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In this paper we are analyzing the effect of harmful algae 
to coral reef community. 

 

INTRODUCTION 
Recent decades have witnessed a dramatic decline in reef growth in almost every region 

where reefs are found (Wilkinson, [14]). There is an urgent need for better predective tools to 
increase our understanding of the responses of corals towards changing environment. In this 
chapter we are discussing the stability of the model under the influence of harmful algae. 
Algae play an important role in the declination of the coral-reef community. This model has 
been generated with the help of a metric of a Finsler Space of two-dimension, using the theory 
of calculus of variations. 

Harmful algae badly effect the coral reefs. Due to toxicity of these algae, the growth of 
coral reef decreases. We are taking three main harmful algae Crustose Coralline Algae, Turf 
Micro Algae and Frandose Macro Algae [10]. 

FORMATION OF A FINSLERIAN MODEL 

Consider the metric function of a two-dimensional Finsler Space, which is given by 
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where  x1, x2 are Cartesian co-ordinates on R2 and l is any non-zero real number. 

We shall construct our model from equation (2.1) using the theory of calculus of 
variations [7]. The Euler-Lagrange equation for the metric function L2 is given by  
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where s is an arc length. 

For i =1, the equation becomes  
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Similarly for i = 2, the Euler-Lagrange equation is given by 
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Solving equations (2.3) and (2.4), we get the equations of geodesics [4, 5, 11, 12], which 
are given by 
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Substituting s = te and using Volterra-Hamilton Theory [1, 2, 3], we get 

1
1 2 2 2 1 2 1

1 2 1 2 2 1

2
1 2 2 2 1 2 2

2 1 2 1 1 2

( )( ) ( )( ) 2( ) 0,

( )( ) ( )( ) 2( ) 0.

dN
l N l N l N N N

dt

dN
l N l N l N N N

dt


               


               

 … (2.6) 

where N1   denotes the population of coral and N2 denotes the population of harmful algae.

1, 2 and    are positive constants. 

Equilibrium Points [4, 6, 13] 

Equilibrium points correspond to constant solutions of the system of differential equations 
i.e. 
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Let 1 2
0 0( , )N N be the unique non-zero equilibrium point and k is any positive integer. 
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1 2For convenience taking ,above condition becomes      

     2(1 ) ( 1) 2 (1 ) 0.l l k l k          

LINEARIZATION [6, 13] 

The stability of the model predicts the effect of harmful algae to the growing coral reef. 

The stability of a linear system is easy, hence we shall linearise our non-linear dynamical 

system at equilibrium point 1 2
0 0( , ).N N  

Let     1 1
1 0( )N x N      and  2 2
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Then the new system is 
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The characteristic equation [8] of the matrix A is  

     0,A I    … (3.3) 

which may be written as 
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 The equation (3.4) being a quadratic equation gives two roots. These roots will be equal 
or distinct according to  
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We observe that both the eigen values of the matrix A are negative 
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Substituting the value of 1
0N  from (2.12), in equation (3.6), we get 
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In view of condition (3.7), all the eigen values of the matrix A are negative, and hence our 
model is stable [6, 9, 13]. 

If we take the non-zero condition of equation (3.5), there arise two cases: 

(i)      
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Case 1. In this case the eigen values are  
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The root v2 is negative, if 

      1
02 (1 ) (1 ) .N l k l           …(3.9) 
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In this case both the eigen values 1 2and    are negative, therefore our model is stable. 

Case 2.  If  
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There arise two cases 

 2 1
0 0

1
0

(i) 2 (1 ) 2 (1 ) 0

(ii) 2 [(1 ) (1 )].

l N l N
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Case (i). If 1
02 {(1 ) (1 )},N l k l       then both the eigen values are purely imaginary 

and hence the model is asymptotically stable. 

Case (ii). If 1
02 [(1 ) (1 )],N l k l       then both the eigen values are complex 

conjugate to each other. Then the model is stable if the real part of the root is negative and it is 
unstable if the real part of the root is positive [5, 13]. 

CONCLUSION 

We conclude that our Finslerian model (given by the equation (2.6)), constructed with 
the help of the metric (given by the equation (2.1)) is stable when any one of the conditions 
(3.6) with (3.7) or (3.8(i)) is satisfied. This model is asymptotically stable when (3.13(i)) 
holds, our model is unstable when (3.8(ii)) with (3.13(ii)) is satisfied. The stability of the 
model shows that algae badly effect the growth of the coral reef when the conditions of 
stability mentioned above are satisfied.  
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