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In this paper it is shown that a collection comp (X), of non – 
empty compact subsets of a metric space X, itself 
becomes a metric space with respect to a metric suitably 
defined on it. If X is taken to be complete then interestingly 
this space turns out to be a complete metric space. While 
proving the space to be complete, there comes a very 
strong and useful result which enables to extend a Cauchy 
subsequence of points of X to a Cauchy sequence in X. 
Definition to a contraction mapping on the space comp (X) 
is also given. And since Banach’s Contraction Mapping 
Principle ensures that a contraction map has a unique 
fixed point, a Deterministic Fractal is obtained at the end.  
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Attractor, Fixed Point, Deterministic Fractal etc. 

 

INTRODUCTION 
We start the proceedings by defining two real valued mappings  and B on a subset of 

a metric space X. It is proved that these mappings are distance decreasing and uniformly 
continuous. It is established that for a compact set, its distance from a point is gettable. The 
distance between any two sets is defined and it is seen that the distance of a set from the 
second is not equal to the distance of second from the first set, in general. Thereafter we prove 
several important propositions concerning maximum distance between two non-empty 
compact subsets of X. A map dL is then defined from comp (X) x comp (X) into IR. We prove 
that (comp (X), dL) is a metric space. We successfully reduce the distance between two sets as 
per our requisition. The space is proved to be complete and finally after defining IFS an 
attractor and a deterministic fractal is obtained. 

PRELIMINARIES 
Definition 1.1. Let X be a metric space with a metric d. Let f : X  X be a map. Then f 

is called a contraction mapping if there exists a real s, 0  s  1, such that d (f (x), f (y))  s         
d (x, y)  x, y  X. 
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Any such number s is called a contractivity factor for f. If s = 0, then f is a constant map 

and will be called a trivial contraction mapping and if s  0, then f is called a non-trivial 
contraction mapping. 

Definition 1.2. Let X and Y be two metric spaces. A function f : X  Y is called a distance 
decreasing map if d (f (x1), f (x2))  s d (x1, x2)  x1, x2  X. 

Notation 1.3. JN will denote the set {1, 2, 3, 4, …., n}, n  IN. If x, y  IR, then the 
maximum of x and y will be represented as x  y. 

Remark 1.4. Let X be a metric space. Let f : X  X be a non- trivial contraction mapping. 
Then f is called a distance decreasing map. 

Definition 1.5. Let X be a metric space. Let   B  X be compact. We define                 
d (x, B) = inf {d (x, y) : y  B} and is called as the distance of x from B. 

Remark 1.6. (i)   d (x, B)   d (x, y)  y  B. 

(ii) Let X be a metric space. Let   B1  B2  X be compact. If x  X, then                  
d (x, B2)  d (x, B1). 

Proposition 1.7. Let ,  be any two subsets of IR. Let for each a  ,  some b   
such that a  b, then sup    sup . 

Proof . Let a  , then  some b   such that a  b. But b   sup   a  . This 
implies sup   sup . 

Corollary 1.8. If x  x0 and y  y0 for x, x0, y and y0  IR, then x  y  x0  y0. 

Proof . Let  = {x, y} and  = {x0, y0}. Then, we have, sup    sup   x  y  x0  y0. 

Remark 1.9. Let A, B  IR be two non-empty sets that are bounded above. Then sup         
(A  B) is bounded above and  

(i) If A  B then sup A   sup B 

(ii) sup (A  B)    sup A + sup B  
Proposition 1.10. A sequence of integers is Cauchy iff it is almost constant. 

Remark 1.11. Let n  IN. Then  ∑ 𝑁/(𝑁 + 1) i is convergent. 

Proof. N + 1  2  1/N + 1  1/2. This implies 1/(N + 1)I  1/2i for each I  IN. Now by 
comparison test   1/(N + 1)I is convergent as  1/2i is convergent. Hence ∑ 𝑁/(𝑁 + 1) i is 
convergent. 

Remark 1.12. Let K, N  IN. Then ∑ 𝑁/(𝑁 + 1) i = 1/N . (N + 1)K. 

Proof.  ∑ 𝑁/(𝑁 + 1) i  = [1/(N +1)K + 1]./[1 – 1/(N + 1)] = (N +1)/N. (N + 1)K+1          

= 1/N. (N + 1)K. 

Remark 1.13. Let ∑ 𝑎n be convergent, where an  0  n  IN. If ∑ 𝑎n = 0 then an = 0  
 n  IN. 

Remark 1.14. If   an   is convergent, then for each j  IN,  aj   an. 

CODE SPACE 

Definition 2.1. Let N  IN. Let KN = {0, 1, 2, 3, …., N – 1}. We, now, define a word on 

KN as : Let x = x1 x2 x3 … where x  KN for all   IN. Sometimes this word is called a semi-
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infinite word. Let X be the set of all such words, that is X = {x : x = x1 x2 x3 …, x  KN, for all 
  IN}. Then, x = y iff x = y   IN.  

Remark 2.2. Let x and y be any two semi-infinite words in X as defined above, then         
  xi – yi /(N + 1)I  x, y  X, is convergent. 

Proof . Clearly,   xi – yi /(N + 1)I  x, y  X, is convergent. Since  xi – yi   N,               
 xi – yi /(N + 1)I  N/(N + 1)i and therefore by comparison test,   xi – yi /(N + 1)I  x, y  X, 
is convergent. 

Proposition 2.3. Let x = x1 x2 x3 ……. and y = y1 y2 y3 …, be two words in X. Let a 
function d : X xX  IR be defined as d (x, y) =   xi – yi /(N + 1)I  x, y  X. Then d is a 
metric on X. 

Definition 2.4. We define this metric space, over the set KN, as defined in 2.3, as code 
space and written as Cd. 

Lemma 2.5. Let x, y  Cd and K  IN. Then, ∑ 𝑁/(𝑁 + 1) i   1/(N + 1)K. 

Lemma 2.6. Let x = x1 x2 x3 … and y = y1 y2 y3 …. be any two words in Cd and let           
ym  = y1

m y2
m y3

m … where m  IN. Suppose that there exists some k  IN such that  n  k,  
yi

n = xi  i, 1  i  n then yn  x. 

Proof. Let   0 be given, then there exists some n0 IN, n0  k such that  

     1/(𝑁 + 1)     … (1) 

Let m  n0, we have  ym = y1
m y2

m y3
m … yn0

m yn0+1
m ….. ym

m …. And yi
m = xi i, 1  i  n0. 

Now, d (ym, x) =   yi
m – xi /(N + 1)I  1/(𝑁 + 1)  by using 2.5 and therefore by (1) we have 

d (ym, x)    m  n0, and hence yn  x.  

Corollary 2.7. Let x  Cd and   0, then ∃ some y  Cd, y  x, such that d (x, y)  . 

Proof. Let x  Cd and let   0 be given. There exists n0  IN such that 1/(𝑁 + 1)   . 
Let y  Cd be such that yi = xi  i, 1  i  n0 but, 𝑦 +1 𝑥 +1, then by definition, y  x. Now, 
by 2.5, ∑ 𝑁/(𝑁 + 1) i  1/(𝑁 + 1)    and therefore, we have, d (x, y)  . Hence, 
the result stands proved.  

Corollary 2.8. Let x  Cd and a  KN, and also let yn = x = x1 x2 x3 … xn aa a … then      
yn  x.  

Proof. Let n  IN then yi
m = xi  i, 1  I  n, then by 2.6, yn  x.  

Corollary 2.9. Let x  Cd, and let a  KN. Also, let yn = a aa … …  x1 x2 x3 … xn.., then 
yn  z = a aa…..  

Proof. Let us consider a word z (= z1 z2 z3 …) in Cd where zi = a  i  IN. Now, yi
n = zi= a 

 i, 1  I  n and thence by 2.6, yn  z= a aa…..  

Lemma 2.10. Let {xn} be a sequence of points of Cd such that each of its sequence of 
points is almost constant, then the sequence{xn} is convergent. 

Lemma 2.11. Let {xn} be a Cauchy sequence of points of the space Cd. Then, for j  IN, 
{xj

n} is a Cauchy sequence of integers. 

Proof. Let j  IN, and let   0 be given. Since {xn} is a Cauchy sequence of points of 
the space Cd,  n0 IN such that d (xn, xm)  /(N + 1)j    xi

n – xi
m /(N + 1)I  /(N + 1)j    

  xj
n – xj

m    n, m  n0. Hence, {xj
n} is a Cauchy sequence of integers.  
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Proposition 2.12. A sequence in a given code space converges iff each of its sequence of 

co-ordinates is almost constant.  

Proof. Let {xn} be a sequence of points of Cd. Then, for n  IN, we have, xn = x1
n x2

nx3
n… 

Suppose for each i, I  IN, {xi
n} is almost constant. Then by 2.10, {xn} is convergent. 

Conversely, let {xn} be convergent in Cd. Then {xn} is a Cauchy sequencein Cd. If j  IN then 
{xj

n} is a Cauchy sequence of jth co-ordinates, and therefore by 2.11, {xj
n} is a Cauchy 

sequence of integers. Hence by 1.10, the result follows.  

Theorem 2.13. Cd is complete.  

Proof. Let {xn} be a sequence of points of Cd. If j  IN then by 2.11, {xj
n} is a Cauchy 

sequence of integers. Again, by 1.10 {xj
n} is almost constant, for each j  IN kept fixed. 

Finally, using 2.12, we see that {xn} is convergent in Cd. Hence, the code space Cd is 
complete.  

Proposition 2.14. Each point of the code space, Cd, is a limit point of Cd. In other words 
Cd  der (Cd) . 

Proof. Let x  Cd, and let   0 be given. Then by 2.7, there exists some y  Cd such that 
y  x and d (y, x)  . This implies x is a limit point of Cd  x  der (Cd)   Cd  der (Cd).  

Theorem 2.15. The code space, Cd, is perfect. 

Proposition 2.16. Let a  KN. Let z (= aaa . . .) be a word in Cd. Define a map                   
g : Cd  Cd as g (x) = a x1 x2 x3 … where x = x1 x2 x3 …  Cd. Then 

(i) g is a non-trivial contraction map with contractivity factor 1/(N + 1) 

(ii) z (= a aa . . .) is a fixed point of g. 

In order to begin our main work, we define the following two maps  

Definition. Let X be a metric space and let x0  X. For A  X, we define,  : A  IR as    
 (x) = d (x0, x)  x  A. Also, for   B  X, we define, B : A  IR as B (x) = d (x, B)      
x  A. 

 Proposition 3.1.  is a distance decreasing () map. 

Proof. If x, x A, then  (x) = d (x0, x)  d (x0, x) + d (x, x)  d (x0, x) – d (x0, x)          
 d (x, x) = d (x, x), and interchanging the role of x and x, we get d (x0, x)  d (x, x), which 
gives  – (d (x0, x) – d (x0, x))  d (x, x). Combining these two we get,  (d (x0, x) – d (x0, x)     
 d (x, x) and hence,  is a distance  map. 

Corollary 3.2.  is uniformly continuous. 

Proof . Since every distance  map is uniformly continuous, we have,  is uniformly 
continuous. 

Corollary 3.3.  is continuous. 

Proof. Since every uniformly continuous map is continuous, therefore,  is continuous. 

Proposition 3.4. B is a distance decreasing () map. 

Proof . Let x, x A and y  B. Then by definition of B we have, d (x, B)  d (x, y)           
 d (x, x) + d (x, y)  d (x, B)  d (x, x) + inf {d (x, y) : y  B}  d (x, B)  d (x, x)            
+ d (x, B)  d (x, B) – d (x, B)    d (x, x)  …(1) 

Interchanging the roles of x and x, we get   d (x, B) – d (x, B)  d (x, x) …(2) 
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By (1) and (2), we get  d (x, B) – d (x, B)   d (x, x)   B (x) – B (x)   d (x, x). 
Hence, B is a distance decreasing () map.  

Corollary 3.5. B is uniformly continuous. 

Proof. Since every distance  map is uniformly continuous, we have, B is uniformly 
continuous.   

Corollary 3.6. B is continuous. 

Proof. Since every uniformly continuous map is continuous, therefore, B is continuous. 

 Proposition 3.7. Let   A  X be compact and let   B  X. Then B (A)  = {d (x, B) : 
x  A} is a bounded subset of IR . 

Proof. Proof follows immediately as every compact subset of a metric space is closed and 
bounded subset of IR.  

 We now show that the distance of a point from a compact set is gettable  

Proposition 3.8. Let   B  X be compact. Let x0  X. Then there exists x0  B such that  
d (x0, B) = d (x0, y0). 

Proof. By 3.3,  : B  IR is continuous, and therefore inf  (B) exists and hence  some 
y0  B such that   (y0) = inf  (B) = inf { (y) : y  B} = {d (x0, y0) : y  B} = d (x0, B). Thus 
d (x0, B) = d (x0, y0). Hence the result stands proved.  

Now, we define the distance between two non – empty sets 

Definition. Let A, B  X be non-empty. Then d (A, B), the distance of set A from set B is 
defined as d (A, B) = sup {d (x, B) : x  A} in IR.  

Remark 3.9. d (A, B)   d (B, A), in general. 

Proof. Let A  B be such that cl (A)  cl (B), cl (A)  cl (B). Then clearly, d (A, B) = 0. 
Now, we take B = {0  x  1 : x  IR} and A = {0  x  1/2 : x  IR}. Then d (B, A) = sup    
{d (y, A) : y  B}  d (1, A)  0 as 1  cl (A) and 1  B. Hence, d (A, B)  d (B, A), in general. 

It is pertinent to note that the order of the two sets matters while calculating distance 
between them  

 Remark 3.10. We note that d (A, B) = sup B (A). In general, d (A, B) is a non-negative 
extended real number. But, if A is compact then clearly, sup B (A) is a real number. 
Therefore, if A is compact then d (A, B) is a real number.  

We require the following proposition which will be used as a strong tool in establishing 
some useful results 

Proposition 3.11. Let A, B  X be non-empty.  Then, 

(i) d (x0, B)  d (A, B)  x0  A. 

(ii) A  B  d (A, B) = 0. 

(iii) d (A, B) = 0  A  cl (B). 

(iv) d (A, B) = 0 = d (B, A)  A = B if A and B are compact. 

Proof. (i) If x0  A then d (x0, B)  sup {d (x0, B) : x0  A} = d (A, B), and so                     
d (x0, B)  d (A, B)  x0  A.  

(ii) Let x  A then x  B and therefore d (x, B) = 0. This implies sup {d (x, B) : x  A} 
= 0  d (A, B) = 0.  
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(iii) Let d (A, B) = 0 then sup {d (x, B) : x  A} = 0. Let x  A then d (x, B) = 0 and so   

x  cl (B). Hence, A  cl (B).          

 (iv) By (iii), d (A, B) = 0  A  cl (B) where as  d (B, A) = 0  B  cl (A). This 
implies cl (A) = cl (B). But A and B are compact and so A = B.  

For a given metric space X, by comp (X) we shall denote the set of all non-empty compact 
subsets of X, In fact, this is comp (X) only which shall be focused at length during the whole 
work 

Proposition 3.12. Let   A1  A2  comp (X). Then d (A1, B)  d (A2, B)    B  X. 

Proof. Let  = {d (x, B) : x  A1} and  = {d (x, B) : x  A2}. Since A1  A2 and   , 
therefore clearly sup   sup . This implies that d (A1, B)   d (A2, B)    B  X. 

 Proposition 3.13. Let A  comp (X). Let   B1  B2  X. Then d (A, B2)   d (A, B1).  

Proof. Let  = {d (x, B2) : x  A} and  = {d (x, B1) : x  A}.Then for any d (x, B2)  , 
clearly,  d (x, B2)  d (x, B1) and therefore  sup   sup . This implies that d (A, B2)                
 d (A, B1).  

Proposition 3.14. Let X be a metric space and A, B, K  comp (X).  Then  

(i) d (A  B, K)    d (A, K)    d (B, K) 

(ii) d (A  B, K)    d (A, K)    d (B, K) 

(iii) d (A  B, K)  = d (A, K)     d (B, K) 

Proof. (i) Since A  A  B, therefore by 3.12 d (A, K)   d (A  B, K) and similarly         
d (B, K)  d (A  B, K). Thus, d (A, K)   d (B, K)  d (A  B, K) or d (A  B, K)    d (A, K)  
  d (B, K) 

(ii) Let x  A  B. If x  A then by 3.11 (i),  d (x, K)    d (A, K)   d (A, K)   d (B, K)  
 d (x, K)   d (A, K)  d (B, K)  x  A  B. This implies that sup {d (x, K) : x  A  B}      
 d (A, K)  d (B, K) and hence d (A  B, K)    d (A, K)  d (B, K) 

(iii) By (i) and (ii), d (A  B, K)  = d (A, K)  d (B, K).  

Proposition 3.15. If A, B  comp (X), then  x  A and y B such that  

     d (A, B) = d (x, y). 

Proof. By 3.6, B : A  IR is continuous and also by 3.10, d (A, B) = B (A) = sup {B (x) 
: x  A}. This implies d (A, B) = d (x, B). Now, by 3.8,  y B such that d (x, B) = d (x, y) 
and hence d (A, B) = d (x, y).  

Lemma 3.16. Let X be a metric space and A, B, K  comp (X). Then d (A, B)  d (A, K)    
+ d (K, B). 

Proof. Let a  A and y  K be fixed. For b  B, clearly, d (a, B)  d (a, b)  d (a, y)        
+ d (y, b). This implies d (a, B)  inf {d (a, y) + d (y, b) : b  B} = d (a, y) + inf {d (y, b) :       
b  B}  d (a, B)  d (a, y) + d (y, B)  d (a, y) + d (K, B), using 3.11 (i). Now, d (a, B)         
 inf {d (a, y) + d (K, B) : y  K} = inf {d (a, y) : y  K} + d (K, B) = d (a, K) + d (K, B)         
 d (A, K)   +  d (K, B) using 3.11 (i).This implies that sup {d (a, B) : a  A}  d (A, K)           
+ d (K, B) and thus d (A, B)  d (A, K) + d (K, B). 

We define a function dL:  comp (X) x comp (X)  IR as given below 
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Definition. Let A, B  comp (X), then dL (A, B) = d (A, B)  d (B, A). By 3.10, d (A, B) 
and d (B, A) are real numbers, and therefore dL is a real number.  

Remark 3.17. Let A, B  comp (X), then d (A, B)  dL (A, B). 

Theorem 3.18. dL is a metric on comp (X). 

Proof. Let A, B  comp (X), then dL (A, B) is a real number and d (A, B)  0, d (B, A)  0 
 dL (A, B)  0. Now, if A = B then d (A, A) = 0 by 3.11 (ii) and therefore dL (A, A) = 0 and if 
dL (A, B) = 0 then d (A, B) = 0 = d (B, A), and therefore by 3.11 (iv), A = B. Also, dL (A, B)      
= d (A, B)  d (B, A) = d (B, A)  d (A, B) = dL (B, A). Next, let A, B, K  comp (X), then by 
3.16, d (A, B)  d (A, K) + d (K, B)  dL (A, K) + dL (K, B) and thus d (A, B)  dL (A, K)           
+ dL (K, B). Interchanging the role of A and B, we get d (B, A)  dL (B, K) + dL (K, A)              
= dL (A, K) + dL (K, B), and hence we have, dL (A, B)  dL (A, K) + dL (K, B). Thus, dL is a 
metric on comp (X).  

Proposition 3.19. Let A, B, C and D  comp (X). Then  

(i) d (A  B, C  D)  d (A, C)  d (B, D) 

(ii) d (A  B, C  D)  d (A, D)  d (B, C) 

(iii) d (A  B, C  D)  dL (A, C)  dL (B, D) 

(iv) d (C  D, A  B)  dL (A, C)  dL (B, D) 

(v) dL (A  B, C  D)  dL (A, C)  dL (B, D) 

Proof. Let A, B, C and D  comp (X). Then 

(i) d (A  B, C  D)  d (A, C  D)  d (B, C  D)  by 3.14 (ii)  

       d (A, C)  d (B, D) by 3.13  

(ii) d (A  B, C  D)  d (A, C  D)  d (B, C  D) 

        d (A, D)  d (B, C) 

(iii) d (A, C)  dL (A, C) and d (B, D)  dL (B, D) by 3.17, we have 

  d (A, C)  d (B, D) )  dL (A, C)  dL (B, D) and thus d (A  B, C  D)  

            dL (A, C)   dL (B, D)  

(iv) Interchanging the role of A and C, B and D, by (iii),  we get,  

  d (C  D, A  B)  dL (C, A)  dL (D, B) = dL (A, C)  dL (B, D)  

  and thus d (C  D, A  B)  dL (A, C)   dL (B, D). 

(v) By (iii) and (iv), we have  

  d (A  B, C  D)  d (C  D, A  B)  dL (A, C)  dL (B, D)  

  and hence, dL (A  B, C  D)  dL (A, C)  dL (B, D).  

 Proposition 3.20. Let A, B and C  comp (X). Then dL (A, B) = d (x, y) for some x A 
and y B. 

Proof. We know that dL (A, B) = d (A, B)  d (B, A). Now, suppose dL (A, B) = d (A, B). 
By 3.15,  some x  A and y  B such that = d (A, B) = d (x, y). Thus we have dL (A, B)          
= d (x, y). Otherwise, dL (A, B) = d (B, A) and again by 3.15,  some x  A and y B such 
that d (B, A) = d (y, x) and by symmetry d (y, x) = d (x, y). Thus, d (B, A) = d (x, y), where 
x A and y B. Hence, dL (A, B) = d (x, y) for some x A and y B.  
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Notation. Let A  X and r  0 be a real number. We shall denote the set {y  X : d (x, y) 

 r for some x  A} by A + r. 

Lemma 3.21. Let X be a metric space and let M  X be compact. Then for   0, M +  
is closed. 

Proof. We have M +  = {y  X : d (x, y)   for some x  M}. Let {yn} be a sequence of 
points of M +  such that  

     yn y0 X  … (1) 

Let n  IN. Since yn  M + ,  some xn M such that  

     d (xn, yn)    … (2) 

Now, {xn} is a sequence of points of M and M being compact is sequentially compact. 
This implies there exists a subsequence {𝑥 } of {xn} such that 𝑥  x, where x is a point of 

M. By (2),  

     D (𝑥 , yn)   … (3) 

This implies d (x, y0)   by using (1) and (3). This means y0  M +  and hence M +  
is closed.  

 Remark 3.22. A + r =  {S [x, r] : x  A}. 

Proof. Let x  A. Let y  S [x, r]. Then, d (x, y)  r and since A + r =  {S [x, r] : x  A}, 
therefore y  A + r. This implies S [x, r]  A + r  x  A   {S [x, r] : x  A}  A + r. 
Now, let yr  A + r. Then d (x, yr)  r for some x  A  yr  S [x, r].  

Hence,  {S [x, r] : x  A} = A + r.   

Lemma 3.23. Let A, B  comp (X) and r  0 be a real number. Then d (A, B)  r iff A  
 {S [y, r] : y  B} = B + r. 

Proof. Suppose d (A, B)  r. Then sup {d (x, B) : x  A}  r. Let x  A, then d (x, B)  r. 
This implies that inf {d (x, y) : y  B}  r. By 3.8, y0  B such that d (x, B) = d (x, y0)            
 d (x, y0)  r which gives x  S [y0, r]. Thus iff A   {S [y, r] : y  B}. Conversely, 
suppose that A   {S [y, r] : y  B} = B + r. Also, d (A, B) = sup {d (x, y); y  B}. Let x  A, 
then x  B + r and so, there exists some y  B such that d (x, y)  r   d (x, B)  r  x  A. 
Hence, d (A, B)  r.  

Proposition 3.24. Let A, B  comp (X) and r  0 be a real number. Then dL (A, B)   r iff 
A  B + r and B  A + r. 

Proof. Suppose dL (A, B)  r. Then d (A, B)  r and d (B, A)  r. And by 3.23, A  B + r 
and B  A + r. Conversely, if A  B + r and B  A + r then by 3.23, we have d (A, B)  r and 
d (B, A)  r  dL (A, B)   r.  

The following result follows from the above proposition 

Proposition 3.25. Let {An} be a sequence in comp (X). Then {An} is Cauchyif and only if 
for a  given   0 there exists a positive integer n0 such that An  Am +  and Am  An +  n, 
m  n0. 

Proof. Suppose {An} is a Cauchy sequence in comp (X). Then for a given   0, there 
exists a positive integer n0 such that dL (An, Am)   n, m  n0. By 3.24, we then have           
An   Am +  and Am  An +  n, m  n0. Conversely, if An   Am +  and Am  An+  n,  
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m  n0 then again by 3.24, we have dL (An, Am)   n, m  n0 and hence {An} is a Cauchy 
sequence. 

Lemma 3.26. Let {An} be a sequence of points of comp (X). Let {ni} be strictly 
increasing sequence in IN. For each i  IN, let 𝑥  𝐴 . Let j  IN. Then for each m such that 

nj – 1 + 1  m  nj, we can find zm Am such that d (zm, 𝑥 )  d (Am, 𝐴 ).  

Proof. Consider the set B = {x  Am : d (x, 𝑥 ) = d (𝑥 , Am)}. Since Am is compact for 

each m  IN, by 3.8, B  . Let zm  B be any element. Then d (zm, 𝑥 )  d (𝑥 , Am)             

 d (Am, 𝐴 ) by 3.11 (i). Hence the result stands proved. 

Proposition 3.27. Let X be a metric space and let {An} be a Cauchy sequence of points of 
comp (X). Let {nj} be a strictly increasing sequence of natural numbers. Suppose {𝑥   𝐴 } 

be a Cauchy sequence in X. Then there exists a Cauchy sequence {yn  An} such that          
𝑦 = 𝑥   j. 

Proof. Let n  IN. If n = ni, for some i  IN, then we take yn = 𝑥  i  IN. We can find  

j  IN such that nj – 1 + 1  m  nj, by 3.26,  zn An such that  

     d (zn, 𝑥 )  d (An, 𝐴 )  … (1).  

Taking yn = zn, we clearly have 𝑦 = 𝑥 . Next, we will show that {yn} is a Cauchy 

sequence. Let   0 be given. Since {𝑥 } is a Cauchy sequence,   a N1  IN such that 

      D (𝑥 , 𝑥 )  /3  nk, nt  N1  … (2) 

Since {An} is a Cauchy sequence, therefore for taken   0  N2  IN such that  

     d (Am, An)  /3  m, n  N2  … (3) 

Let N = N1  N2. Let m, n  N, then  j, k  IN such that nj – 1 + 1  m  nj, and also          
nk – 1  m  nk, By 3.26, d (yn, 𝑥 )  d (An, 𝐴 ) and d (ym, 𝑥 )  d (Am, 𝐴 ). We have  

     nj, nk  N  … (4).  

Now, d (ym, yn)  d (ym, 𝑥 ) + d (𝑥 , 𝑥 ) + d (𝑥 , yn)  3. /3 =  by (1), (2), (3), and 

(4). Hence, {yn  An} is a Cauchy sequence.  

Theorem 3.28. Let X be a complete metric space and let {An} be a Cauchy sequence of 
points of comp (X). Then {An} converges to A  comp (X), where A = {x  X :  a Cauchy 
sequence {xn  An} that converges to x} and so comp (X) is a complete metric space.   

Proof. In order to prove the theorem we shall prove that  

(i) A    

(ii) A is closed and hence complete 

(iii) For   0  a natural number N such that for n  N, A  An +  

(iv) A is totally bounded and thus compact 

(v) lim  → 𝐴  = A. 
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Now,  

(i)  Since {An} is a Cauchy sequence, for   = 
1

2
 there exists a natural number n1 such 

that dL (An, Am)    
1

2
  n, m  n1. For  = 

2

1

2
 there exists a natural number n2 such that           

dL (An, Am)   
2

1

2
 and so on. Thus we get a strictly increasing sequence {ni} of natural 

numbers such that 

      dL (An, Am)  
1

2i
 n, m   ni … (1). 

Let 𝑥  𝐴 , then by 3.11 (i) and (1), d (𝑥 , 𝐴 )   d (𝐴 , 𝐴 )  dL (𝐴 , 𝐴 )  
1

2
. 

By 3.8, there exists 𝑥 𝐴  such that d (𝑥 , 𝑥 ) = d (𝑥 , 𝐴 ) and therefore, we have        

d (𝑥 , 𝑥 )  
1

2
. 

Suppose, we have chosen a finite sequence {x } , 1 i k, for which d(𝑥 , 𝑥 )   . 

Again by (1), dL(A , A )  
1

2k
. Since 𝑥  𝐴 , as before we can find 𝑥  𝐴  such 

that d (𝑥 , 𝑥 )  
1

2k
. Thus we have a sequence {𝑥 } such that d (𝑥 , 𝑥 )  

1

2i
. Since 

∑
1

2i
∞ is convergent, for   0 we can find n () such that ∑

1

2i
∞  , n ()  I  ∞. This 

implies that {𝑥 } is a Cauchy sequence. Therefore there exists a Cauchy sequence {ai  Ai} 
for which 𝑎 = 𝑥 . As X is complete, {ai} converges in X. Let limai = a0. By definition of A,  

a0  A, and hence, A  . 

(ii) Suppose ai is a sequence of points of A such that ai  a. Let i  IN.  There exists a 
sequence, by definition of A, xi, n Ai such that 

      xi, n  ai  … (2)  

Since ai  a, therefore  a natural number n1such that d (𝑎 , 𝑎)  1. Similarly,  n2  n1 

such that d (𝑎 , 𝑎)  
1

2
 and so on. Therefore, we have a strictly increasing sequence {ni} of 

natural numbers s.t.  

     d (𝑎 , 𝑎)  
1

i
  … (3) 

For each ni, by (2),  an integer mi such that 

      d (𝑥 , , 𝑎 )  
1

i
  … (4) 

Using (3) and (4) we have,  
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     d (𝑥 , , 𝑎)  
2

i
  … ().  

Let 𝑦 = 𝑥 , . Then 𝑦  𝐴  and  lim →∞ 𝑦  = . Therefore by 3.27, {𝑦 } can be 

extended to a convergent sequence, say {zi  Ai} such that 𝑧 =  𝑦  and 𝑧  a. Thus a  A 
and hence A is closed. Also, A being closed is complete as X is complete. 

(iii) Since {An} is a sequence of points of comp (X), therefore for   0,   a natural 
number N such that dL (Am, An)    n, m  N. Let n  N. For m  n, by 3.24,  

     Am  An+   … (5) 

Let a  A. Then there exists a sequence say {ai  Ai} which converges to a. For given      
  0, suppose N is the positive integer, the existence of such an N is ensured if we take N to 
be large enough, such that for m  N, d (am, a)  . By (5), am  An+ . By 3.21, An +  is 
closed and so for m  N, a  An +  and hence A  An + .  

    Suppose A is not totally bounded.  This implies for some   0, we can find a sequence 
{ni} in A such that 

      d (xi, xj)   for i other than j  … (6) 

Thus there exists n such that A  An+ /3. This implies for every xi  A,  some yi  An 

such that d (xi, yi)  /3. Since An is compact, {yi  An} has a convergent subsequence, say 
{𝑦 }. By definition of a convergent sequence, we can find two points 𝑦  and 𝑦  such that    

d (𝑦 , 𝑦 )  /3. We thus have, d (𝑥 , 𝑥 )  d (𝑥 , 𝑦 ) + d (𝑦 , 𝑦 ) + d (𝑦 , 𝑥 )  3.   

/3 = , which is a contradiction to (6). Hence A is totally bounded. By (ii), A being complete 
is bounded. 

By (iv), we have, A  comp (X). As {An}  comp (X) is a Cauchy sequence, so for a 
given   0,  a natural number N such that  

     dL (Am, An)  /2  n, m  N  … (7) 

By 3.24, Am  An+ /2. Let n  N. Let y  An and so there exists a natural number N1  n 
such that d L (An, 𝐴 )  /2 . This implies  

     An  𝐴 + /2  … (8) 

Similarly, there exists N2  N1  n such that dL (𝐴 , 𝐴 )  
22


 and so on. Thus, we have 

a strictly increasing sequence {ni} of natural numbers. Let m, k  Nj. Then d L (Am, Ak)  12 

j

. 

Since y An, d (y, 𝐴 )  d (An, 𝐴 ) by 3.11 (i). By 3.17, d (An, 𝐴 )  dL (An, 𝐴 ). 
Therefore, d (y, 𝐴 )  /2. Thus for y  An  there exists an 𝑥  𝐴 such that d (y, 𝑥 )  
/2.  Repeating the arguments we have a sequence {𝑥 } of points of {𝐴 } such that 

      d (𝑥 , x )  
12 


j

 … (9).  

Let j  IN. We have,  

D (y, 𝑥 )   d (y, 𝑥 ) + d (𝑥 , 𝑥 ) + ---- + d (𝑥 , 𝑥 )  
1 22 2

 
  + … +

2 j


  and 

thus,  
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     D (y, 𝑥 )  … (10) 

By (9), {𝑥 } is a Cauchy sequence of points of {𝐴 } which is complete being compact, 

and therefore 𝑥  converges to a point say x. So, by definition of A, x  A. By (10),                 

d (y, 𝑥 )    d (y, x)     An  A +  for n  N. By (iii), A  An +  for n  N. Thus, 

we have A  An +  and An  A +  for n  N. Therefore, by 3.24, dL (An, A)   for n  N   
 An  A in comp (X). Hence comp (X) is a complete metric space.  

The space (comp (X), dL) is known as a space of FRACTALS 

Definition. Let X be a metric space. Let f : X  X be a map. The forward iterations of f 
are functions f 0n : X  X defined by f 00  (x) = x, f 01  (x) = f (x), … f 0(n+1)  (x) = f o f 0n (x)          
= f (f 0n (x)) for n = 0, 1, 2, 3, … and if f is invertible then the backward iterations of f are 
functions defined as : f 0(– m) : X  X defined by f 0(–1)  (x) = f –1 (x), … f 0(– m)  (x) = (f 0m) –1 (x) 
for m  IN. 

Proposition 3.29. Let X be a metric space and let w : X  X be a  continuous map. Then 
w maps comp (X) into itself.  

Proof. Let A be a non empty subset of comp (X). This implies w (A) = {w (x) : x  A}      
 . We shall prove that w (A) is compact. Let {yn = w (xn)} be an infinite sequence of points 
of w (A). We have {xn} is a sequence of points of A. Since A is compact, the sequence {xn} has 
a convergent subsequence, say {𝑥 } converging to some point, say x0  A. Now, since w is 
continuous, therefore lim 𝑦  = lim w (𝑥 ) = w (lim 𝑥 ) = w (x0) = y0 say. Hence, w (A) is 
compact.  

Lemma 3.30. Let X be a metric space and let w : X  X be a contraction mapping with 
contractivity factor ‘s’ then, w : comp (x)  comp (x) defined by w (B) = {w (x) : x  B}  B 
 comp (x) is a contraction map on comp (x) with contractivity factor ‘s’. 

Proof. Let B, K  comp (x). Then d (w (B), w (K)) = sup {d (w (x), w (K)) : x  B}           
= sup {inf {d (w (x), w (y)} : y  K} : x  B}  sup {inf {s d (x, y) :  K} : x  B}                   
  sup {inf {s d (x, K) : x  B} = s d (B, K). Thus, d (w (B), w (K))  s d (B, K). Similarly,       
d (w (K), w (B))  s d (K, B). Therefore, dL (w (B), w (K)) = s d (w (B), w (K))  d (w (K),       
w (B))  s [d (B, K)   d (K, B)]   s dL (B, K).   

Lemma 3.31. Let X be a metric space. Let {wn : n  JN} be contraction mappings on 
comp (X). sn be the contractivity factor for wn for each n. Then the map w : comp (x)  comp 
(x) defined by w (B) = w1 (B)  w2 (B)  w3 (B) ….  wn (B) = ⋃ 𝑤 (𝐵) for each                
B  comp (x) is a contraction map on comp (x) with contractivity factor s = sup {sn : n  JN}. 

Proof. Let B, K  comp (x). We have, for n = 2, d L (w (B), w (K)) = d L (w1 (B)  w2 (B), 
w1 (K)  w2 (K))  d L (w1 (B), w1 (K))  d L (w2 (B), w2 (K))  s1d L (B, K)  s2d L (B, K)               
 s d L (B, K) where s = s1  s2. Hence, the result is valid for n = 2. Similarly the result holds 
for each n  JN.  

Definition. An iterated function system, abbreviated as IFS, consists of a complete metric 
space X together with a finite set of contraction mappings wn : X  X with sn, n  JN as 
respective contractivity factors. 

Notation. Let X be a complete metric space. Then IFS is {x : wn, n  JN} and its 
contractivity factor is s = sup {sn : n  JN}.  
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Theorem 3.32.  Let {x : wn, n  JN} be an IFS with contractivity factor ‘s’. Then the 

function w : comp (x)  comp (x) defined by w (B) =  wn (B), 1  n  N, for all B  comp 

(x), is a contraction mapping on comp (x) with contractivity  factor ‘s’ that is d L (w (B), w (K)) 

 s dL (B, K)  B, K  comp (x), and the unique point A  comp (x) of w is such that              

A = w (A) =  wn (A), 1  n  N, and is given by A = lim   → 𝑤(𝐵)  for any B  comp (x). 

Proof. Let X be a complete metric space. Let wn, n  JN be contractions on X with sn,       

n  JN as respective contractivity factors. Let w : comp (x)  comp (x) be defined as              

w (B) =  wn (B), 1  n  N, for all B  comp (x). By 3, 31, w is a contraction on comp (X) 

with ‘s’ as contractivity factor, where s = sup {sn : n  JN}. Hence, d L (w (B), w (K))  s d L   

(B, K)  B, K  comp (x). Therefore, w has a unique fixed point, say A, where A  comp (x) 

and also lim   → 𝑤(𝐵)  = A for any B  comp (x). Hence the result is proved.  

Definition 3.33. The fixed point A  comp (x) as described in 3.32 is called the attractor 

of the IFS. A fixed point of a contraction mapping on (comp (X), dL) is defined as a 

deterministic fractal. 

Proposition 3.34. Let Cd be a code space on K3. Then {Cd : wn, n = 1, 2} is an IFS where  

w1, w2 : Cd  Cd are contraction mappings defined suitably. 

Proof. We know that the Code Space, Cd, on 3 symbols, i.e., for N = 3 is a complete 

metric space. We, therefore, define w1 and w2 on Cd as follows : Let x = x1 x2 x3 …  Cd and 

define w1, w2 : Cd  Cd as w1 (x = x1 x2 x3 …) = 0 x1 x2 x3 …. and w2 (x = x1 x2 x3 ….) = 2x1 x2 

x3 …. . Then we know that w1, w2 are contraction mappings on Cd with contractivity factor 1/3. 

{Cd : wn, n = 1, 2 } is an IFS and its contractivity factor 1/3.  

Remark 3.35. It is clear from the definition of attractor of an IFS, that every attractor is a 

deterministic fractal.   
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