"USING DIOPHANTINE EQUATION ANALYSIS OF UNIQUE FACTORIZATION IN THE RING OF INTEGERS OF CERTAIN QUADRATIC FIELDS"

R.C. KASHYAP

Department of Maths, Govt. P.G. College, Uttarkashi (U.K.)

RECEIVED : 11 December, 2015

It is provided that Diophantine equation $x^2 + 11 = 3^n$ and $x^2 + 19 = 7^n$ has the solution for n = 3 and the equation $x^2 + 17 = 4^n$ have no integer solution. In this paper we analysis these unique factorization in Diophantine equation by Nagell's idea method.

KEYWORDS: Diophantine equation, Nagell's idea, Divisors, factors etc.

INTRODUCTION

In this paper we are considered the equation $x^2 + 7 = 2^n$ has solution only for n = 3, 4, 5, 7 and 15. An elementary proof, based on Negell's idea is given for the following results and other equation be $x^2 + 29 = 13^n$ the non existence of solution for this equation is provided using unique factorization in the ring of integers θd of $\theta(\sqrt{d})$ for d = 29 the method of proof is similar to the one we have proved in other

Theorem

The only integer solutions of the equation

$$x^2 + 19 = 7^n \qquad \dots (1)$$

and

$$x^2 + 11 = 3^n$$
 ... (2)

are $(x, n) = (\pm 18, 3)$ and $(\pm 4, 3)$ respectively.

Proof : We first deal with equation (1) if (x, n) is a solution of equation (1) then x is even. Hence $x^2 + 19 \equiv 3 \pmod{4}$ which implies that n is odd when n = 1 given equation has no solution in integers

We rewrite the equation as $x^2 + 19 = 7^n$

$$(x+\sqrt{-19})(x-\sqrt{-19})=7^n$$
 ... (3)

It is an equation is $\theta(\sqrt{-19})$ where ring of integers θ_{-19} has unique factorization.

162/M015

Let
$$\alpha = \frac{3 + \sqrt{-19}}{2}$$
 $\beta = \frac{3 - \sqrt{-19}}{2}$

 α , β satisfy the equation $\alpha + \beta = 3$, $\alpha\beta = 7$

by (3)
$$\alpha^{2} - 3\alpha + 7 = 0 \text{ and } \beta^{2} - 3\beta + 7 = 0$$
$$(x + \sqrt{-19})(x - \sqrt{-19}) = \alpha^{n}\beta^{n} \qquad \dots (4)$$

Any common divisor

z of $(x - \sqrt{-19})$ and $(x + \sqrt{-19})$ divides their difference which $\Rightarrow N(z)$ divides $N(2\sqrt{-19}) = 76$. As $N(\alpha) = N(\beta) = 7$

$$(x+\sqrt{-19}) = \pm \alpha^n$$
 or β^n and $(x-\sqrt{-19}) = \pm \beta^n$ or α^n
 $\alpha^n - \beta^n = \pm 2(\alpha - \beta)$... (5)

The equation $\alpha^2 = 3\alpha - 7$, $\beta^2 = 3\beta - 7$ the power of α and β are given by the formulas

$$\alpha^n = r_n \alpha + \delta_n \quad \beta^n = r_n \beta + s_n \qquad \forall n \ge 3 \qquad \dots (6)$$

where

and

$$\begin{pmatrix} r_{n+1} \\ s_{n+1} \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ -7 & 0 \end{pmatrix} \begin{pmatrix} r_n \\ s_n \end{pmatrix} \forall n > 3$$

$$\begin{pmatrix} r_n \\ s_n \end{pmatrix} = \begin{pmatrix} 2 \\ -21 \end{pmatrix}$$

$$\begin{pmatrix} r_n \\ s_n \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ -7 & 0 \end{pmatrix}^{n-3} \begin{pmatrix} r_3 \\ s_3 \end{pmatrix} \qquad \dots (7)$$

$$\Rightarrow \alpha^n - \beta^n = r_n (\alpha - \beta) \qquad \dots (8)$$

thus, we have

by (6)
$$\Rightarrow \alpha^n - \beta^n = r_n (\alpha - \beta)$$
 ...

Using (5) we get

if

$$A = \begin{pmatrix} 3 & 1 \\ -7 & 0 \end{pmatrix} \text{ then } A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \mod 2$$
$$A^2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \mod 2$$
$$A^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod 2$$

 $r_n = \pm 2$

As n > 3 and n is odd A^{n-3} take only value $A^2 \mod 2$ and by (7) we get

$$\begin{pmatrix} r_n \\ S_n \end{pmatrix} \equiv \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mod 2$$

 $\forall n > 3 \quad r_n \equiv 1 \mod 2 \quad \text{so that } r_n \neq \pm 2$

equation (1) has no solution for n > 3.

104

pr n = 2 equation (2) has no solution and n = 3, $x = \pm 4$ satisfy (2) then $\alpha = \frac{1 + \sqrt{-11}}{2}$, $\beta = \frac{1 - \sqrt{-11}}{2}$ we proof as above.

Theorem II. The equation $x^2 + 43 = 11^n$ has no solution of integers

Proof: If (x, n) is a solution of (1,1) then x is even. Hence, $x^2 + 43 = 3 \pmod{4}$ which \Rightarrow that *n* is odd when n = 1, 3 the given equation has no solution in integers. Now assume that $n \ge 5$ we rewrite the equation

$$(x+\sqrt{-43})(x-\sqrt{-43})=11^n$$
 ... (1)

is an equation in $\theta(\sqrt{-23})$ whose ring of integers θ_{23} has unique factorization $\alpha + \beta = 1$ $\alpha\beta = 11$

Let
$$\alpha = \frac{1+\sqrt{-43}}{2}$$
, $\beta = \frac{1-\sqrt{-43}}{2}$ $\alpha_1\beta$ are satisfy the equation
 $\alpha^2 - \alpha + 11 = 0$ and $\beta^2 - \beta + 11 = 0$... (2)

 $(x+\sqrt{-43})(x-\sqrt{-43}) = \alpha^n \beta^n$ Then equation ... (3)

As common divisor z of $(x + \sqrt{-43})$ and $(x - \sqrt{-43})$ divides their difference $\Rightarrow N(\zeta)$ divides $N(\alpha \sqrt{-43}) = 172$ as $N(\alpha) = N(\beta) = 11$ neither α and nor β is common divisor of $(x-\sqrt{-43})$ and $(x+\sqrt{-43})$. A θ_{-43} is a unique factorization domain whose only units are \pm 1, we have

α

$$(x+\sqrt{-43}) = \pm \alpha^n$$
 or $\pm \beta^n$ and $(x-\sqrt{-43}) = \beta^n$ or α^n ... (4)

can be obtain

$${}^{n}-\beta^{n}=\pm 2(\alpha-\beta) \qquad \qquad \dots (5)$$

Let

Thus we

if

and

Let
$$\alpha^{n} = r_{n}\alpha + S_{n} \quad \beta^{n} = r_{n}\beta + S_{n} \quad \forall n \ge 3$$
$$\begin{pmatrix} r_{n+1} \\ S_{n+1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -11 & 0 \end{pmatrix} \begin{pmatrix} r_{n} \\ S_{n} \end{pmatrix} . \forall n \ge 3$$
and
$$\begin{pmatrix} r_{3} \\ S_{3} \end{pmatrix} = \begin{pmatrix} -10 \\ -11 \end{pmatrix}$$
Thus we have
$$\begin{pmatrix} r_{n} \\ S_{n} \end{pmatrix} = \begin{pmatrix} +1 & 1 \\ -11 & 0 \end{pmatrix}^{n-3} \begin{pmatrix} r_{3} \\ S_{3} \end{pmatrix} \forall n \ge 3$$
$$\alpha^{n} - \beta^{n} = r_{n} (\alpha - \beta) \qquad \dots (6)$$
by (5) and (6)
$$r_{n} = \pm 2$$
if
$$A = \begin{pmatrix} 1 \\ -11 & 0 \end{pmatrix}$$
 then
$$A = \begin{pmatrix} 1 \\ -1 & 0 \end{pmatrix} \mod 2$$

$$A^2 = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \mod 2$$
 and $A^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod 2$

as n > 3 *n* is odd A^{n-3} takes only value of $A^2 \mod 2$

$$\binom{r_n}{S_n} = \binom{0}{-1} \binom{0}{1} \binom{0}{1} = \binom{1}{1} \mod \forall n \ge 3 \quad r_n = 1 \mod 2$$

So fercit $r_n \neq 2$ theorem is proof we share show that for other equation as $x^2 + 67 = 19^n$

References

- 1. Karlheinz, Spindler, Abstract Algebra with Applications, Volume II, Marcel Dekker inc.
- 2. Kasahara, S., On some generalizations of the Branch Contraction theorem, *Math Seminar Notes*, **3**, 161–169 (1975).
- 3. Skof, F., Terana di punti Fisso per applicazioni negli spazi matric, *Atti. Acad. Sci.*, Torino, **111**, 323–329 (1977).
- 4. Bhatta, S. Parameshwara and Shashirekha, H., A characterization of completeness for trellises, *Algebra Universatis*, 44, P. 305–308 (2000).