sg*- CLOSED SETS AND sTa-SPACES IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

A. BHATTACHARJEE

Department of Mathematics, D.D.M College, Khowai, Tripura, India-799201

AND

R. N. BHAUMIK

Retd. Professor of Mathematics, Tripura University, Tripura

RECEIVED : 27 January, 2016

The aim of this paper is to introduce and study different properties of sg^* -closed sets and sT_a -spaces in intuitionistic fuzzy topological space.

KEY WORDS : Intuitionistic Fuzzy (IF) sets, IF semi closed sets, *sg*-closed sets, gs-closed sets, sg^* - closed sets and sT_a -separation axiom, etc.

INTRODUCTION

Atanassov introduced the theory of intuitionistic fuzzy sets in 1983 [1, 2] and intuitionistic fuzzy topology by Coker in 1997 [5]. In this paper we introduce the concept intuitionistic fuzzy sg^* - closed sets. Intuitionistic fuzzy sT_a - space is also introduced with the help of intuitionistic fuzzy sg^* - closed sets. Throughout this paper we denote (X, τ_1) , (Y, τ_2) (or simply X, Y) as intuitionistic fuzzy topological spaces on which no separation axioms are assumed unless explicitly stated.

Preliminaries

Definition 2.1 [1, 2]. Let X be a nonempty fixed set. An intuitionistic fuzzy (IF for short) set A in X is given by a set of ordered triples $A = \{< x, \mu_A(x), \nu_A(x) > : x \in X\}$, where $\mu_A(x), \nu_A(x) : X \to [0, 1]$ are functions such that $0 \le \mu_A(x) + \nu_A(x) \le 1, \forall x \in X$. The numbers $\mu_A(x)$ and $\nu_A(x)$ represent the degree of membership and degree of non-membership for each element $x \in X$ to $A \subset X$, respectively.

Definition 2.2 [5]. Let $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \le 1$. An IF point $x_{(\alpha, \beta)}$ in X is an IF set in X defined by

 $x_{(\alpha,\beta)}(y) = (\alpha,\beta), \text{ if } y = x \text{ and } (0,1) \text{ if } y \neq x.$

In this case, *x* is called the support of $x_{(\alpha, \beta)}$ and α and β are called the value and the non value of $x_{(\alpha, \beta)}$, respectively.

Definition 2.3 [5]. Let $x_{(\alpha,\beta)}$ be an IF point in X such that $\alpha, \beta \in (0, 1)$ and $A = \{ < x, \mu_A (x), \nu_A (x) > : x \in X \}$ be an IF set in X, $x_{(\alpha,\beta)}$ is said to be properly contained in A $(x_{(\alpha,\beta)} \in A \text{ for short})$ if and only. If $\alpha < \mu_A (x)$ and $\beta > \nu_A (x)$.

Definition 2.4. An IF set A of an IF topological space (X, τ) is said to be

170/M016

(a) IF semi closed if there exists a IF closed set U such that int $(U) \subseteq A \subseteq U[6]$.

(b) IF g-closed if cl $(A) \subseteq O$ whenever $A \subseteq O$ and O is an IF open set [8].

(c) IF gs-closed if scl $(A) \subseteq O$ whenever $A \subseteq O$ and O is an IF open set [7].

(d) IF sg-closed if scl $(A) \subseteq O$ whenever $A \subseteq O$ and O is an IF semi open set [9].

(e) IF g^* -closed set if cl (A) $\subseteq O$ whenever $A \subseteq O$ and O is an IF g-open set [3].

Result 2.1. Every IF closed (open) set is IF semi closed [6], IF-g closed [8] (respectively semi open, g-open) set but the converse may not be true [9].

Definition 2.5 [10]. Two IF sets A and B in an IF topological space (X, τ) are called q-separated if cl $(A) \cap B = 0_{\sim} = A \cap cl (B)$.

IF sg^{*}-CLOSED SETS

In this section, the concept sg^* -closed set in IF topological space is introduced and its different properties are studied.

Definition 3.1: An IF set A of an IF topological space (X, τ) is said to be an IF sg^* -closed set if scl $(A) \subseteq O$ whenever $A \subseteq O$ and O is an IF sg-open set.

Every IF semi closed set is IF sg^* - closed but the converse is not true as shown in following example.

Example 3.1. Let $X = \{a, b\}$ be an non empty set and $A = \langle x, (a/0.5, b/0.3), (a/0.5, b/0.7) \rangle$, $B = \langle x, (a/0.6, b/0.4), (a/0.4, b/0.6) \rangle$ are two IF sets of X. Then the family $\tau = \{0_{\sim}, 1_{\sim}, A, B\}$ is an IF topology on X. Then the IF set C defined by $C = \langle x, (a/0.2, b/0.4), (a/0.8, b/0.6) \rangle$ is IF sg^{*} closed but is not IF semi closed as $C \subseteq A^c$, where $A^c = \langle x, (a/.5, b/.7), (a/.5, b/.3) \rangle$ is IF semi closed but int $(A^c) = A \not\subset C$.

Theorem 3.1. Every IF *sg*^{*}- closed is IF semi *g*-closed.

Proof: Let A be an IF sg^* -closed set and O an IF open set in an IF topological space (X, τ) such that $A \subseteq O$. Since O is IF open, O is IF g-open. A being g^* -closed set, Cl $(A) \subseteq O$, whenever $A \subseteq O$ and O is an IF g-open. Hence, Cl $(A) \subseteq O$, whenever $A \subseteq O$ and O is an IF g-open. Hence, Cl $(A) \subseteq O$, whenever $A \subseteq O$ and O is an IF open set. Thus A is an IF semi g-closed set.

But the converse is not true as shown in the following example.

Example 3.2. Let $X = \{a, b\}$ be an non empty set and $A = \langle x, (a/0.4, b/0.5), (a/0.6, b/0.5) \rangle$. Then the family $\tau = \{0_{-1}, A\}$ is an IF topological on X. Then the IF set $B = \langle x, (a/0.7, b/0.5), (a/0.3, b/0.5) \rangle$ is IF semi g-closed. But B is not IF sg^{*}-closed.

Remark 3.1. The relationship of IF sg^* -closed set with other types of closed sets are as follows

Remark 3.2. Union of two IF sg^* - closed sets may not be IF sg^* -closed which can be shown from the following example.

Example 3.3. In example 3.1 let $D = \langle x, (a/0.4, b/0.2), (a/0.5, b/0.8) \rangle$. Then D is also IF sg^* -closed. Now $C \cup D = \langle x, (a/0.4, b/0.4), (a/0.5, b/0.6) \rangle$ is not IF semi g^* - closed. Since $C \cup D \subseteq B$, where B is an IF sg-open set but scl $(C \cup D) \not\subset B$.

Theorem 3.2. Union of two IF sg^* -closed set is IF sg^* -closed iff Union of two IF semi closed sets is IF sg^* - closed.

Proof: Let union of two IF sg^* -closed set is IF sg^* -closed, A and B are two IF semi closed sets then A and B are IF sg^* -closed and so $A \cup B$ is IF sg^* -closed.

Conversely, let union of two IF semi closed sets is IF sg^* -closed set. Let A and B are two IF sg^* - closed sets such that scl (A) = C, scl (B) = D, where C, D are IF semi closed sets. Then scl $(A) = C \subseteq O$, scl $(B) = D \subseteq O$ whenever $A \subseteq O$, $B \subseteq O$ and O is IF sg-open. Now $C \cup D \subseteq O$. Since $C \cup D$ is IF sg^* -closed, therefore scl $(C \cup D) \subseteq O$ and this is true for all IF sg-open sets O containing $C \cup D$. Hence the theorem is proved.

Theorem 3.3. Let A is IF sg^* -closed and $A \subseteq B \subseteq scl(A)$, then B is IF sg^* -closed.

Proof: Let $B \subseteq O$ and O is IF sg-open. Since $A \subseteq B$ so $A \subseteq O$, now since A is IF sg^{*}closed scl $(A) \subseteq O$. By hypothesis $B \subseteq$ scl (A), so scl $(B) \subseteq$ scl (A). Hence scl $(B) \subseteq O$. Thus Bis IF sg^{*}-closed.

Definition 3.2. An IF set A of an IF topological space (X, τ) is said to be an IF sg^* - open set iff A^c is IF semi g^* -closed.

Theorem 3.4. An IF set A is IF sg^* -open iff $F \subseteq sint(A)$, whenever F is IF semi g-closed and $F \subseteq A$.

Proof : Let A is IF sg^{*}-open and F is IF semi g-closed such that $F \subseteq A$. Then A^c is IF sg^{*}closed and contained in the IF semi g-open set F^c . Since A^c is IF sg^{*}-closed therefore scl (A^c) $\subseteq F^c$. Now scl $(A^c) = (\text{sint } (A))^c$, where sint (A) is IF semi-open and $(\text{sint } (A))^c$ is IF semiclosed. Hence $(\text{sint } (A))^c \subseteq F^c$, *i.e.* $F \subseteq \text{sint } (A)$.

Conversely, if F is IF semi g-closed and $F \subseteq$ sint (A), whenever $F \subseteq A$. It follows that $A^c \subseteq F^c$ and $(sint (A))^c = scl (A^c) \subseteq F^c$, where F^c is IF semi g-open. Hence A^c is IF sg^* -closed and A is IF sg^* -open.

Theorem 3.5. Let A is IF sg^* -open and sint $(A) \subseteq B \subseteq A$, then B is IF sg^* -open.

Proof: Let $F \subseteq B$ and F is IF sg-closed. Since $B \subseteq A$ so $F \subseteq B$, now since A is IF sg^{*}open $F \subseteq \text{sint}(A)$. By hypothesis sint $(A) \subseteq B$, so $F \subseteq \text{sint}(A) \subseteq \text{sint}(B)$. Thus B is IF sg^{*}open.

Definition 3.3. Two IF sets A and B in an IF topological space (X, τ) are called semi separated if scl $(A) \cap B = 0_{\tau} = A \cap \text{scl}(B)$.

Theorem 3.6. Union of two semi separated IF sg^{*}-open sets is IF sg^{*}-open.

Proof: Let A and B be semi separated IF sg^* -open sets. Then we have scl $(A) \cap B = 0$ ~ = $A \cap$ scl (B). If F is an IF semi closed set such that $F \subseteq A \cup B$, then $F \cap$ scl $(A) = (A \cup B) \cap$ scl $(A) = (A \cap$ scl $(A)) \cup (B \cap$ scl $(A)) = A \cup 0$ ~ = A. Similarly $F \cap$ scl (B) = B. Now by theorem 3.4 $F \cap$ scl (A) = sint (A) and $F \cap$ scl (B) = sint (B). Hence $F = F \cap (A \cup B)$ = $(F \cap A) \cup (F \cap B) \subseteq (F \cap \text{scl}(A)) \cup (F \cap \text{scl}(B)) \subseteq \text{sint}(A) \cup \text{sint}(B) \subseteq \text{sint}(A \cup B)$. Hence by theorem 3.4 $A \cup B$ is IF semi g^* -open.

Theorem 3.7. An IF set A is IF sg^* -closed iff scl $(A) \cap A^c$ does not contain any non-null IF sg-closed set.

Proof : Let A is IF sg^* -closed and F is IF semi g-closed such that $F \subseteq (scl(A) \cap A^c)$, then F^c is IF semi g-open and $A \subseteq F^c$, it follows from definition 3.1 that $scl(A) \subseteq F^c$, implies $F \subseteq (scl(A))^c$, So $F \subseteq (((scl(A))^c \cap (scl(A) \cap A^c)) = 0_{\sim}$.

Conversely, let the given condition be satisfied. Let $A \subseteq O$, where O is IF sg-open set. If scl (A) is not an IF sub set of O, then scl (A) $\cap O = 0_{\sim}$. But scl (A) $\cap O^c$ is a non-null IF sg-closed set contained in scl (A) $\cap A^c$, a contradiction. So A is IF sg^{*}-closed.

Theorem 3.8. An IF set A is IF sg^* -closed iff scl $(A) \cap A^c$ is IF sg^* -open.

Proof: Let A is IF sg^* -closed and F is IF semi g-closed such that $F \subseteq (scl(A) \cap A^c)$, then by theorem 3.7 $F = 0_{\sim}$. Hence $F \subseteq sint(scl(A) \cap A^c)$ and by theorem 3.4 scl(A) $\cap A^c$ is IF sg^* -open.

Conversely, let scl $(A) \cap A^c$ be IF sg^* -open and $A \subseteq O$, where O is IF sg-open set. Then $O^c \subseteq A^c$ and $(scl (A)) \cap O^c \subseteq (scl (A)) \cap A^c$. Thus is an IF sg-closed sub set of scl $(A) \cap A^c$, since $scl (A) \cap A^c$ is IF sg^* -open, therefore by theorem 3.4 $(scl (A) \cap O^c) \subseteq sint (scl (A) \cap A^c)$ = 0... This is possible if $scl (A) \subseteq O$. Thus A is IF sg^* -closed.

Notation 3.1. Let (X, τ) be an IF topological space and IFSGC (X) (respectively IFSGO (X)) be the family of all IF semi *g*-closed (respectively IF semi *g*-open) sets of *X*.

Theorem 3.9. In an IF topological space (X, τ) if IFSGC (X) = IFSGO (X) and every IF sg-closed is IF semi closed then every IF subset of X is IF sg^{*}-closed.

Proof: Let A is an IF sub set of X and $A \subseteq O$ and O is an IF sg-open. Since IFSGC (X) = IFSGO (X), O is IF sg-closed also. According to hypothesis O is IF semi closed. Hence scl $(A) \subseteq$ scl (O) = O and A is an IF sg^{*}-closed set.

Theorem 3.10. In an IF topological space (X, τ) if every IF subset of X is IF sg^* -closed then IFSGC (X) = IFSGO(X).

Proof: Suppose that every IF subset of X is IF sg^* -closed. Let $A \in IFSGO(X)$, now since every IF sg^* -closed set is IF semi g-closed set, $A \in IFSGC(X)$. Thus IFSGO $(X) \subseteq IFSGC(X)$. Again if $A \in IFSGC(X)$ then $A^c \in IFSGO(X) \subseteq IFSGC(X)$ and hence $A \in IFSGO(X)$. Consequently, IFSGC $(X) \subseteq IFSGO(X)$. Hence IFSGO (X) = IFSGC(X).

F SEMI T_a- SPACES

In this section, a new notion, called IF semi T_a – space with the help of IF sg^* -closed sets is defined and some of its properties are studied.

Definition 4.1. An IF topological space (X, τ) is said to be an IF semi T_a - space iff every IF sg^* -closed set is IF semi closed.

Theorem 4.1. For every IF point $x_{(\alpha, \beta)}$ in X, either $x_{(\alpha, \beta)}$ is IF semi g-closed or its complement $\{x_{(\alpha, \beta)}\}^c$ is sg^* -closed in IF topological space (X, τ) .

Proof : Let $x_{(\alpha,\beta)}$ is not IF semi *g*-closed in (X, τ) . Then $\{x_{(\alpha,\beta)}\}^c$ is not IF semi *g*-open and 1_{\sim} is the only IF semi *g*-open set containing $\{x_{(\alpha,\beta)}\}^c$. Therefore scl $\{x_{(\alpha,\beta)}\}^c \subseteq 1_{\sim}$ holds and so $\{x_{(\alpha,\beta)}\}^c$ is IF semi g^* -closed.

Definition 4.2. An IF semi g^* -closure operator of an IF set A in an IF topological space (X, τ) is defined as scl^{*} $(A) = \cap \{F : A \subseteq F, F \text{ is IF } sg^*\text{-closed in } X\}.$

If A is IF sg^* -closed set then $scl^*(A) = A$.

Theorem 4.2. In an IF topological space (X, τ) , if $\{x_{(\alpha, \beta)}\} \neq \{y_{(\chi, \delta)}\}$ then scl^{*} $\{x_{(\alpha, \beta)}\} \neq scl^* \{y_{(\chi, \delta)}\}$.

Proof : By theorem 4.1 in the IF topological space (X, τ) IF point $\{x_{(\alpha, \beta)}\}$ is either IF semi *g*-closed or its complement $\{x_{(\alpha, \beta)}\}^c$ is IF *sg*^{*}-closed. Hence the proof will be complete if we consider the following two cases.

If IF point $\{x_{(\alpha, \beta)}\}$ is IF semi g-closed then $\{x_{(\alpha, \beta)}\}$ is also IF sg^* -closed, since an IF semi g-closed set is an IF sg^* -closed set. Hence scl^{*} $\{x_{(\alpha, \beta)}\} = \{x_{(\alpha, \beta)}\}$. Now $\{y_{(\chi, \delta)}\} \notin \{x_{(\alpha, \beta)}\}$, therefore scl^{*} $\{x_{(\alpha, \beta)}\} \neq$ scl^{*} $\{y_{(\chi, \delta)}\}$.

Now let $\{x_{(\alpha, \beta)}\}^c$ be IF semi g^* -closed. Since $\{y_{(\chi, \delta)}\} \subset \{x_{(\alpha, \beta)}\}^c$, $\{y_{(\chi, \delta)}\} \in \operatorname{scl}^* \{y_{(\chi, \delta)}\} \subset \{x_{(\alpha, \beta)}\}^c$ and hence $\operatorname{scl}^* \{x_{(\alpha, \beta)}\} \neq \operatorname{scl}^* \{y_{(\chi, \delta)}\}$.

By IFSO (τ) we mean the collection of all IF semi open sets in the space (X, τ) and similarly, we define IFSO^{*}(τ) = {A : scl^{*}(A^c) = A^c}.

Theorem 4.3. In an IF topological space (X, τ) , IFSO $(\tau) \subset$ IFSO^{*} (τ) .

Proof: Let $A \in \text{IFSO}(\tau)$. Then A^c is IF semi closed and $A^c = \text{scl}(A^c)$. Since A^c is IF semi closed, therefore A^c is also IF sg^* -closed, so $\text{scl}^*(A^c) = A^c$. Hence $A \in \text{IFSO}^*(\tau)$.

Theorem 4.4. An IF topological space (X, τ) is IF semi T_a -space iff IFSO $(\tau) = \text{IFSO}^*(\tau)$.

Proof: Let (X, τ) be an IF semi T_a -space. Then scl $(A) = \text{scl}^*(A)$ holds for every IF subset A, since IF semi closed sets and IF sg^* -closed sets coincide in IF semi T_a - space. Therefore we have IFSO $(\tau) = \text{IFSO}^*(\tau)$.

Conversely, let A be IF sg^{*}-closed set of (X, τ) . Then $A = \operatorname{scl}^*(A)$ and hence $A^c \in \operatorname{IFSO}(\tau)$. Thus A is IF semi closed. Therefore (X, τ) is IF semi T_a -space.

Theorem 4.5. An IF topological space (X, τ) is IF semi T_a - space iff for each $x_{(\alpha, \beta)} \in X$,

 $\{x_{(\alpha,\beta)}\}$ is IF semi open or IF semi *g*-closed.

Proof: Let $x_{(\alpha, \beta)} \in X$ and $\{x_{(\alpha, \beta)}\}$ is not IF semi *g*-closed. Then $\{x_{(\alpha, \beta)}\}^c$ is not IF semi *g*-open. This implies that 1_{\sim} is the only IF semi *g*-open set containing $\{x_{(\alpha, \beta)}\}^c$. scl $\{x_{(\alpha, \beta)}\}^c \subseteq 1_{\sim}$. So $\{x_{(\alpha, \beta)}\}^c$ is IF *sg*^{*}-closed set of (X, τ) . Since (X, τ) is IF semi *T_a*-space, $\{x_{(\alpha, \beta)}\}^c$ is IF semi closed. Therefore $\{x_{(\alpha, \beta)}\}$ is IF semi open.

For the converse part it is enough to prove that IFSO^{*} (τ) \subset IFSO (τ). Let $A^c \in$ IFSO^{*} (τ) and $A \notin$ IFSO (τ). Then scl^{*} (A^c) = A^c and scl (A^c) $\neq A^c$. Then there exist a point $x_{(\alpha,\beta)}$ of X such that $x_{(\alpha,\beta)} \in$ scl (A^c) and $x_{(\alpha,\beta)} \notin$ scl^{*} (A^c) = A^c . Since $x_{(\alpha,\beta)} \notin$ scl^{*} (A^c) there exists an IF semi g^* -closed set F such that $x_{(\alpha,\beta)} \notin F$ and $A^c \subset F$. By the hypothesis, { $x_{(\alpha,\beta)}$ } is IF semi open or IF semi g-closed. **Case I.** Let $\{x_{(\alpha,\beta)}\}$ is IF semi open. Since $\{x_{(\alpha,\beta)}\}^c$ is IF semi closed and $A^c \subset \{x_{(\alpha,\beta)}\}^c$, we have scl $(A^c) \subset \{x_{(\alpha,\beta)}\}^c$, *i.e.* $x_{(\alpha,\beta)} \notin$ scl (A^c) . This contradicts the fact that $x_{(\alpha,\beta)} \in$ scl (A^c) . Therefore $A \in$ IFSO (τ).

Case II. Let $\{x_{(\alpha,\beta)}\}$ is IF semi *g*-closed. Since $\{x_{(\alpha,\beta)}\}^c$ is IF semi *g*-open set containing the IF sg^* -closed set $F \supset A^c$, we have $\{x_{(\alpha,\beta)}\}^c \supset \text{scl}(F) \supset \text{scl}(A^c)$. Therefore $\{x_{(\alpha,\beta)}\} \notin \text{scl}(A^c)$. This is a contradiction. Hence $A \in \text{IFSO}(\tau)$. Hence in both the cases $A \in \text{IFSO}(\tau)$. Hence IFSO^{*} $(\tau) \subset \text{IFSO}(\tau)$.

Definition 4.3. An IF topological space (X, τ) is said to be an IF semi T_0 - space iff for any pair of distinct points $x_{(\alpha, \beta)}$ and $y_{(\chi, \delta)}$ in X, either $x_{(\alpha, \beta)} \notin \text{scl} \{y_{(\chi, \delta)}\}$ or $y_{(\chi, \delta)} \notin \text{scl} \{x_{(\alpha, \beta)}\}$, *i.e.* scl $\{x_{(\alpha, \beta)}\} \neq \text{scl} \{y_{(\chi, \delta)}\}$.

Theorem 4.6. Every IF semi T_a - space is IF semi T_0 - space.

Proof: Let (X, τ) be an IF semi T_a - space but not IF semi T_0 -space. Then there exists two distinct points $x_{(\alpha, \beta)}$ and $y_{(\chi, \delta)}$ in X, such that scl $\{x_{(\alpha, \beta)}\} = \text{scl }\{y_{(\chi, \delta)}\}$. Let $A = \{x_{(\alpha, \beta)}\}^c$. Clearly $\{x_{(\alpha, \beta)}\}$ is not IF semi closed, otherwise scl $\{x_{(\alpha, \beta)}\} = \{x_{(\alpha, \beta)}\} \neq \text{scl }\{y_{(\chi, \delta)}\}$. By the theorem 4.1, A is IF sg^{*}-closed. But A is not IF semi closed, otherwise $y_{(\chi, \delta)} \in \{x_{(\alpha, \beta)}\}^c = A$ implies scl $\{y_{(\chi, \delta)}\} \subseteq \{x_{(\alpha, \beta)}\}^c$ and scl $\{x_{(\alpha, \beta)}\} \neq \text{scl }\{y_{(\chi, \delta)}\}$, contradicting our hypothesis. Hence (X, τ) is IF semi T_0 - space.

ACKNOWLEDGEMENT

First author would like to acknowledge UGC-NERO for financial support under Minor Research Project No. F. 5-335/2014–15 (MRP/NERO).

References

- 1. Atanasov, K., Intuituioistic Fuzzy Sets, VII, ITKR's Session, Sofia, Bulgaria (1983).
- 2. Atanasov, K., Intuituioistic Fuzzy Sets, Fuzzy Sets and Systems, 20, 87-96 (1986).
- Bhattacharjee, A. and Bhaumik, R.N., g^{*}-Closed Sets and T_a Separation Axiom in Intuitionistic Fuzzy Topological Spaces, *International Journal of Innovative Science, Engineering & Technology*, 2 (5), 851-855 (May 2015).
- 4. Coker, D., An introduction to IFT spaces, Fuzzy Sets and Systems, 88(1), 81-89 (1997).
- 5. Coker, D. and Demirci, M., On IF points, Notes on IFS, 1(2), 79-84 (1995).
- Gurcay, H., Coker, D. and Es, A.H., On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math., Vol. 5, No. 2, 365-378 (1997).
- 7. Sakthivel, K., Intuituioistic fuzzy Alpha generalized continuous mappings and intuitionistic fuzzy Alpha generalized irresolute mappings, *Applied Mathematical Sciences*, **4(37)**, 1831-1842 (2010).
- 8. Thakur, S.S. and Chaturvedi, Rekha, Genaralised Closed sets in intuitionistic fuzzy topology, *The Journal of Fuzzy Mathematics*, **16(3)**, 559-572 (2008).
- Thakur, S.S. and Bajpai, J.P., Intuitionistic fuzzy W-closed sets and Intuitionistic fuzzy W-continuity In Intuitionistic Fuzzy Topological Spaces, *International Journal of Contemporary* Advanced Mathematics, 1(1), 1-15 (2011).
- 10. Turnali, N. and Coker, D., Fuzzy Connected ness in Intuitionistic Fuzzy Topological Spaces, *Fuzzy* Sets and Systems, **116 (3)**, 369-375 (2000).