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In this paper we are analyzing the effect of harmful algae
to coral reef community.

INTRODUCTION

ecent decades have witnessed a dramatic decline in reef growth in almost every region

where reefs are found (Wilkinson, [14]). There is an urgent need for better predective tools to
increase our understanding of the responses of corals towards changing environment. In this
chapter we are discussing the stability of the model under the influence of harmful algae.
Algae play an important role in the declination of the coral-reef community. This model has
been generated with the help of a metric of a Finsler Space of two-dimension, using the theory
of calculus of variations.

Harmful algae badly effect the coral reefs. Due to toxicity of these algae, the growth of
coral reef decreases. We are taking three main harmful algae Crustose Coralline Algae, Turf
Micro Algae and Frandose Macro Algae [10].

FORMATION OF A FINSLERIAN MODEL

onsider the metric function of a two-dimensional Finsler Space, which is given by
1 P2 -1,.1,.2 )
12 :EeZa,x (T +)+2tan (& /x ){(x1)2+(x2)2}’ L2
where x', x* are Cartesian co-ordinates on R* and 1 is any non-zero real number.

We shall construct our model from equation (2.1) using the theory of calculus of
variations [7]. The Euler-Lagrange equation for the metric function L* is given by
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where s is an arc length.
For i =1, the equation becomes
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Similarly for i = 2, the Euler-Lagrange equation is given by
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Solving equations (2.3) and (2.4), we get the equations of geodesics [4, 5, 11, 12], which
are given by

2.1
d o+ (o — Ty )P + (—ay +lap (%) + 2(0t + oy )it =0,
ds
S .. (2.5)
d
S (may a1 + (ay + Lo ()P + 2 + o )i 52 =0,
ds
Substituting s = M and using Volterra-Hamilton Theory [1, 2, 3], we get
dN' 1,2 2,2 172 1
= =)V + (o 1y VY + 2ay +log)N'N? =N =0,
... (2.6)

N2
%— (ay + 10 (ND? + (auy + 10y (NP2 +2(ay —lay )N'N? —AN? = 0.

where N'  denotes the population of coral and N* denotes the population of harmful algae.
aqapand) are positive constants.
Equilibrium Points [4, 6, 13]

Equilibrium points correspond to constant solutions of the system of differential equations
ie.

1 2
di:o and di:o. .. (2.7)
dt dt
1
The equationdi =0 implies
dt
) 172 252 1,2 1 _
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2
and the equation % =0 implies
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~2(0y — Loy )N'N? + (01 + 1oy (N = (00 + 10y J(N?)? + AN = 0. .. (2.9
Let (N(l) , N&) be the unique non-zero equilibrium point and £ is any positive integer.

Substituting Ng = kN(l) in the equation (2.9), we get

Ny = A . ... (2.10)
(o) —loy)+(—oy +loy)k™ =2(oy + 1oy )k
where A >0
and N§ = e . (2.11)

(o) = loty) + (=auy +1oy k> =2y + 1oy )k
N(l) and Ng both are positive if
(0 —lay) + (=0 + 1oty )k = 2(aty + oy )k > 0. .. (2.12)
For convenience taking a; = o, = a,above condition becomes

a(l=1)+a( -1)k* =2a(1+ )k > 0.

LinearizaTiON [6, 13]

he stability of the model predicts the effect of harmful algae to the growing coral reef.

The stability of a linear system is easy, hence we shall linearise our non-linear dynamical
system at equilibrium point (N(l), Ng ).

Let N'=(q+N)) and N?=(x,+N}).

Then the new system is

d
% = x {—2a(1 +)NZ —2aNL -1+ x} +x, {—2a(1 +1)=2a(l - 1)N§} —2a(l+)xx,
2 2 1272 1,2 1
—o(l =122 — ol = D)xf — 201+ D)NANZ — (1 = 1) — au(L — I)(ND)? + AN 3
and
L]

= {—2a(1 ~)NZ +2aNb 1+ 1)} +x, {—2a(1 ~NL =201+ )NZ + x} —2a(l-1)xx,

+a(l+D)xt —a(l+Dx3, —2a(l-)NYNG — a1+ (N2 + a(l+ ) (NY)? +ANG
The linearised system can be written as
X=AX ...(32)
“2a(1+)NZ —2a(1-DNy +% 201+ )N} —2a( -1)NE
2a(l-HNZ +2a(1+DHNY  2a(1-1)N} —2a(1+NZ + 1

where 4=
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X
and X= .
X2

The characteristic equation [8] of the matrix A4 is
|4-vI|=0, ..(33)
which may be written as
[2a(1+ 1) NG = 20N (1= 1)+ A = v]? +[2a(1+ 1) N} +20NZ (1 -1)]* = 0.
This implies
v —2viA— Qo (1+ 1) NG +2a(1=1) N} + (L —[2a (1+ 1) NG +20.(1-1) N} 1}
a1+ )Ny +2a(1-) NG =0. ... (3.4)
The equation (3.4) being a quadratic equation gives two roots. These roots will be equal
or distinct according to
) {x —(2a(1+1)N3 +20L(1—I)N(1)); 4
4{x—(2a(1+1)1v§+2a(1—1)N}))} —4 ) Oor 20 ... (3.5)
(2a(l LIND 4200 - 1)N§)

) {x ~(201+DVE +2a(1 —l)N(l))} +
1f4{x—(za(1+1)N§ +20L(1—Z)N(1))} 4 ) =0
(2a(1 LN 4200 - 1)N§)
We observe that both the eigen values of the matrix 4 are negative
A < Ny {201+ Dk + 200 (1-1)}. ...(3.6)
Substituting the value of N(l) from (2.12), in equation (3.6), we get

Ot(l—l)kz —4a(l+DHk-a(l-0)<0.
This implies
(k2+1) 40+

In view of condition (3.7), all the eigen values of the matrix A are negative, and hence our
model is stable [6, 9, 13].

If we take the non-zero condition of equation (3.5), there arise two cases:

_ 2 .
(i) 4{x—(2a(1+1)N§+2a(1_,)N(1))}2_4 {x (2a(1+l)N0+2a(1 l)NO)} y

2
+(20L(1+I)N(1) +2a(l —1)N§)

{x —(2a(1 +NG + 201 —I)N(l))}

and (if) 4{x ~(2a0+NG + 200 —Z)N(l))}z 4 <0 |..38)

+(2a(1 e 1)N§)2
_/
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Case 1. In this case the eigen values are

v; = (201 + )NE =201 - )N} + 1) + \/ {x - (2a(1 + )N +2a(l - 1)N(1))}2

—[{x —(2oc(l NG +20(1 - l)N(l))} T a(l+ NS+ 200 - 1)N§)}

and

vy = (20(1+ )N = 2a(1 = [)N§ + 1) - J4{x —(2a(1 +1)NG +2a(1 - l)Né)}2

—[{x —(2oc(l L DONG + 20— Z)Né)} + Qa1+ )N + 201 - 1)N§)}

The root v, is negative, if
20N {(1+ Dk +(1=1)} > A, ...(3.9)

Theroot v, is negative, if

20(1+ [)NZ +2a(1-1)Nb — 4> \/4 {x - (2a(1 FHNE +2a(1 - 1)]\/(1))}2

{x - (2a(1 +NE +20(1 - l)N(l))}

-4 ... (3.10)

2
+(2a(1 )N + 20 - 1)N§)
which implies

A2 =20 +4aNy {(1+ Dk + (1= D)} 1=2) + 4o (NO)? x {(1+ Dk + (=) =1+ + (I ~1)k?} <0,
.. (3.11)

Substituting the value of N(l) from equation (2.12)in equation (3.11) we get

N (k2 (1-1)=2(1 + Dk +1-1)% +16(lk +1)(k - 1) - K -1)-2(+Dk+1-1
(A =1)=2(1+ Dk +1-1) 2+ Dk+(1=D)1-2)|

This implies
A< 2{k2(l—1)—2(1+l)k+1—l—2((1+l)k+(1—l))(1—k)} X

( KA =1y =201+ Dk +1—1
Lkz(l—l)—2(1+l)k+1—l)2 +16(lk +1)(k = 1)

J ... (3.12)

In this case both the eigen values v;and v, are negative, therefore our model is stable.

Case 2. If

4o (20000 2010} )}2 y {r-(200+ DN +200- DN )| N

+(2a(1+ NS +2a( —1)N§)
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There arise two cases

i —(2a(1+z)N§ +2a(1-NNL)=0 e
G) A% 2aNS A+ Dk+ (D).

Case (i). If A = 20cN(1){(1+ Dk+(1-10)}, then both the eigen values are purely imaginary
and hence the model is asymptotically stable.

Case (ii). If kiZaN(l)[(l+l)k+(1—l)], then both the eigen values are complex

conjugate to each other. Then the model is stable if the real part of the root is negative and it is
unstable if the real part of the root is positive [5, 13].

ConcLusion

e conclude that our Finslerian model (given by the equation (2.6)), constructed with

the help of the metric (given by the equation (2.1)) is stable when any one of the conditions
(3.6) with (3.7) or (3.8(i)) is satisfied. This model is asymptotically stable when (3.13(i))
holds, our model is unstable when (3.8(ii)) with (3.13(ii)) is satisfied. The stability of the
model shows that algae badly effect the growth of the coral reef when the conditions of
stability mentioned above are satisfied.
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