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It is provided that Diophantine equation  2 11 3nx  and 

 2 19 7nx  has the solution for n = 3 and the equation 

 2 17 4nx  have no integer solution. In this paper we 
analysis these unique factorization in Diophantine equation 
by Nagell’s idea method. 
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INTRODUCTION 
In this paper we are considered the equation 2 7 2nx    has solution only for 

3, 4, 5, 7n   and 15. An elementary proof, based on Negell’s idea is given for the following 

results and other equation be 2 29 13nx    the non existence of solution for this equation is 

provided using unique factorization in the ring of integers d  of  d  for 29d   the 

method of proof is similar to the one we have proved in other 

THEOREM 

The only integer solutions of the equation 

     2 19 7nx    … (1) 

and     2 11 3nx    … (2) 

are  ( , ) 18, 3x n    and (± 4, 3) respectively. 

Proof : We first deal with equation (1) if (x, n) is a solution of equation (1) then x is even. 

Hence  2 19 3 4x Mod   which implies that n is odd when n = 1 given equation has no 

solution in integers 

We rewrite the equation as 2 19 7nx    

        719 19
n

x x      … (3) 

It is an equation is  19   where ring of integers 19  has unique factorization. 
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Let  
3 19

2

 
        

3 19

2

 
   

,   satisfy the equation 3,    7   

     2 3 7 0       and   2 3 7 0     

by (3)      19 19
n n

x x        … (4) 

Any common divisor 

  z of  19x    and  19x    divides their difference which  N z  divides 

  76.2 19N   As     7N N   

    19
n

x        or   n  and  19
n

x      or n  

      2n n       … (5) 

The equation 2 23 7, 3 7        the power of   and   are given by the formulas 

     3n n
n n n nr r s n           … (6) 

where     1
1

3 1 37 0
n n
n n

r r ns s



           
 

and      2
21

n
n

r
s
     

 

thus, we have     3
3
3

3 1
7 0

n
n
n

r r
s s

         
 … (7) 

by (6)      n n
nr       … (8) 

Using (5) we get  2nr    … (9) 

  if            3 1
7 0A     then  1 1 mod 21 0A   

       2 0 1 mod 21 1A   

       3 1 0 mod 20 1A   

As 3n   and n is odd 3nA   take only value 2 mod 2A  and by (7) we get  

     
   0 1 0 mod 20 1 1

n
n

r
S
   
 

 

     
3 1 mod 2nn r  

   
so that 2nr    

equation (1) has no solution for n > 3. 
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2pr n   equation (2) has no solution and 3, 4n x    satisfy (2) then 
1 11

2

 
  , 

1 11

2

 
   we proof as above. 

Theorem II. The equation 2 43 11nx    has no solution of integers 

Proof : If (x, n) is a solution of (1,1) then x is even. Hence,  2 43 3 mod 4x    which 

  that n is odd when n = 1, 3 the given equation has no solution in integers. Now assume 
that 5n   we rewrite the equation 

     
   1143 43

n
x x      … (1) 

is an equation in  23   whose ring of integers 23  has unique factorization 

1 11      

Let 1
1 43 1 43

,
2 2

   
       are satisfy the equation  

     2 11 0     and 2 11 0     … (2) 

Then equation     43 43
n n

x x        … (3) 

As common divisor z of  43x    and  43x    divides their difference  N   

divides   17243N    as     11N N   neither   and nor   is common divisor of 

 43x    and  43x   . A 43  is a unique factorization domain whose only units are   

± 1, we have 

   
 43

n
x   

   
or n   and    or 43

n n
x    

 
… (4) 

can be obtain    2n n       … (5) 

Let    3n n
n n n nr S r S n          

     
 1

1

1 1 . 311 0
n n
n n

r r nS S



           
 

and      3
3

10
11

r
S

     
 

Thus we have    3
3
3

1 1 311 0

n
n
n

r r nS S

           
 

     
 n n

nr      … (6) 

by (5) and (6)   2nr    

if     1 1
11 0A    then  1 1 mod 21 0A    
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 2 0 1 mod 21 1A  

 

and   3 1 0 mod 20 1A   

as  3n   n is odd 3nA   takes only value of 2 mod 2A  

     
    0 1 0 1 mod 3 1mod 21 0 1 1

n
n

n

r n rS
         

 

So fercit 2nr   theorem is proof we share show that for other equation as 2 67 19nx    
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