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Mixed convection flow of two viscous, incompressible, 
electrically conducting, immiscible liquids in a vertical 
channel with adiabatic walls is investigated. The laminar 
parallel and fully developed regimes are considered. Both 
the liquids are considered with different densities, 
viscosities, electrical and thermal conductivities and 
occupy equal width. A uniform magnetic field is considered 
to be applied normal to the flow regime. The equations of 
momentum and energy for both the liquids are written in 
non-dimensional form and solved by taking into account 
the effects of electric load parameter, Joule heating and 
viscous dissipation. The transport properties of the liquids 
in both the regions are assumed to be constant except 
variation in densities with temperature. The solutions for 
velocity and temperature distribution are obtained 
analytically for each region using suitable non-slip, 
matching, boundary and interface conditions. The non-
dimensional governing parameters affecting the velocity 
and temperature are discussed with the help of figures. 

 

NOMENCLATURE 

 0B  : Uniform magnetic field along –axis, 

 Ec  : Eckert number, 

 Ey  : Electric circuit perpendicular to magnetic field, 

r

Pr
Gr Gr

 
  

 : Grashof number in region-I, 

 g : Acceleration due to gravity, 

 
1TK  : Thermal conductivity of the fluid in region-I, 

 
2TK  : Thermal conductivity of the fluid in region-II, 
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1
r

r
M M

   
 : Magnetic parameter in region-I, 

 P  : Constant pressure gradient in region-I, 

 1P  : Constant pressure gradient in region-II, 

 1

r

P
P
 
 
 

 : Constant pressure gradient in region-I, 

 Pr  : Prandtl number, 

 1T   : Temperature of the fluid in region-I, 

 2T   : Temperature of the fluid in region-II, 

 1u  : Velocity field in region-I, 

 2u  : Velocity field in region-II, 

GREEK SYMBOLS 

   : Volumetric coefficient of expansion, 

 1  : Viscosity of the fluid in region-I, 

 2  : Viscosity of the fluid in region-II, 

 1  : Density of the fluid in region-I, 

 2  : Density of the fluid in region-II, 

 1  : Electrical conductivity in region-I, 

 2  
: Electrical conductivity in region-II.  

INTRODUCTION 

Magnetohydrodynamics deals with the motion of electrically conducting fluids under 
the influence of magnetic field. Considerable attention has been given to 
magnetohydrodynamic (MHD) flow since of the last century. The birth date of MHD may be 
identified with the experiments by Faraday, who attempted to measure the electric potential 
induced between the opposite banks of the Thames river by the motion of the (weakly) 
conducting water in the Earth’s magnetic field. Significant applications of MHD have been 
reported; such as the MHD generators, MHD flow meter, MHD pump and MHD marine 
propulsion. Some other quite promising applications are in the field of metallurgy; such as 
MHD stirring of molten metal, magnetic-levitation casting and lithium cooling blanket in a 
nuclear fusion reactor [1]. In addition, the study of flow behaviour of two or more immiscible 
liquids under the influence of magnetic field is of immense importance due to there abundance 
use in flow sciences. Such flow occurs in solid mechanics, ground water hydrology, 
purification of the crude oil in petroleum industry, oil recovery through ocean wells, flow of 
water containing oil in packed rocks, etc, where immiscible fluids flow exists in two or more 
layers. Flow of immiscible liquids have been studied by several authors, including Kapur and 
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Shukla [2, 3], Pathak [4], Vafai and Thiyagaraja [5], Ingham et al. [6] Al-Hadhrami et al. [7], 
Singh et al. [8], Malashetty et al. [9], Singh and Takhar [10], Singh et al. [11-15] and Singh 
and Deka [16]. 

In these studies the boundary conditions considered on the walls of the channel are either 
uniform temperature of uniform heat flux. Indeed these studies are based on the assumption 
that the effect of viscous dissipation in the fluid is negligible. This assumption holds whenever 
the fluid has a sufficiently high thermal conductivity and a sufficiently small Prandtl number 
under the influence of sufficiently high wall heat flux. As a consequence, the analysis of such 
flows for a straight forward analytical determination of the velocity and temperature profiles 
have been given due importance. Analytical solutions of hydromagnetic mixed convection 
problems on immiscible fluid flows in vertical, inclined or horizontal channels have been the 
subject of several papers in the latter decades. The importance of such analytical solutions, 
which refer to laminar fully developed flows, relies on the chance to obtain non-trivial land 
marks to test the reliability of numerical codes developed for more complex geometrics or for 
non-parallel flows. Moreover, such analytical solutions are often an opportunity to inspect the 
internal consistency of the mathematical models and of the approximations adopted, as well as 
to develop new theoretical results. For instance, Barletta and Zanchini [17] and Umavathi and 
Malashetty [18] have shown the effective utility of analytical solution through a novel 
criterion to choose the reference temperature by adopting the Boussinesqu approximation for 
fully developed mixed convection flow in a vertical channel. 

Due to engineering application, theoretical investigations have been devoted to the 
analysis of the effect of viscous dissipation and the effect of buoyancy with reference to 
channel flow. Becket [19], Becket and Friend [20] investigated combined natural and forced 
convection walls for low and higher Rayleigh number. Barletta [21, 22] examined convective 
flow in a vertical channel with buoyancy effect and wall heat fluxes respectively. Barletta      
et al. [23] considered the classical problem of fully developed mixed convection flow, with 
frictional heat generation, in a vertical channel bounded by isothermal plane walls having the 
same temperature. In this model, the viscous dissipation effect is taken into account and the set 
of governing equations is reduced to a fourth order ordinary differential equations for the 
velocity field, whereas Sposito and Ciofalo [24] presented an analysis, with analytical 
solutions, on the parallel fully developed flow of an electrically conducting fluid between 
plane parallel walls under the simultaneous influence of driving pressure head, buoyancy and 
magnetohydrodynamic (MHD) forces. In this analysis, the fluid is assumed to be internally 
heated and the flow modeled as one-dimensional and incompressible. Besides, the 
Boussinesqu approximation is invoked for the buoyancy terms. Recently, Barletta and Celli 
[25] examined combined free and forced flow in a vertical channel with an adiabatic wall and 
an isothermal wall considering laminar, parallel and fully developed regime under the 
influence of uniform magnetic field applied normal to the flow regime. The local balance 
equations are solved by taking into account the effects of Joule heating and viscous 
dissipation. More recently, Barletta et al. [26] discussed magnetohydrodynamic mixed 
convection flow in a vertical porous annulus surrounding the electric cable.  

In the above mentioned studies, the electric load parameter is not given due importance, 
although it has important applications in the design of MHD generators, cross-fired 
accelerators, coal-fired MHD generators and aerospace technology. The aim of the present 
paper is to examine effect of hydromagnetic parameter on mixed convection flow of two 
immiscible liquids in a vertical channel with an adiabatic wall and an isothermal wall, which 
are kept at the same temperature. The viscous dissipation effects as well as Joule heating 
effect are taken into account. The results of velocity field and temperature distribution in both 
the flow regions are studied with help of figures. The present study is expected to be useful in 
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understanding the heat transfer characteristics of immiscible fluid flows through parallel 
channel walls in the presence of magnetic and electric field. 

GOVERNING EQUATIONS AND FORMULATION OF THE PROBLEM 

We consider the steady laminar fully developed flow of two viscous, incompressible, 
electrically conducting and immiscible liquids in a vertical parallel walls channel of width 2H. 
In cartesian coordinate system the x -axis is opposite to the gravitational g


 and the y –axis 

is perpendicular to the channel walls, which are considered to be impermeable and isothermal. 
The flow is laminar and parallel to the walls, so that the velocities of both the liquids are 
directed along the x -axis. The left wall (at )y H    is adiabatic and the right one              

(at )y H   is kept at the constant temperature 0.T  The region-I ( 0)H y    is occupied 

by the liquid of density 1,  viscosity 1,  electrical conducting 1  and thermal conductivity 

1
,TK  whereas the region-II (0 )y H   is occupied by the liquid of density 2 ,  viscosity 

2 ,  electrical conductivity 2  and thermal conductivity 
2

.TK  Schematic diagram and 

coordinate system of the problem is shown Fig.1. Moreover, the present analysis is based on 
the following assumptions: 

 

Fig. 1. Schematu diagram of the problem. 

(i) The transport properties of both the liquids are constant. 

(ii) The induced electric field in the region-I is 1 1E U B 
  

 and in the region-II is 

2 2 ;E U B 
  

 so that the current density is given by 1 1 1 1 1J E U B    
   

 and 

2 2 2 2 2J E U B    
   

 respectively. 

(iii) The liquid velocity and magnetic distribution are   1 1 ,0,0 ,U u y 


 

  2 2 ,0,0U u y 


 and  00, ,0B B


 respectively.  
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(iv) Since B


 is orthogonal to 1U


 and 2U


 the magnetic body force per unit volume in 

the region-I and region-II are expressed as:  

  `  2
1 1 0 1f B u y  


 and  2
2 2 0 2f B u y  


 respectively. 

  The power per unit volume generated by Joule effect in the region-I and in the 
region-II is: 

       2 2
1 1 1 1 1 1 1 1. .

g
q J E U B U B B U      

     
  

  and     2 2
2 2 2 2 2 2 2 2. .

g
q J E U B U B B U      

     
 respectively. 

(v) Since the uniform magnetic field 0B  is applied normal to walls along y -direction, 

the uniform electric field is applied perpendicular to the magnetic field along –
direction; as such magnetic body force reduces to: 

    1 1 0 0 1yf B E B u   


   and  2 2 0 0 1yf B E B u   


 respectively.  

(vi) The magnetic Reynolds number is small so that induced magnetic field is neglected 
in comparison to applied magnetic field. 

(vii) The fully developed parallel flow condition and uniform wall temperature imply 

that the fluid velocities 1U


 and 2 ,U


, and the fluid temperatures 1T   and 2T   depend 

only on .y  

(viii) The hydrodynamic pressures 1dp

dx



 and 2dp

dx



 are constant. 

(ix) All the fluid properties except the density in the buoyancy term, in both regions, are 
considered constant. 

(x) The origin is considered in the midway of the channel walls, so that both the 
immiscible fluids occupy equal breadth H to flow in the parallel impermeable 
walls.   

(xi) The Boussinesqu approximation holds and that both the Joule heating and the heat 
generation by viscous dissipation is taken into account. 

 Under the present configuration, the momentum and energy equations governing the 
MHD flow in the region-I and the region-II can be expressed as: 

Region-I  0H y    

        
2

1
1 2

d u
P

dy


  


   1 1 0 1 0 0 1 0.yg T T B E B u          …(1) 

         1

22
21 1

1 1 0 12
0T y

d T du
K E B u

dydy


           
. … (2) 

Region-II   
2

2 2
2 2

0
dp d u

y H
dx dy


   

 
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2

2
1 2 2

d u
P

dy


  


   2 2 0 2 0 0 2 0yg T T B E B u         . …(3) 

         2

22
22 2

2 2 0 22
0T y

d T du
K E B u

dydy


           
. … (4)  

The reference temperature 0T   and the temperature of the adiabatic wall are chosen equal. 

The non-slip conditions, matching conditions and the thermal boundary conditions relevant to 
the problem are given by: 

     1 0,u                    1 0 ,T T               at     .y H    

     1 2 ,u u           1 2
1 2

du du

dy dy

 
  

 
      at     0.y   

     1 2 ,T T          
1 2

1 2
T T

dT dT
K K

dy dy

 


 
    at     0.y   

     2 0,u                    2 0T T                at     .y H   … (5) 

We introduce following non-dimensional quantities: 

  1
1

0
,

u
u

U


       2

2
0

,
u

u
U


      ,

y
y

H


       1 0

1
0

,
w

T T
T

T T

 


 
     2 0

2
0

.
w

T T
T

T T

 


 
 

Using above stated non-dimensional variables in equations (1)-(4). The equations 
governing the flow in non-dimensional form reduce to: 

Region-I   1 0y     

          
2

21
1 12

0.
d u

P GrT M E u
dy

       … (6) 

         
22

221 1
12

0.
d T du

EcPr M EcPr E u
dydy

     
 

 … (7) 

Region-II  0 1y   

          
2

22
1 2 1 22

0.
d u

P Gr T M E u
dy

       … (8) 

          
22

222 2
22

0,r rT T

r r

K Kd T du
EcPr M EcPr E u

dydy

       
 … (9) 

where  1 ,r

r
Gr Gr





    2 2
1 ,r

r
M M





        1 .rP P   
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2

1 0

P H
P

U





 (constant pressure gradient in region-I), 
 2

1 0

1 0

wg H T T
Gr

U

   



 (Grashof 

number), 2 2 2 1
0

1
M B H





 (magnetic parameter), 

0 0

yE
E

U B


  (electric load parameter), 

1

1 p

T

C
Pr

K


  (Prandtl number), 

 

2
0

0p w

U
Ec

C T T


 
 (Eckert number), 1

2
r


 


 (ratio of 

viscosities), 1

2
r


 


 (ratio of density), 1

2
r


 


 (ratio of electrical conductivities) and 

1

2
r

T
T

T

K
K

K
  (ratio of thermal conductivities). 

The boundary conditions (5) in non-dimensional form become: 

   1 0,u           1 0T                    at      1.y    

   1 2 ,u u        1 21

r

du du

dy dy



     at      0.y   

   1 2 ,T T         1 21

rT

dT dT

dy K dy
    at      0.y   

   2 0,u            2 0T                   at      1.y   … (10) 

SOLUTION OF THE PROBLEM 

To obtain the velocity field and temperature distribution in both the regions, we solve 
the coupled equations by the use of regular perturbation technique, choosing Ec as the 
perturbation. For the purpose, we assume (for 1)Ec  : 

            21 10 11u y u y Ecu y O Ec   , 

            21 10 11T y T y EcT y O Ec   , 

            22 20 21u y u y Ecu y O Ec   , 

            22 20 21T y T y EcT y O Ec   . … (11) 

Introducing (11) into the equations (6)-(9), we obtain: 

Region-I ( ( 1 0)y   ) 

     
2

2 210
10 102

d u
M u M E P GrT

dy
    . … (12) 

     
2

211
11 112

d u
M u GrT

dy
   . … (13) 
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2

10
2

0
d T

dy
 . … (14) 

    
22

22 2 2 21011
10 102

2
dud T

Pr M Pr u M Pr E u M Pr E
dydy

      
 

. … (15) 

Region-II (0 1)y   

     
2

2 220
1 20 1 1 1 202

.
d u

M u M E P Gr T
dy

     … (16) 

     
2

221
1 21 1 212

.
d u

M u Gr T
dy

   … (17) 

     
2

20
2

0.
d T

dy
  … (18) 

     
2

2 2 221
202

2r rT T

r r

K Kd T
M Pr E M Pr E u

dy
  

 
 

                             
2

2 2 20
20 .r rT T

r r

K K du
M Pr u Pr

dy
       

 … (19) 

Introducing (11) into the boundary conditions (10), we obtain: 

 10 0,u          11 0,u             10 1,T                      11 0T               at 1.y    

 10 20 ,u u     11 21,u u      10 201
,

r

du du

dy dy



    11 211

r

du du

dy dy



   at 0.y   

 10 20 ,T T      11 21,T T      10 201
,

r

dT du

dy dy



    11 211

r

du du

dy dy



   at 0.y   

 20 0,u         21 0,u             20 0,T                     21 0T                 at 1.y   … (20) 
The solutions of coupled equations (12)-(19) under the boundary conditions (2) are 

obtained as follows: 

    10 1 2T y C y C  . … (21) 

    20 3 4T y C y C  . … (22) 

    10 5 6 3 4
my myu y C e C e K y K    . … (23) 

    20 7 8 5 6u y C y C K y K    . … (24) 

     2 2
11 9 10 11 12 13 14

My My My MyT y C C y K e K e K e K e        

         2 3 4
15 16 17 18 19 .My MyK ye K ye K y K y K y      … (25) 

     1 12 2
21 11 12 20 21

M y M yT y C C y K e K e     

                           1 1 1
22 23 24

M y M y M yK e K e K e y    
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                        1 2 3 4
25 26 27 28 .M yK ye K y K y K y    . … (26) 

     2 2
11 13 14 33 34 35

My My My Myu y C e C e K K e K e       

                       2 2
36 37 38 39

My My My MyK ye K ye K y e K y e      

                                    2 3 4
40 41 42 43K y K y K y K y    . … (27) 

     1 1 1 12 2
21 15 16 44 45 46

M y M y M y M yu y C e C e K K e K e       

         1 1 1 12 2
47 48 49 50

M y M y M y M yK ye K ye K y e K y e      

                                    2 3 4
51 52 53 54 .K y K y K y K y               … (28) 

RESULTS AND DISCUSSION 

The problem of mixed convection hydromagnetic flow of two immiscible liquids in a 
vertical channel with Joule heating and viscous dissipation is accomplished out in the 
preceding sections. The velocity and temperature fields in both the regions are obtained and 
expressed in (17)-(20). The equations describing the flow are governed by magnetic parameter 
(M), Grashof number (Gr). This enables us to carry out the numerical computations for the 
velocity and temperature fields for various values of the flow conditions and fluid properties. 

Fig. 2 is intended to illustrate variations in the velocity versus distance y in region-I and 
region-II for different values of magnetic parameter (m) and electric load parameter (E) at 
fixed values ( 0.8,r   0.6,r   0.4,r   0.8,TrK   4.0,Gr   Pr = 1.0, P = 1.0,            

Ec = 0.2). It is noted that as M is increased the velocity is decreased in region-I as well as 
region-II. Also, if negative value of  E is decreased the velocity is increased in both region but 
if E = 0.5 then flow is reverse. 

 
Fig. 2. Effect of electric load parameter (E) and magnetic parameter (M) on velocity field in region-I and 

region-II (r = 0.8, r = 0.6, r = 0.4, KTr = 0.8, Gr = 4.0.  Pr = 1.0, P = 1.0 and Ec = 0.2). 
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Fig. 3 is intended to illustrate variations in the velocity versus distance y in region-I and 

region-II for different values of viscosity ratio ( )r  and electric load parameter (E) at fixed 

values ( = 0.5, 0.6,r   0.4,r   0.8,TrK   4.0,Gr   1.0,Pr   1.0,P   0.2).Ec   It 

is noted that as r is increased the velocity is decreased in region-I as well as region-II. If 
electric load parameter (E) in range (0.0 0.5)E    but if 0.5E   then flow is reverse. 

 

Fig. 3. Effect of electric load parameter (E) and viscosity ratio (r) on velocity field in region-I and region-II  
( = 0.5, r = 0.6, r = 0.4, KTr = 0.8, Gr = 4.0.   Pr = 1.0, P = 1.0 and Ec = 0.2). 

 
Fig. 4. Effect of electric load parameter (E) and density ratio (r) on velocity field in region-I and region-II  

( = 0.5, r = 0.8, r = 0.4, KTr = 0.8, Gr = 4.0.  Pr = 1.0, P = 1.0 and Ec = 0.2). 
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Fig. 4 is intended to illustrate variations in the velocity versus distance y in region-I and 

region-II for different values of density ratio (r) and electric load parameter (E) at fixed 
values ( = 0.5, 0.8,r   0.4,r   0.8,TrK   4.0,Gr   1.0,Pr   1.0,P   0.2).Ec   It 

is noted that as r is increased the velocity is decreased in region-I as well as region-II. Also, 
if negative value of E is decreased the velocity is increased in both region but if 0.5E   then 
flow is reverse. 

 
Fig. 5. Effect of electric load parameter (E) and electrical conductivity ratio (r) on velocity field in region-I 

and region-II ( = 0.5, r = 0.8, r = 0.6, KTr = 0.8,  Gr = 4.0.  Pr = 1.0, P = 1.0 and Ec = 0.2). 

Fig. 5 is intended to illustrate variations in the velocity versus distance y in region-I and 
region-II for different values of electrical conductivity ratio (r) and electric load parameter 
(E) at fixed values (M = 0.5, 0.8,r   0.6,r   0.8,TrK   4.0,Gr   1.0,Pr   1.0,P   

0.2).Ec   It is noted that as r is increased the velocity is increased in region-I as well as 

region-II. Also, if negative value of E is decreased the velocity is increased in both region but 
if 0.5E   then flow is reverse. 

 

Fig. 6. Effect of electric load parameter (E) and thermal conductivity ratio (KTr) on velocity field in region-I 
and region-II ( = 0.5, r = 0.8, r = 0.6, r = 0.4, Gr = 4.0.  Pr = 1.0, P = 1.0 and Ec = 0.2). 
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Fig. 7. Effect of electric load parameter (E) and Grashof number (Gr) on velocity field in region-I and region-II 

( = 0.5, r = 0.8, r = 0.6, r = 0.4,  KTr = 0.8.  Pr = 1.0, P = 1.0 and Ec = 0.2). 

Fig. 6 is intended to illustrate variations in the velocity versus distance y in region-I and 
region-II for different values of thermal conductivity ratio (KTr) and electric load parameter 
(E) at fixed values (M = 0.5, 0.8,r   0.6,r   0.4,r    4.0,Gr   1.0,Pr   1.0,P   

0.2).Ec   It is noted that as KTr is increased the velocity is increased in region-I as well as 

region-II. Also, if negative value of E is decreased the velocity is increased in both region but 
if 0.5E   then flow is reverse. 

Fig. 7 is intended to illustrate variations in the velocity versus distance y in region-I and 
region-II for different values of Grashof number (Gr) and electric load parameter (E) at fixed 
values (M = 0.5, 0.8,r   0.6,r   0.4,r   0.8,TrK   1.0,Pr   1.0,P   0.2).Ec   It 

is noted that as Gr is increased the velocity is increased in region-I as well as region-II. Also, 
if negative value of E is decreased the velocity is increased in both region but if E = 0.5 then 
flow is reverse. 

 
Fig. 8. Effect of electric load parameter (E) and Prandtl number (Pr) on velocity field in region-I and region-II 

( = 0.5, r = 0.8, r = 0.6, r = 0.4, KTr = 0.8.  Gr = 4.0, P = 1.0 and Ec = 0.2). 
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Fig. 8 is intended to illustrate variations in the velocity versus distance y in region-I and 
region-II for different values of Prandtl number (Pr) and electric load parameter (E) at fixed 
values (M = 0.5, 0.8,r   0.6,r   0.4,r   0.8,TrK   4.0,Gr   1.0,P   0.2).Ec   It 

is noted that as Pr is increased the velocity is decreased in region-I as well as region-II. Also, 
if negative value of E is decreased the velocity is increased in both region but if 0.5E   then 
flow is reverse. 

 
Fig. 9. Effect of electric load parameter (E) and magnetic parameter (M) on temperature profil in region-I and 

region-II (r = 0.8, r = 0.6, r = 0.4,  KTr = 0.8. Gr = 4.0, Pr = 1.0, P = 1.0 and Ec = 0.2). 

Fig. 9 is intended to illustrate variations in the velocity versus distance y in region-I and 
region-II for different values of magnetic parameter (m) and electric load parameter (E) at 
fixed values ( 0.8,r   0.6,r   0.4,r   0.8,TK   4.0,Gr   1.0,Pr   1.0,P   

0.2).Ec   It is noted that as M is increased the velocity is decreased in region-I as well as 

region-II. Also, if negative value of  E is decreased the velocity is increased in both region but 
if 0.5E   then flow is reverse. 

 
Fig. 10. Effect of electric load parameter (E) and vicosity ratio (r) on temperature profil in region-I and 

region-II (M = 0.5, r = 0.6, r = 0.4, KTr = 0.8, Gr = 4.0, Pr = 1.0, P = 1.0 and Ec = 0.2). 
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Fig. 11. Effect of electric load parameter (E) and density ratio (r) on temperature profile in region-I and 

region-II (M = 0.5, r = 0.8, r = 0.4, KTr = 0.8,  Gr = 4.0, Pr = 1.0, P = 1.0 and Ec = 0.2) 

Fig. 10 is intended to illustrate variations in the velocity versus distance y in region-I and 

region-II for different values of magnetic parameter (m) and electric load parameter (E) at 
fixed values ( 0.8,r  , 0.6,r   0.4,r   0.8,TK   4.0,Gr   1.0,Pr   1.0,P   

0.2).Ec   It is noted that as M is increased the velocity is decreased in region-I as well as 

region-II. Also, if negative value of  E is decreased the velocity is increased in both region but 
if 0.5E   then flow is reverse. 

Fig. 11 is intended to illustrate variations in the velocity versus distance y in region-I and 

region-II for different values of magnetic parameter (m) and electric load parameter (E) at 
fixed values ( 0.8,r   0.6,r   0.4,r   0.8,TK   4.0,Gr   1.0,Pr   1.0,P   

0.2).Ec   It is noted that as M is increased the velocity is decreased in region-I as well as 

region-II. Also, if negative value of  E is decreased the velocity is increased in both region but 
if 0.5E   then flow is reverse. 
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Fig. 12. Effect of electric load parameter (E) and electrical conductivity ratio (r) on temperature profile in 
region-I and region-II (M = 0.5, r = 0.8, r = 0.6, KTr = 0.8, Gr = 4.0, Pr = 1.0, P = 1.0 and Ec = 0.2). 

Fig. 12 is intended to illustrate variations in the velocity versus distance y in region-I and 
region-II for different values of magnetic parameter (m) and electric load parameter (E) at 
fixed values ( ( 0.8,r   0.6,r   0.4,r   0.8,TK   Gr = 4.0, Pr = 1.0, P = 1.0, Ec = 0.2). 

It is noted that as M is increased the velocity is decreased in region-I as well as region-II. 
Also, if negative value of E is decreased the velocity is increased in both region but if 0.5E   
then flow is reverse. 

 

Fig. 13. Effect of electric load parameter (E) and thermal conductivity ratio (KTr) on temperature profile in 
region-I and region-II (M = 0.5, r = 0.8, r= 0.6, r = 0.4, Gr = 4.0,  Pr = 1.0, P = 1.0 and Ec = 0.2). 

Fig. 13 is intended to illustrate variations in the velocity versus distance y in region-I and 

region-II for different values of magnetic parameter (m) and electric load parameter (E) at 
fixed values ( 0.8,r   0.6,r   0.4,r   0.8,TK   Gr = 4.0, Pr = 1.0, Ec = 0.2). It is 

noted that as M is increased the velocity is decreased in region-I as well as region-II. Also, if 
negative value of  E is decreased the velocity is increased in both region but if 0.5E   then 
flow is reverse. 
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Fig. 14. Effect of electric load parameter (E) and Grashof number (Gr) on temperature profile in region-I and 

region-II (M = 0.5, r = 0.8, r = 0.6, r = 0.4,  KTr = 0.8,  Pr = 1.0, P = 1.0 and Ec = 0.2). 

Fig. 14 is intended to illustrate variations in the velocity versus distance y in region-I and 

region-II for different values of magnetic parameter (m) and electric load parameter (E) at 
fixed values ( 0.8,r   0.6,r   0.4,r   0.8,TK   Gr = 4.0, Pr = 1.0, P = 1.0, Ec = 0.2). 

It is noted that as M is increased the velocity is decreased in region-I as well as region-II. 
Also, if negative value of E is decreased the velocity is increased in both region but if 0.5E   
then flow is reverse. 

 
Fig. 15. Effect of electric load parameter (E) and Prandtl number (Pr) on temperature profile in region-I and 

region-II (M = 0.5, r = 0.8, r = 0.6, r = 0.4,  KTr = 0.8, Gr = 4.0, P = 1.0 and Ec = 0.2). 

Fig. 15 is intended to illustrate variations in the velocity versus distance y in region-I and 
region-II for different values of magnetic parameter (m) and electric load parameter (E) at 
fixed values ( 0.8,r  , 0.6,r   0.4,r   0.8,TK   Gr = 4.0, Pr = 1.0, P = 1.0, Ec = 0.2). 

It is noted that as M is increased the velocity is decreased in region-I as well as region-II. 
Also, if negative value of  E is decreased the velocity is increased in both region but if 

0.5E   then flow is reverse. 
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  32 12 1 20 21 22 23 24 252 2K C M K K K K K K        

       11 12 13 14 15 162 2
rTMK K K K K K K      , 
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12KGr
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M M
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2 24K KGr
K C

M M M

 
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1
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K

M
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55 33 34 35 36 38
M M MK K K e K e K K e        

                                    37 39 40 41 42 43
MK K e K K K K      , 

  1 1 12 2
56 44 45 46 47 49

M M MK K K e K e K K e       

        1
48 50 51 52 53 54

MK K e K K K K      , 

 57 33 34 35 44 45 46K K K K K K K      , 

 58 1 45 1 46 47 48 512 2K M K M K K K K    
 

      
 34 35 36 37 402 2 ,r MK MK K K K      

     1 1 1
59 1 12 M M MM

rK M e e M e e      , 

     1 1 1
60 12 M M MM

rK M e e M e e       

     1 1 1
61 55 56 57 1 57 562 M M MK M K K K e e e M K K      . 
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