# A CURIOUS CONNECTION BETWEEN FERMAT'S NUMBER AND MULTIPLE FACTORIANGULAR NUMBERS <br> SWATI BISHT ${ }^{1}$, DR. ANAND SINGH UNIYAL ${ }^{2}$ <br> Govt. P.G. College Uttarakhand, (India) 

RECEIVED : 10 March, 2021
In the seventeenth century Fermat defined a sequence of numbers $F_{n}=2^{2^{n}}+1$ for $n \geq 0$ known as Fermat's number. If $F_{n}$ happens to be prime then $F_{n}$ is called Fermat prime. All the Fermat's number are of the form $n!^{k}$ $+\Sigma n^{k}$ for some fixed value of $k$ and $n$. Further we will prove that after $F_{4}$ no other Fermat prime exist upto $10^{50}$.

Keywords : Fermat's Number, prime number, multiple factoriangular numbers, Fermat prime.

## 2ntroduction

Termat Number : A positive number of the form $F_{n}=2^{2 n}+1$ where n is non negative integer.

First few Fermat's number are 3, 5, 17, 257, 65537,...
Pierre de Fermat conjectured that all numbers

$$
\begin{equation*}
F_{n}=2^{2^{n}}+1 \text { for } m=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

are prime. Nowadays we know that the first five members of this sequence are prime and that (see [2])

$$
\begin{equation*}
F_{n} \text { is composite for } 5 \leq m \leq 32 \tag{1.2}
\end{equation*}
$$

The status of $F_{33}$ is for the time being unknown, i.e., we do not know yet whether it is prime or composite.

The numbers $F_{n}$ are called Fermat numbers. If $F_{n}$ is prime, we say that it is a Fermat prime.

Fermat numbers were most likely a mathematical interest before 1796. When C. F. Gauss mentioned that there is a remarkable relation between the Euclidean construction (i.e., by ruler and compass) of regular polygons and the Fermat numbers, interest in the Fermat primes skyrocketed. In particular, he proved that if the number of sides of a regular polygonal shape
is of the form $2^{k} F_{m 1} \ldots F_{m r}$, where $k \geq 0, r \geq 0$, where $F_{m i}$ are distinct Fermat primes, then this polygonal shape can be made by using compass ruler. The converse statement was proved later by Wantzel in [8].

There exist many necessary and sufficient conditions concerning the primality of $F_{\mathrm{n}}$. For instance, the number $F_{n}(n>0)$ is a prime if and only if it can be written as a sum of two squares in essentially only one way, namely $F_{n}=\left(2^{2^{n-1}}\right)^{2}+1^{2}$.

Recall also further necessary and sufficient conditions: the well-known Pepin's test, Wilson's Theorem, Lucas's Theorem for primality, etc., see [4].

Multiple Factoriangular number [7] : A generalization of factoriangular number is known as multiple factoriangular numbers and are defined as
where

$$
F_{\mathrm{t}}(n, k)=(n!)^{k}+\sum n^{k}
$$

In this paper, we establish a connection between multiple factoriangular numbers and Fermat number .

| $n$ | $F_{t}\left(2,2^{n}-1\right)$ | Prime factorization of $F_{t}(n, 15)$ | Number of digits | Sum of squares of prime, integer, natural numbers |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 3 | Prime | 1 |  |
| 1 | 5 | Prime | 1 | $2^{2}+1^{2}$ |
| 2 | 17 | Prime | 2 | $4^{2}+1^{2}$ |
| 3 | 257 | Prime | 3 | $16^{2}+1^{2}$ |
| 4 | 65537 | Prime | 5 | $256^{2}+1^{2}$ |
| 5 | 4294967297 | $641 \times 6700417$ | 10 | $65536^{2}+1^{2}$ |
| 6 | $\begin{aligned} & 18446744073709 \\ & 551617 \end{aligned}$ | $\begin{aligned} & 274177 \times 67280421 \\ & 310721 \end{aligned}$ | 20 | $\begin{aligned} & 4046803256^{2}+1438 \\ & 793759^{2} \end{aligned}$ |
| 7 | $\begin{aligned} & \hline 340282366920938 \\ & 463463374607431768 \\ & 211457 \end{aligned}$ | $\begin{aligned} & 59649589127497217 \times \\ & 5704689200685129 \\ & 054721 \end{aligned}$ | 39 | $\begin{aligned} & 18446744073709551616^{2} \\ & +1^{2} \end{aligned}$ |
| 8 | $\begin{aligned} & 115792089237316195 \\ & 423570985008687907 \\ & 853269984665640564 \\ & 039457584007913129 \\ & 639937 \end{aligned}$ | $\begin{aligned} & 238926361552897 \times \\ & 93461639715357 \\ & 977769163558199606 \\ & 896584051237541638 \\ & 188580280321 \end{aligned}$ | 78 | $\begin{aligned} & 339840244399005 \\ & 511779394711120340 \\ & 266111^{2}+17340632 \\ & 172455487023654788 \\ & 790090010704^{2} \end{aligned}$ |

By the common observation we see that the sequence of number so formed is well known Fermat Number Sequence and it follow the properties described in [2],[4].

Now $\quad F_{t}\left(2,2^{n}-1\right)=(2!)^{2^{n}-1}+\Sigma 2^{2^{n}-1}=2^{2^{n}}+1$.

## Corollary

All the Fermat prime are multiple factoriangular primes.

## Conclusion

We end up with the conclusion that the only primes we get in different sequences of multiple factoriangular numbers till $10^{50}$ are the Fermat Prime $F_{0}, F_{1}, F_{2}, F_{3}, F_{4}$. Also Sequence of Fermat Number are a special case of multiple Factoriangular number by fixing $n=2, k=2^{n}-1$.

## References

1. Burton, D.M. Elementary Number Theory, fourth edition. McGraw-Hill, New York (1998).
2. Crandall, R. E., Mayer, E., Papadopoulos, J. The twenty-fourth Fermat number is composite. Math. Comp. (submitted).
3. Křižek, M., Chleboun, J., A note on factorization of the Fermat numbers and their factors of the form $3 \mathrm{~h} 2^{\mathrm{n}}+1$. Mathmetica.Bohemica.119, 437-445 (1994).
4. Křížek, M., Luca, F. 17 Lectures on Fermat Numbers. From Number Theory to Geometry. Springer, New York (2001).
5. Niven, I., Zuckerman, H. S. An Introduction to the Theory of Numbers, fifth edition. John Wiley and Sons, New York, (1991).
6. Bisht S., Uniyal A.S. : Representation and nature of multiple factoriangular numbers, International Journal of advanced research. Int. J. of Adv. Res. 6 (Sep). 448-451 .
