A CURIOUS CONNECTION BETWEEN FERMAT'S NUMBER AND MULTIPLE FACTORIANGULAR NUMBERS

SWATI BISHT¹, DR. ANAND SINGH UNIYAL²

Govt. P.G. College Uttarakhand, (India)

RECEIVED: 10 March, 2021

In the seventeenth century Fermat defined a sequence of numbers $F_n=2^{2^n}+1$ for $n\geq 0$ known as Fermat's number . If F_n happens to be prime then F_n is called Fermat prime. All the Fermat's number are of the form $n!^k+\Sigma n^k$ for some fixed value of k and n. Further we will prove that after F_4 no other Fermat prime exist upto 10^{50} .

Keywords: Fermat's Number, prime number, multiple factoriangular numbers, Fermat prime.

2NTRODUCTION

Fermat Number: A positive number of the form $F_n = 2^{2n} + 1$ where n is non negative integer.

First few Fermat's number are 3, 5, 17, 257, 65537,...

Pierre de Fermat conjectured that all numbers

$$F_n = 2^{2^n} + 1$$
 for $m = 0, 1, 2, ...$...(1.1)

are prime. Nowadays we know that the first five members of this sequence are prime and that (see [2])

$$F_n$$
 is composite for $5 \le m \le 32$(1.2)

The status of F_{33} is for the time being unknown, *i.e.*, we do not know yet whether it is prime or composite.

The numbers F_n are called Fermat numbers. If F_n is prime, we say that it is a Fermat prime.

Fermat numbers were most likely a mathematical interest before 1796. When C. F. Gauss mentioned that there is a remarkable relation between the Euclidean construction (*i.e.*, by ruler and compass) of regular polygons and the Fermat numbers, interest in the Fermat primes skyrocketed. In particular, he proved that if the number of sides of a regular polygonal shape

PCM0210133

is of the form $2^k F_{m1} \dots F_{mr}$, where $k \ge 0$, $r \ge 0$, where F_{mi} are distinct Fermat primes, then this polygonal shape can be made by using compass ruler. The converse statement was proved later by Wantzel in [8].

There exist many necessary and sufficient conditions concerning the primality of F_n . For instance, the number F_n (n > 0) is a prime if and only if it can be written as a sum of two squares in essentially only one way, namely $F_n = (2^{2^{n-1}})^2 + 1^2$.

Recall also further necessary and sufficient conditions: the well-known Pepin's test, Wilson's Theorem, Lucas's Theorem for primality, etc., see [4].

Multiple Factoriangular number [7]: A generalization of factoriangular number is known as multiple factoriangular numbers and are defined as

$$F_{t}(n,k) = (n!)^{k} + \sum n^{k}$$

$$T_{n}(k) = \sum n^{k} = 1^{k} + 2^{k} \dots + n^{k}.$$

where

In this paper, we establish a connection between multiple factoriangular numbers and Fermat number .

n	$F_t(2,2^n-1)$	Prime factorization of	Number	Sum of squares of prime,
		$F_t(n,15)$	of digits	integer, natural numbers
0	3	Prime	1	
1	5	Prime	1	$2^2 + 1^2$
2	17	Prime	2	$4^2 + 1^2$
3	257	Prime	3	$16^2 + 1^2$
4	65537	Prime	5	2562 + 12
5	4294 967297	641 × 6 700417	10	$65536^2 + 1^2$
6	18 446744 073709	274177 × 67 280421	20	4046 803256 ² + 1438
	551617	310721		793759²
7	340 282366 920938	59649 589127 497217 ×	39	18 446744 073709 551616 ²
	463463 374607 431768	5704 689200 685129		+ 12
	211457	054721		
8	115792 089237 316195	238 926361 552897 ×	78	339 840244 399005
	423570 985008 687907	93 461639 715357		511779 394711 120340
	853269 984665 640564	977769 163558 199606		266111 ² + 17 340632
	039457 584007 913129	896584 051237 541638		172455 487023 654788
	639937	188580 280321		790090 010704 ²

By the common observation we see that the sequence of number so formed is well known Fermat Number Sequence and it follow the properties described in [2],[4].

Now
$$F_t(2, 2^n-1) = (2!)^{2^n-1} + \sum_{n=1}^{\infty} 2^{2^n-1} = 2^{2^n} + 1.$$

COROLLARY

f All the Fermat prime are multiple factoriangular primes.

Conclusion

We end up with the conclusion that the only primes we get in different sequences of multiple factoriangular numbers till 10^{50} are the Fermat Prime F_0 , F_1 , F_2 , F_3 , F_4 . Also Sequence of Fermat Number are a special case of multiple Factoriangular number by fixing n=2, $k=2^n-1$.

REFERENCES

- 1. Burton, D.M. Elementary Number Theory, fourth edition. McGraw-Hill, New York (1998).
- 2. Crandall, R. E., Mayer, E., Papadopoulos, J. The twenty-fourth Fermat number is composite. Math. Comp. (submitted).
- 3. Křížek, M., Chleboun, J., A note on factorization of the Fermat numbers and their factors of the form $3h2^n + 1$. *Mathmetica.Bohemica*.119, 437–445 (1994).
- Křížek, M., Luca, F. 17 Lectures on Fermat Numbers. From Number Theory to Geometry. Springer, New York (2001).
- 5. Niven, I., Zuckerman, H. S. *An Introduction to the Theory of Numbers, fifth edition*. John Wiley and Sons, New York, (1991).
- 6. Bisht S., Uniyal A.S.: Representation and nature of multiple factoriangular numbers, *International Journal of advanced research*. *Int. J. of Adv. Res.* 6 (Sep.). 448-451.