(3.21) 

with   
(4)( ) ( ( ))

C
x dx x x 

 



    ...(3.22) 

which creates the particle with electric charge 0e on the world trajectory C.  

Let us apply the transformation (3.7) to the quantum average (3.20) and then integrate 

over the field A . Thus we get 

   ( , ) ( )
l m

c c
l dyon q q AHMW K B      ... (3.23) 

with the operator ( , )e m

c
q qK  as the product of t’ Hooft loop and the Wilson loop  ;cW  

   ( ) ( ) ( ). ( )
e m e m

c c c
q q q qK B H B W B      

where     0 0;e m

e g e e
q q

q q
   ... (3.24) 

Then the effective electric and magnetic four-current density may be written as follows : 

     ;e mj q k q       ... (3.25) 
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In eqn. (3.24) the operator ( )
e

c
qH B is 

       


    
 

       
 


4 21 1

( ) exp [( ) ]
4 2e

c
qH B d x H F H H  

where               H B B          ... (3.26) 

and F  is the dual field tensor satisfying 

                ,F j    ... (3.27) 

which is identical to eqn. (2.7) for the usual electrodynamic field tensor of the field associated 

with Abelian dyons. It is what we expect in the Abelian projection of QCD in the present 

Abelian Higgs Model of Abelian dyons in the Abelian version of QCD. 

SUPERCONDUCTIVITY DUE TO DYONIC CONDENSATION IN RESTRICTED 

CHROMODYNAMICS (RCD) 

Using the idea of confinement of electric flux due to condensation of magnetic 

monopoles, a dual gauge theory called restricted chromo dynamics (RCD) has been 

constructed out of QCD in SU(2) theory [45-48]. This dual gauge theory incorporates a 

dynamical dyonic condensation [49], [50] and exhibits the desired dual dynamics that 

guarantees the confinement of dyonic quark through generalized Meissner effect. This RCD 

has been extracted from QCD by imposing an additional internal symmetry named magnetic 

symmetry [45, 51] which reduces the dynamical degrees of freedom . Attempts have been 

made [52] to establish an analogy between superconductivity and the dynamical breaking of 

magnetic symmetry, which incorporates the confinement phase in RCD vacuum. 

Mathematical foundation of RCD [45, 48] is based on the fact that a non-Abelian gauge theory 

permits some additional internal symmetry i.e. the magnetic symmetry. Let us briefly review 

the RCD in the (4 + n) dimensional metric manifold P (four – dimensional space-time 

manifold M and n - dimensional internal group G) with metric gAB  (A, B = 1, 2, ………. 4 + 

n), where the gauge symmetry can be viewed as n-dimensional isometry [53, 54] which allows 

us to view P as a principal fibre bundle P (M, G) with M = P/G as the base manifold and G as 

the structure group. Keeping in view the fact that the restricted theory RCD may be extracted 

from full QCD by imposing an extra internal symmetry, let us now restrict the dynamical 

degrees of freedom of the theory (keeping full gauge degrees of freedom intact) by imposing 

an extra magnetic symmetry which ultimately forces the generalized non-Abelian gauge 

potential Vµ to satisfy a strong constraint given by  
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    ˆ ˆ ˆ| | 0 

 

    D m m i q V m  ... (4.1) 

where D is covariant derivative for the gauge group,  = 0, 1, 2, 3, q = (e – i g) is the 

generalized dyonic charge with e and g as electric and magnetic constituents, and the 

generalized four – potential  V 



  is given as  

       V A i B  

  

    ...(4.2) 

where A and B are electric and magnetic four-potentials respectively. The cross product in 

eqn. (4.1) is taken in internal group space and m̂  characterizes the additional Killing 

symmetry- (magnetic symmetry) which commutes with the gauge symmetry itself and is 

normalized to unity i.e. 

    2ˆ 1m   ...(4.3) 

It constitutes an adjoint representation of G, whose Little group is assumed to be Cartan 

sub-group [45] at each space-time point. Mathematically, this means that a connection on P 

(M, G) admits a left isometry of H, which formally forms a subgroup of G but commutes with 

G (the right isometry). This magnetic symmetry restricts the connection (i.e. the space for 

potential) to those whose holonomy bundle becomes a reduced bundle P (M, H). 

 Choosing G = SU (2) and H = U (1), the gauge covariant  condition (4.1) gives the 

following form of the generalized restricted potential, 

    ˆ ˆ ˆ
i

V iV m m m
q

   

    ... (4.4)       

such that m.Vµ= – iV
*

µ is the unrestricted Abelian component of the restricted potential Vµ 

while the remaining part is completely determined by magnetic symmetry.  

The unrestricted part of the gauge potential describes the dyonic flux of color isocharges 

and the restricted part describes the flux of topological charges of the symmetry group G. The 

imposed magnetic symmetry, revealing the global topological structure of gauge symmetry, 

enables us to conceive the gauge theory of non-trivial fibre bundle P (M, H) with only those 

fields which are defined on global sections where color direction would be chosen by selecting 

color electric potential of Cartan’s sub-group which helps to circumvent the disturbing 

Schlieder’s theorem[55] in defining a meaningful color charge in non-Abelian gauge theory. 

The generalized field strength of the gauge field of RCD that describes non-Abelian 

dyons may be obtained as follows : 
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            [ ]
| |

   

 
    

 

   i
G G V XV

q
, 

        ˆ( )iF H m  ...(4.5) 

where            , ,     
  

G V V  

            
* *

, ,     F V V  

and                

 
   
 

ˆ ˆ ˆ.[ ]
| |

i
H m m m

q
 ...(4.6) 

Identifying Fµ  and Hµ  as the generalized electric and magnetic field strengths 

respectively, the striking duality between the generalized electric and magnetic fields is 

obviously manifested in the theory. These field strengths satisfy the following dual symmetric 

field equations in magnetic gauge 

            ,F j       and    ,H k     ... (4.7)  

where jµ and kµ are respectively the electric and magnetic four-current densities constituting 

the generalized dyonic four-current density 

                           J j ik     …(4.8) 

In order to demonstrate the topological structure, let us introduce magnetic gauge by 

aligning m̂  along a space-time independent direction (say 3ˆ  in isospin space) by imposing a 

gauge transformation U such that 

    3

0

ˆˆ 0

1




 
 

 
 
  

m  ...(4.9) 

and the potential and field strength transform as  

           *
3̂( )V V iV W

 
 

and    3̂G G ( )         
 

iF H  ...(4.10) 

with    , ,     H W W  ...(4.11) 

where Wµ may be identified as the potential of topological dyons in magnetic symmetry which 

is entirely fixed by m̂   upto Abelian gauge degrees of freedom. Thus in the magnetic gauge, 

the topological properties of m̂  can be brought down to the dynamical variable Wµ by 
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removing all non-essential gauge degrees of freedom and hence the topological structure of 

the theory may be brought into dynamics explicitly. It assures a non-trivial dual structure of 

the theory of dyons in magnetic gauge where dyons appear as point like Abelian ones. In this 

theory the gauge fields are expressible in terms of purely time like non-singular physical 

potentials V
*
µ and Wµ. Let us introduce a complex scalar field  (Higg’s field) to eliminate the 

point like behavior and to incorporate the extended structure of dyons. Then in the absence of 

quarks or any colored object, the RCD Lagrangian in magnetic gauge may be written as[1] 

    
     2 *1 1

| | ( )
4 2

L H H D V    ...(4.12)   

where                     ( | | )D i q W  

and V (
*
) is the effective potential introduced to induce the dynamical breakdown of the 

magnetic symmetry. The Lagrangian (4.12) of RCD in magnetic gauge in the absence of quark 

or any colored object looks like Ginsburg- Landau Lagrangian for the theory of 

superconductivity if we identify the dyonic field as an order parameter and the generalized 

potential Wµ as the electric potential. The dynamical breaking of the magnetic symmetry, due 

to the effective potential V (*), induces the dyonic condensation of the vacuum. This gives 

rise to the dyonic super current, the real part of which (electric constituent) screens the electric 

flux which confines the magnetic color charge (through usual Meissner effect) and the 

imaginary part (i.e. magnetic constituent) of this super-current screens the magnetic flux that 

confines the electric color iso-charges (due to dual Meissner effect).  

 Lagrangian (4.12) has been obtained from the standard SU(2) Lagrangian and hence the 

desired dynamical breaking of magnetic symmetry is obtained by fixing the following form of 

the effective potential : 

    V (
*
) = –  (||

2
 – v

2
)

2
               ...(4.13) 

where  is coupling constant of Higgs field and v is its vacuum expectation value i.e. 

              = <>0             …(4.14) 

In Prasad- Sommerfeld limit [43] 

      V () = 0 

but               0. 

 In this limit, the dyons have lowest possible energy for given electric and magnetic 

charges e and g respectively. In this Abelian Higgs model of RCD in magnetic symmetry Wµ, 

defined by eqn. (4.11), is the dual gauge field with the mass of dual gauge boson given by  

             MD = |q | v               ...(4.15) 
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and  is the dyonic field with charge q and mass 

          (8 )M v   …(4.16) 

In the confinement phase of RCD the dyons are condensed under the condition (4.14). 

With these two mass scales the coherence length ε and the penetration length  are given by 

             
1

[ (8 ) ]M v


 






 ...(4.17) 

and                
1 1

(| | )DM q v
 

The region in phase space, where   , constitutes the border between type-I and type-II 

super-conductors. The super-conductivity provides vivid model for the actual confinement 

mechanism and the color confinement is due to the generalized Meissner effect caused by 

dyonic condensation. 

The Lagrangian of eqn. (4.12), with effective potential given by eqn. (4.13), yields the 

following field equations; 

     H 
µ

 – i | q | [
*
 D

µ 
] = 0,                   ...(4.18) 

and    D
2

µ – 4 [||
2
 – v

2
]  = 0 ...(4.19) 

Equation (3.6) may also be written as  

    Wµ – 

µ W = kµ                        ...(4.20) 

where kµ, the magnetic constituent of generalized dyonic current, is given as  

   kµ = |q | Im [
*
 D

µ 
] = |q | | |

2
 [µ arg  + |q | Wµ]         ...(4.21) 

In the Lorentz gauge, eqn. (4.20) reduces to 

   Wµ = i |q | 
*
 [(µ)/ + i |q | Wµ]  

which furthur reduces to the following form for the small variation in ; 

   Wµ + |q |
2
 | |

2
 Wµ = 0                  ...(4.22) 

which is a massive vector type equation where the equivalent mass of the vector particle state 

(condensed mode) may be identified as 

    M 
2
 = |q |

2
 | |

2 

with its vacuum expectation value  

               
1

| | ,


   DM q v M  ...(4.23)  
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where  is penetration length defined by eqn. (4.17). 

In the confinement phase dyons are condensed and  

    |<  >| = v 

Comparing the penetration length (i.e. screening length)  of eqn. (4.23) with that of 

relativistic super conductor model i.e. 

    
1

2 | | 2 ,


  s
s

M e ev  

where e is the electric charge of dyons, we get 

    




 
    

 

2 2 1/ 2| | 1 [( ) ]

( 2) 2

s

s

M q e g

M ee
  ...(4.24) 

In the representation of generalized charge of dyon in a two dimensional complex space 

[56], we have  

           tan
g

e
 ...(4.25) 

where  is rotation parameter of the generalized charge space. 

Then equation (4.24) gives 

       





 2 cos
s

  ...(4.26) 

showing that for the rotation parameter   /4, we have  

      s     and      sM M  ...(4.27) 

On the other hand, for larger rotation in generalized charge space with  > /4, we have 

      s    and     sM M  ...(4.28) 

Thus the optimum RCD generalized charge orientation is governed by rotation parameter 

value  = /4. Equations (4.27) and (4.28) show that with the suitable choice of the 

generalized charge space parameter , the tubes of generalized confining flux can be made 

thin which gives rise to a higher degree of confinement of any generalized color flux by 

dynamically condensed vacuum. These equations demonstrate that the generalized charges 

lying on the cone of vertical angle  = /4 in charge space give rise to thin tubes of confined 

color flux leading to strong confinement of the colored sources in RCD vacuum. 
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 Dyonically condensed vacuum is characterized by the presence of two massive modes. 

The mass of the scalar mode, M given by eqn. (4.16) determines how fast the perturbative 

vacuum around a colored source reaches condensation and the mass MD of vector mode 

determines the penetration length of the colored flux. The masses of these generalized dyonic 

glueballs may be estimated [57] by evaluating string tension of the classical string solutions of 

quark pairs. For this let us examine the behavior of dyons around the RCD string. The 

classical field equations (4.20) and (4.21) contain a solution corresponding to the RCD string 

with a quark and an anti-quark at its ends. Let us consider the static solution, parallel to the 

third direction of reference frame, as  

    ( ) ( ) ivf e     ... (4.29) 

and     



 2

1 2

ˆ ( )

(| | )

x h
W

q
,  

 
 1

2 2

ˆ

(| | ) ( )

x
W

q h
,  3 0W  , 4 0,W   ...(4.30) 

where       2 2 1/ 2
1 2( )x x  

is the transverse distance to the string;  

     1 2arg( );  x ix  ...(4.31) 

and            
0 0

lim ( ) lim ( ) 0;
 

 
 

 f h  ...(4.32) 

          
 

 
 

 lim ( ) lim ( ) 1f h  

From eqn. (4.31), we have 

    



 



1

2
1

x

x
    and     








2

2
2

x

x
 ...(4.33) 

Substituting relations (4.29), (4.30), (4.31) and (4.33) into eqn. (4.21), we get 

      
2

22
1 2

| | ( )[1 ( )]; 


 
   

 
 

v x
k q f h  ... (4.34) 

      
2

21
2 2

| | ( )[1 ( )]; 


 
  
 
 

v x
k q f h        

        3 0k ;     4 0k . 

Substituting relations (4.29), (4.30) and (4.33) into field equation (4.18), we have 

  

2
2 2

2

( ) ( )
( ) [1 ( ) ] [1 ( )] ( ) 0

2

 
   

 

 
       
 
 

Mf f
f h f f ,  ...(4.35) 
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where dash devotes derivatives with respect to . At large distance, in view of equations 

(4.32),  

we may have  ( ) 1 ( ),   f  ...(4.36) 

where   () is infinitesimally small at large distance such that  

    lim ( ) 0.





  

Then eqn. (4.35) may be written as  

          2( )
( ) ( ) 0M 

 
   




     

Substituting r = M  into this equation, we get 

       
 


 

   
 

2

2

( ) 1 ( )
( ) 0

d r d r
r

r drdr
 

which is modified Bessel’s equation of zero order, with its solution given as  

    0 0 0( ) ( ) ( ),  r AI r AI M  ... (4.37)     

where I0 (r) is the modified Bessel’s function of zero order, defined as 

    

2

0 02
0

( / 2)
( ) ( ),

( !)


 


 





 
n

n

M
I m J iM

n
 ...(4.38) 

with J0 (x) as the ordinary Bessel’s function of zero order. 

In the similar manner, the field equation (4.19) may be written into the following form by 

using relations (4.30) and (4.34); 

    
2 2( )

( ) [1 ( )] ( ) 0.


  



    D

h
h M h f  ...(4.39) 

At large distance we may have  

    h () = 1 – ζ (), ...(4.40)  

where    lim ( ) 0.


 


  

Then eqn. (4.39) reduces to  

                    
2

2

( ) ( )
( ) 0,

 
  

d r d r
r

drdr
 ... (4.41)   

where  Dr M . Let us substitute  ( ) ( )r r r  is to this equation. Then we have  
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2

2 2

( ) ( ) 1
( ) 1 0

 


 
    

 

rd r d r
r

drdr r
  ...(4.42)  

which is modified Bessel’s equation of order-one with its solution given by 

    


   1

( )
( ) ( )

r
r BI r

r
 ...(4.43)  

where 1( )I r  is modified Bessel’s function of order one. 

 Thus we have  

        1( ) ( ) ( )D DB M I M  ... (4.44)  

Substituting relations (4.37) and (4.44) into equations (4.36) and (4.40), we have, at large 

value of , 

       0( ) 1 ( )f AI M  ... (4.45) 

and                                    1( ) 1 ( ) ( )    D Dh B M I M               ... (4.46) 

Substituting these results into equation (4.29) and (4.30), we get the solution of classical 

field equation (4.18) and (4.19) corresponding to the RCD string with a quark and an anti-

quark at its ends. The infinitely separated quark and anti-quark correspond to an axially 

symmetric solution of the string. For such a string solution with a lowest non-trivial flux the 

coefficient A in the solution (4.46) is always equal to one while the coefficient B is unity in 

the Bogomolnyi limit exactly on the border between the type I and type II superconductors 

[58] where MD = M i.e. coherence length and the penetration length coincide with each other. 

Thus in RCD close to border, we set B = 1 besides A = 1 and then we have  

  





 





   
2

0 2
1

( / 2)
( ) 1 ( )

( !)

n

n

M
f I M

n
 ...(4.47)   

and  

2 12

1

1

( / 2)( / 2)
( ) 1 ( ) ( ) 1

2 !( 1)!


 


  





    



n

D
D

n

MM
h M I M M

n n
 ...(4.48) 

The RCD string is well defined by these solutions. In view of conditions (4.32), the 

magnetic constituent of the dyonic current, given by eqn. (4.34), near the RCD string is zero at 

the centre of the string (i.e. for x1 = x2 = 0) and also zero at the points far from the string 

(where h ()  1).  

Substituting relations (4.47) and (4.48) into equations (4.29) and (4.30), the solutions of 

classical field equations (4.18) and (4.19), corresponding to the RCD string with a quark and 

antiquark at its ends, readily follows. The RCD string is well defined by solutions (4.47) and 
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(4.48) where the magnetic constituent of the dyonic current, given by eqn. (4.34) near the 

RCD string , is zero at the centre of the string and also zero at points far away from the string. 

Dyonic density in the absence of string has the contributions from monopole condensate 

[59, 60] and also from the perturbative fluctuations. According to eqns. (4.34), (4.47) and 

(4.48) the magnetic constituent of dyonic current at large transverse distance form the string 

should be controlled by the coherence length and the penetration length where the coherence 

length could be derived [31]  directly from the measurement of dyonic density around a 

chromo-dyonic flux spanned between a static quark- anti- quark pair. In the maximal Abelian 

gauge, as used in RCD here, the penetration length and coherence length are almost the same 

and hence the vacuum is nearly the border between type I and type II dual superconductors. 

The solutions (4.47) and (4.48) define infinitely long RCD strings which cannot be terminated 

and hence behave like ANO vortices[61] and twisted superconducting semi-local strings[62] 

with conserved global current flowing through them. We expect that these solutions are stable 

in RCD mode. 

SUPERCONDUCTIVITY DUE TO MONOPOLE DENSITY AROUND RCD 

STRING 

For the case of pure monopoles, q = g , equation (4.21) reduces to 

            2Im[ ] | | [ arg ]k g D g gW  ... (5.1) 

and then equations (4.34) become  

    



  

2
2

2

( )
( )[1 ( )]

ij j
i

v x
k gf h  

   3 0k    and   4 0k  ... (5.2) 

where 12 = -21 = 1,11 = 22 = 0 and summation over repeated index is conventionally 

involved. Substituting relations (4.47) and (4.48) in to equations (5.2) we can find the 

monopole density in the vicinity of RCD string. To meet this end, let us use eqn (3.18) for 

partition function in Abelian Higgs Model (AHM) which incorporates dual superconductivity 

and hence confinement as the consequence of monopole condensation since the Higgs type 

mechanism arises here. With this partition function the quantum average of Wilson loop may 

be written as given by eqn. (3.23) where the expectation value is calculated in the form of eqn. 

(3.24) in AHM as the product of t’ Hooft loop and the Wilson loop ;cW  Then the effective 

electric and magnetic four-current density may be written as shown  in equation (3.25). In 
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equation (3.26) the operator 
e

c
qH

 
creates the string spanned by the loop C, carrying the flux 

eq . In AHM the monopoles are condensed and in its string representation the topological 

interaction exists in the expectation value of the Wilson loop cW . In the centre of ANO string 

the Higgs field 
  ie vanishes i.e. 

      Re Im 0,

 
and the phase is singular on the world sheets of ANO string. Then the measure of the 

integration over   can be written as 

      
2

D CD D  

where C is a constant. The integral D  contains the integration over functions which are 

singular on two dimensional manifolds. Let us divide the phase in to regular and singular parts 

as 

       r s                   ...(5.3) 

where s is defined by[3] 

  ( ) ( , ) 2 ( , )s x x x x     
      

 
 

where      
     



 
2 (4)( , ) [ ( )]ab

a bx x d x x x x
   

 ... (5.4) 

with 



  


,a a
x string position


 and  as the collection of all the closed surfaces. 

   1 2( , )  is the parameterization of string surface and a, b =1,2. Then the measure 

D  can be decomposed as 

       r sD D D                                                                        ...(5.5) 

Let us use these relations to find the monopole density in the vicinity of RCD string for 

vanishing and non-vanishing coherence lengths respectively in the following subsections:  

(A) For Zero Coherence length 

From equation (4.16), we find the vanishing coherence length in the limit M or  

which corresponds to infinitely deep potential V (*) of equation (4.13). This limit is London 

limit. Then the RCD Lagrangian of equation (3.18) in AHM  may be written as follows : 
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

  


   
2

21
( )

4 2
mL H H gW  

   

         

  ( , )mL W  ... (5.6) 

where Lm denotes the Lagrangian density for monopoles. In terms of this Lagrangian, the 

partition function of eqn. (3.18) may be written as follows : 

    


 
 



 

  
   

4exp{ ( , )}mZ D DW d xL W  ...(5.7)  

The string in RCD manifests itself as a singularity in the phase of the Higgs field 

according to eqns. (5.4).  

   Let us fix the unitary gauge as  

     = 0  

and make the consequent shift  

        
1

W W
g

 ...(5.8)  

Then the shift in H will be  

    


    ( )2 dH H
g

 ... (5.9) 

where        ( ) 1
( ) ( )

2

d x x

 

and we have used relations (5.4), (5.6),  and (5.8). Substituting shifts (5.8) and (5.9) in to 

equation (5.7) and integrating over the field W, we get  

    



   
0

exp{ ( )}strZ d A  ... (5.10)  

where Astr is the string action given as[3] 

            2 2 4 42 ( ) ( ),      Bstr MA v d x d y D x y y  ... (5.11) 

where
BM

D  (x) is the scalar Yukawa propagator.  It is the propagator of the scalar particle of 

mass MB = gv i.e. 

     2 4( ) ( ) ( )
SMm D x x  ... (5.12) 

with m gv  as mass of dual gauge  boson  W  
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For closed strings, we have  

       0v  ...(5.13) 

On the other hand, when the strings are spanned on the current jc, we have  

        c
v J  ... (5.14) 

The action of the currents is given as follows by the short-ranged exchange of the dual 

gauge boson, 

             
2

4 4 ( )( ) ( ) ( ) ( )
2 B

c c c
curr M y

e
A j d x d yj x D x y j y  ... (5.15) 

where e is the electric charge of gluon, satisfying the quantization condition 

     2eg  ... (5.16) 

The quantum average of Wilson loop can be written here as a sum over strings similar to 

equation (5.10), 

                
1

exp{ ( ) ( )}



    
c

i str curr

jc

W D A A jc
Z

 ... (5.17) 

where Z is given by equation (5.10). In this equation the sources of electric flux (i.e. quarks) 

running along the trajectory C are introduced with the help of c
iW .   

Let us place the static quarks at spatial infinites of the axis-x3. Then the effects of quarks 

(i.e. boundary effects) are avoided and consequently the second term of the exponential in rhs 

of equation (5.17) may be ignored. In this case (i.e. infinite static string placed along the third 

direction) equation (5.4) reduces to the following form of string current  

               ,3,3 ,4 ,4 1 2( ) ( ) ( )x x  

            
   

,
1 23,4 ( ) ( )x x  ... (5.18) 

From equation (5.1), the monopole current may be written as follows in the London limit; 

          2[ ]k gv gW  ... (5.19)  

When the singular phase   corresponds to the string position fixed by equation (5.4), 

the Lagrangian Lm in the exponential of equation (5.7) becomes  

      ( , ) ( , )m mL W L W  ... (5.20) 

and then the functional generating the partition function in equation (5.7) may be written as[3] 
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    4[ , ] exp [ ( , ) ]mZ C DW d x L W ik C   



      ... (5.21)  

Then the monopole current in the presence of the string is given by the variational 

derivative[31] 

   





 
  

   

2

0( ) [ , ] |
( ,0) ( )

C

g
k x Z C

Z i C x
 ... (5.22) 

and the squared monopole density is 

   







 
  

   

2

2
0( ) [ , ] |

( ,0) ( )
C

g
k x Z C

Z i C x
 ... (5.23) 

In the manner analogous to equation (5.10) and equation (5.11), the generating functional 

(5.21) may be written as  

     
2 4

4 4[ , ] exp[ { ( ) ( ) ( )
2 BM

g v
Z C d x d y C x D x y C y


       

         2 ( )2 ( ) ( ) ( ) ( )]
s

d
strM

iv C x D x y y A


       
 

...(5.24) 

where string action Astr( )  is given by equation (5.11). 

Substituting this relation for generating functional in to equation (5.23) and evaluating the 

monopole density, we get the monopole current around the string as  

           
 


     

2 4 ( )2 ( ) ( )
B

d
str M

k k gv d yD x y y  ... (5.25) 

For static string, this equation reduces to  

             
 


   



22 ( ), , 1,2
B

ji ij
str M

x
k gv D i j  

            3 40, 0; str strk k  ...(5.26) 

where 

    


 0

1
( ) ( )

2BM BD I M  ... (5.27)  

with I0 as modified Bessel’s function of zero order. The function ( )
BMD  is the propagator 

for a scalar massive particle in two space-time dimensions. Using equations (5.25) and (5.27), 

the explicit form of the non-zero component of the solenoidal current may be written as  

      2
1( )str

B Bk v gM I M   ...(5.28) 
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where I1 (MB ) is the modified Bessel’s function of order one given in eqn. (4.44). Thus the 

monopoles form a solenoidal current which circulates around the string in transverse 

directions. This current gives rise to the following squared monopole density; 

             

2 4 2 2 2

1 ( )B Bk v g M I M  ... (5.29)  

Substituting the value of I1 (MB ) from equation (4.44) in to this relation, we find that the 

squared density of the monopole current, in London limit (where coherence length is zero), 

has a maximum at the distance of the order of the 
1

BM
 (i.e. the order of penetration length). 

Equation (5.19) gives the monopole current in London limit which corresponds to infinitely 

deep Higg’s potential and leads to vanishing coherence length in the chromo magnetic 

superconductor.  

(B) For Non-zero Coherence length 

When the potential V (*) of equation (4.13) is of finite depth i.e.  is finite then M is 

finite and hence coherence length  given by equation (4.17), is non-zero and finite. Then in 

the expression (5.29) for squared monopole density in the vicinity of RCD string a term 

corresponding to quantum vacuum correction is non-zero even in the absence of string. Thus 

the squared monopole density, in this case, is written as  

       2 2 2( ) ( ) ( )string quank k k  ... (5.30)  

where 
2( )stringk is given by equation (5.29) and quantum vacuum correction 

2( )quank  is 

given by  

        2 2 2 4 2

0
( ) (0)

B

quan
Mk k g v D  

    





2 4 2

216

g v
 ... (5.31)  

where we have used equation (5.27) and regularized the divergent expression by momentum 

cut off .  

Replacing vacuum expectation value v of the Higgs field  by |()| in relation (5.31) and 

then substituting it into equation (5.30), we get  

            
 





 

4 2
2 2 2

2

| ( ) |
( ) ( )

16
k k string g  ... (5.32)   
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 





 

4 2
2 4 2 2 2

1 2

| ( ) |
( )

16
B Bg v M I M g  ... (5.33) 

For  of the order of coherence length  the quantum correction to the squared monopole 

density is much more than the vacuum expectation value measured far out side the string 

(>>). Thus the quantum corrections control the leading behavior of the total monopole 

density in the vicinity of the RCD string.  

Using the asymptotic expansions of modified Bessel’s functions in equation (4.47) and 

(4.48), and then introducing it into equation (4.29), we get  

             





 

  
  

4 /| | 1 4
2

e  ... (5.34) 

Then equation (5.33) may be approximately written as follows [31]  at large distances; 

       









 
  

  

2 2
2 /

2
( ) 1 4

216

g
k e  ... (5.35) 

which shows that the leading behaviors of the monopole density at large distances are 

controlled  by coherence length  and not by penetration length .  

SUPERCONDUCTIVITY IN RESTRICTED SU(3) GAUGE THEORY 

Let us start with the construction of the restricted chromodynamics in SU(3) limit.  The 

magnetic structure of this theory may be described by two internal Killing vectors which 

commute with each other and also with the gauge symmetry itself and are normalized to unity 

according to equation (4.3). These Killing vectors are a   3- like octet m̂  and its symmetric 

product  

      ˆ ˆ ˆ3( )m m m  ... (6.1)  

which is 8 -like.  The restricted theory (RCD) may be extracted from the full QCD by 

imposing the extra internal symmetries. Let us restrict the dynamical degrees of freedom of 

the theory (while keeping the full gauge degrees of freedom intact) by imposing the extra 

magnetic symmetry which restricts the generalized non-Abelian gauge potential V

  to satisfy 

the constraints given by  

         ˆ ˆ ˆ| | 0D m m i q V m


 ... (6.2)  
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and          ' ' 'ˆ ˆ ˆ| | 0D m m i q V m


 

where D is covariant derivative for the gauge group. 

Introducing these magnetic structures, we obtain the following form[4] of the generalized 

restricted potential in the restricted SU(3) gauge theory: 

           

   
         

   

* '* ' 'ˆ ˆ ˆ ˆ ˆ ˆ'
| | | |

i i
V iV m iV m m m m m

q q


 ... (6.3) 

where      *ˆ .m V iV


 ... (6.4) 

and        '*ˆ .m V iV


 

are, respectively, 3 -like and 8 -like unrestricted Abelian components of the restricted 

potential. In the magnetic gauge  m̂  and m̂  become the space-time independent 3
ˆ  and 8

ˆ  

respectively, where  

   

 
 
 
 
 
 
 
 
 
 
 
 
 

3

0

0

1

0ˆ
0

0

0

0

    and     

 
 
 
 
 
 
 
 
 
 
 
 
 

8

0

0

0

0ˆ
0

0

0

1

 ... (6.5) 

Then the generalized potential of equation (4.10) may be written as  

    * '*
3 8
ˆ ˆ( ) ( )V iV W iV W          


 ... (6.6)  

where W and W
 
may be identified as the potentials of topological dyons in magnetic 

symmetry of SU(3) gauge theory. These are entirely fixed by m̂  and m̂ , respectively, up to 

Abelian gauge degrees of freedom. The generalized field strength can, then, be constructed as  

         [ ]
| |

i
G G V V

q

   
 

    3 8
ˆ ˆ( ) ( ' ' ) 'iF H iF H           ... (6.7) 

where F  is given by equation (4.6), Hµv is given by equation (4.11) and  
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                 ;v vG V V
  

 ... (6.8)  

               / *' ' ;v vF V V  

            ' ' 'vH W W  

In this theory the gauge fields are expressible in terms of purely time-like non-singular 

potentials 
*V  and 

*'V  ,W and W’. Then in the absence of quarks or any colored object, the 

RCD Lagrangian of SU(3) theory in magnetic gauge may be written as  

      
          21 1 1 1

[ '* ' * ] | |
4 4 4 2

L H H H H H H H H D  

          ' ' 21
| | ( * , '* ')

2
D V    ...(6.9)  

where      ( | | ) ;D i q W       

    ' ' ( | | ' ) ';D i q W       ... (6.10)  

and the dyonic field operators  and ’ correspond to m  and m’ respectively. Here V (* , ’* 

’) is the effective potential introduced to induce the dynamical breaking of the magnetic 

symmetry. This Lagrangian is a gauge extension of Lagrangian (4.12) and it leads to dyonic 

condensation, color confinement and the resulting dual superconductivity in SU(3) theory.  

CONCLUSIONS 

Starting with generalized field equations (2.3) and the corresponding Lagrangian (2.9) of 

the field associated with Abelian dyons, it has been demonstrated that topologically, a non-

Abelian gauge theory is equivalent to a set of Abelian gauge theories supplemented by dyons 

which undergo condensation leading to confinement and consequently to superconducting 

model of QCD vacuum, where the Higgs fields play the role of a regulator only. It has also 

been demonstrated that for the self-dual fields the Abelian monopoles become the Abelian 

dyons and in low energy QCD the dyon interactions are saturated by duality when Abelian 

projection is described by the Abelian Higgs model where dyons are condensed leading to 

confinement and the state of dual superconductivity. Equations (2.20) and (2.27) for dyonic 

current correlations show that dyonic electric charge produces the screening effect for 

 A propagator  and anti-screening effect for  B propagator , while the dyonic magnetic 
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charge produces screening effect for  B propagator  and anti-screening effect for 

 A propagator . This anti-screening effect maintains the asymptotic freedom of non-

Abelian gauge theory (QCD) in its Abelian version. In QCD, because of asymptotic freedom, 

the Landau singularity (led by charged particles in ordinary electrodynamics) is in the infrared 

regime and hence the most convenient microscopic theory of low energy QCD is produced by 

the chromo-dynamic dyons. The correlations (2.27) give the generalized propagator associated 

with generalized field V  of dyons. In the Abelian projection of QCD with the simultaneous 

existence of electric charges and monopoles (but not dyons), the effective action is given by 

eqn. (2.31) and the current correlations are given by eqns. (2.32), (2.33) and (2.35) which 

demonstrate that any particle screens its own direct potential to which it minimally couples 

and anti-screens the dual potential ( B for electric charges and A for monopoles). This dual 

anti-screening effect leads to dual superconductivity in accordance with generalized Miessner 

effect. This dual superconductivity is the Higgs phase of QCD in its Abelian projection. The 

anti-screening, described by eqns. (2.35), provides the prescription that the magnetic photon 

(  )B -charge particle vertex is identical to the  A charge particle vertex with the constant e 

replaced by ie. Such prescription of coupling of a gauge particle to its dual charge must be 

used only when all dual charges appear in loops. The duality prescribed by these equations 

may be a strong guide to the description of confinement and interactions of chromo magnetic 

monopoles should be saturated by this duality, at least for low energy. The gauge depended 

part of the Lagrangian density, given by eqn. (3.4) for the fields associated with the non-

Abelian dyons in the minimal gauge theory, is invariant under the linear transformation (3.7). 

Equations (3.13) and (3.15) demonstrate that the non-Abelian dyons give rise to Abelian 

dyons in the Abelian projection obtained by setting up conditions given by eqns. (3.14). The 

infrared properties of QCD in this Abelian projection can be described by the Abelian Higgs 

model with Lagrangian density given by eqn. (3.18) in which dyons are condensed. In this 

model the partition function in the Euclidean space-time is given by the first part of eqns. 

(3.18). This model incorporates dual superconductivity and confinement as the consequence of 

dyonic condensation. In the dyon theory, specified by the partition function given by eqn. 

(3.17) in terms of dyon Lagrangian (3.16), the quantum average of Wilson loop given by eqn. 

(3.20) corresponds to quark Wilson loop if we consider this partition function as an effective 

theory of QCD. In eqn. (5.2) this average is given in AHM with the effective electric and 

magnetic charges and the effective electric and magnetic four-current densities given by 

equations (5.3) and (5.4) respectively. t’Hooft loop is precisely given by eqn. (5.5) in terms of 

electromagnetic field tensor H  and the dual field tensor satisfies field equation (5.5a) 

which is identical to eqn. (2.7a) for the usual electromagnetic field tensor of field associated 
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with Abelian dyons. It is what we expect in the Abelian projection of QCD in the present 

Abelian Higgs Model. In eqn. (5.2) this average is given in AHM with the effective electric 

and magnetic charges and the effective electric and magnetic four-current densities given by 

equations (3.24) and (3.25) respectively. t’Hooft loop is precisely given by eqn. (3.26) in 

terms of electromagnetic field tensor H  and the dual field tensor satisfies field equation 

(3.27) which is identical to the field equation for the usual electromagnetic field tensor of field 

associated with Abelian dyons. It is what we expect in the Abelian projection of QCD in the 

present Abelian Higgs Model. 

The Lagrangian  given by eqn. (4.12) for RCD in magnetic gauge, in the absence of 

quarks or any colored objects,  establishes an analogy between super-conductivity and the 

dynamical breaking of magnetic symmetry which incorporates the confinement phase in RCD 

vacuum where the effective potential V (
*
) induces the dyonic condensation of vacuum. 

This gives rise to dyonic super-current. The electric constituent of this current (i.e. its real 

part) screens the electric flux and confines the magnetic charges due to usual Meissner effect 

while its imaginary part (i.e. its magnetic constituent) screens the magnetic flux and confines 

the color iso-charges as the result of dual Meissner effect.  It dictates the mechanism for the 

confinement of the electric and magnetic fluxes associated with dyonic quarks in the present 

theory. This dyonic condensation mechanism of confinement implies that long-range physics 

is dominated by Abelian degrees of  freedom (Abelian dominance) as depicted by eqns (4.10) 

and (4.11) which assure a non-trival dual structure of the theory of dyons in magnetic gauge, 

where these objects appear as point like Abelian ones. This idea of Abelian dominance has 

recently been verified by gauge fixing and Abelian projection [21] and also by constructing 

semilocal models in Extended Abelian Higgs model (EAH-model) [27,28]. The same idea has 

been used, more recently, in connection with the dual Meissner effect in local unitary gauges 

in SU(2) gluo-dynamics [29] and also with confining ensemble of dyons [30] and dual 

superconductivity in Yang-Mills theories [20]. 

 In the confinement phase of RCD, the dyons are condensed under the condition (4.14) 

where the transition from <>0 = 0 to <>0 = v  0 is of first order, which leads to the vacuum 

becoming a chromo-magnetic super-conductor in the analogy with Higgs-Ginsburg- Landau 

theory of super-conductivity. Dyonically condensed vacuum is characterized by the presence 

of two massive modes given by equations (4.15) and (4.16) respectively, where the mass of 

scalar mode M determines how fast the perturbative vacuum around a color source reaches 

condensation and the mass MD  of vector mode determines the penetration length of the 

colored flux. With these two mass scales of dual gauge boson and dyonic field, the coherence 

length ε and the penetration length λ have been constructed by eqns. (4.17) in RCD theory. 
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These two  lengths coincide at the border between type-I and type-II super-conductors. In 

general, the ratio of penetration length and coherence length distinguishes superconductors of 

type-I (λ<ε) from type II (λ> ε). Equation (4.23) gives the flux penetration depth in the dyonic 

model of RCD and shows that due to the dynamical breaking of magnetic symmetry, the 

vacuum acquires the properties similar to those of relativistic super-conductor where the 

quantum fields generate non-zero expectation values and induces screening currents. This 

penetration length excludes the generalized field in a manner similar to that in type II super-

conductor where the appropriate screening currents are set up by the formation of Cooper’s 

pairs giving rise to Meissner effect of magnetic flux confinement. Thus the generalized color 

flux is squeezed into flux tubes as a result of generalized Meissner effect caused by the 

coherence plasma of dyons in RCD vacuum which ultimately forces the quark (color) 

confinement in RCD. The generation of screening current and the finite range force field 

responsible for the confinement here are similar to those in the case of real electromagnetic 

super-conductor (i.e. relativistic superconductor). Equations (4.27) and (4.28) show that with 

the suitable choice of the generalized charge space parameter , the tubes of generalized 

confining flux can be made thin which gives rise to a higher degree of confinement of any 

generalized color flux by dynamically condensed vacuum. These equations demonstrate that 

the generalized charges lying on the cone of vertical angle  = /4 in charge space give rise to 

thin tubes of confined color flux leading to strong confinement of the colored sources in RCD 

vacuum. On the other hand, the generalized charges lying outside such cone and still 

participating in the vacuum condensation, immediately after magnetic symmetry breaking, 

have weak confinement effects. The generalized charge space parameter  associated with 

dyons has the remarkable ability to squeeze the color fluxes and to improve the confining 

properties of RCD vacuum. Thus a perfect confinement can be achieved with pure dyonic 

states participating in actual dyonic condensation of RCD vacuum as the result of magnetic 

symmetry breaking in strong coupling limit. 

 The RCD string is well defined by solutions (4.47) and (4.48) where the magnetic 

constituent of the dyonic current, given by eqn. (4.34) near the RCD string, is zero at the 

centre of the string and also zero at points far away from the string. This current is maximum 

at the transverse distance for which the conditions (4.48) are satisfied. The numerical value of 

this distance has been found to be about .2 fm corresponding to SU(2) gluon dynamics [31]. 

Dyonic density in the absence of string has the contributions from  monopole condensate 

[59, 60]  and also from the perturbative fluctuations. According to eqns. (4.34) and (4.47) the 

magnetic constituent of dyonic current at large transverse distance from the string should be 

controlled by the coherence length and the penetration length where the coherence length 
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could be derived directly [25] from the measurement of dyonic density around a chromo-

dyonic flux spanned between a static quark-anti quark pair. In the maximal Abelian gauge, as 

used in RCD here, the penetration length and coherence length are almost the same and hence 

the vacuum is nearly the border between type I and type II dual superconductors.The solutions 

(4.47) and (4.48) define infinitely long RCD strings which can not be terminated and hence 

behave like ANO vortices [42] and twisted superconducting semi-local strings [28] with 

conserved global current flowing through them. We expect that these solutions are stable in 

RCD mode. 

 It is clear from eqn (5.29) that the squared density of the monopole current, in London 

limit (where coherence length is zero), has a maximum at the distance of the order of the 

1

BM
 (i.e. the order of penetration length). Equation (5.19) gives the monopole current in 

London limit which corresponds to infinitely deep Higg’s potential and leads to vanishing 

coherence length in the chromo magnetic superconductor. Equation (5.22) gives the monopole 

current in the presence of the string, which leads to squared monopole density given by 

equation (5.23). The monopole current given by equation (5.25) reduces to the components 

given by equation (5.26) in terms of propagator (5.27) for a scalar massive particle in two 

space-time dimensions.Equation (5.28) gives the explicit form of the non-zero component of 

the solenoidal current which circulates around the string in transverse directions. This current 

gives rise to the squared monopole current given by equation (5.29) in London limit (i.e. 

vanishing coherence length). This squared current has a maximum at the distance of the order 

of penetration length. Thus in London limit (zero coherence length) the monopole density 

around the string in RCD is governed by penetration length. Equation (5.30) shows that for 

non-zero finite coherence length, the monopole density is non-zero even in the absence of 

string. Equation (5.33) shows that the quantum correction to the squared monopole density is 

much more than the vacuum expectation value measured far outside the string.  Thus the 

quantum corrections control the leading behavior of the total monopole density in the vicinity 

of the RCD string. Equation (5.34) shows that the leading behavior of the monopole density at 

large distances is controlled by the coherence length and not by the penetration length. This 

result is in agreement with the numerical result of Bornyakov et al [63,64]. 

Lagrangian given by eqn. (6.9) is a gauge extension of Lagrangian (4.12) and it leads to 

dyonic condensation, color confinement and the resulting dual superconductivity in SU(3) 

theory. In the light of the results of section–4, it is not difficult to guess the presence of two 

scalar modes and two vector modes as the consequence of the presence of two magnetic 

vectors m̂  and m̂  in SU(3) theory. Equation (6.2) give the magnetic structure of restricted 
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chromo-dynamics in SU(3) theory where two internal Killing vectors 3- like octet and 8- 

octet given by equation (6.5) have been introduced keeping in view the facts that any system 

possessing a SU(3) symmetry suffers with a non-Abelian magnetic instability for the 4-7
th
 

gluons [65] and the 8
th

 gluon corresponds to the diagonal generator in color space [66]. 
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