"USING DIOPHANTINE EQUATION ANALYSIS OF UNIQUE FACTORIZATION IN THE RING OF INTEGERS OF CERTAIN QUADRATIC FIELDS"

R.C. KASHYAP
Department of Maths, Govt. P.G. College, Uttarkashi (U.K.)

RECEIVED : 11 December, 2015
It is provided that Diophantine equation $x^{2}+11=3^{n}$ and $x^{2}+19=7^{n}$ has the solution for $n=3$ and the equation $x^{2}+17=4^{n}$ have no integer solution. In this paper we analysis these unique factorization in Diophantine equation by Nagell's idea method.

KEYWORDS: Diophantine equation, Nagell's idea, Divisors, factors etc.

Introduction

In this paper we are considered the equation $x^{2}+7=2^{n}$ has solution only for $n=3,4,5,7$ and 15 . An elementary proof, based on Negell's idea is given for the following results and other equation be $x^{2}+29=13^{n}$ the non existence of solution for this equation is provided using unique factorization in the ring of integers θd of $\theta(\sqrt{d})$ for $d=29$ the method of proof is similar to the one we have proved in other

Theorem

The only integer solutions of the equation

$$
\begin{equation*}
x^{2}+19=7^{n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2}+11=3^{n} \tag{2}
\end{equation*}
$$

are $(x, n)=(\pm 18,3)$ and $(\pm 4,3)$ respectively.
Proof : We first deal with equation (1) if (x, n) is a solution of equation (1) then x is even. Hence $x^{2}+19 \equiv 3(\operatorname{Mod} 4)$ which implies that n is odd when $n=1$ given equation has no solution in integers

We rewrite the equation as $x^{2}+19=7^{n}$

$$
\begin{equation*}
(x+\sqrt{-19})(x-\sqrt{-19})=7^{n} \tag{3}
\end{equation*}
$$

It is an equation is $\theta(\sqrt{-19})$ where ring of integers θ_{-19} has unique factorization.

Let $\quad \alpha=\frac{3+\sqrt{-19}}{2} \quad \beta=\frac{3-\sqrt{-19}}{2}$
α, β satisfy the equation $\alpha+\beta=3, \alpha \beta=7$

$$
\alpha^{2}-3 \alpha+7=0 \quad \text { and } \quad \beta^{2}-3 \beta+7=0
$$

by (3)

$$
\begin{equation*}
(x+\sqrt{-19})(x-\sqrt{-19})=\alpha^{n} \beta^{n} \tag{4}
\end{equation*}
$$

Any common divisor
z of $(x-\sqrt{-19})$ and $(x+\sqrt{-19})$ divides their difference which $\Rightarrow N(z)$ divides $N(2 \sqrt{-19})=76$. As $N(\alpha)=N(\beta)=7$

$$
\begin{gather*}
(x+\sqrt{-19})= \pm \alpha^{n} \quad \text { or } \beta^{n} \text { and }(x-\sqrt{-19})= \pm \beta^{n} \text { or } \alpha^{n} \\
\alpha^{n}-\beta^{n}= \pm 2(\alpha-\beta) \tag{5}
\end{gather*}
$$

The equation $\alpha^{2}=3 \alpha-7, \beta^{2}=3 \beta-7$ the power of α and β are given by the formulas
where

$$
\begin{equation*}
\alpha^{n}=r_{n} \alpha+\delta_{n} \quad \beta^{n}=r_{n} \beta+s_{n} \quad \forall n \geq 3 \tag{6}
\end{equation*}
$$

$$
\binom{r_{n+1}}{s_{n+1}}=\left(\begin{array}{cc}
3 & 1 \\
-7 & 0
\end{array}\right)\binom{r_{n}}{s_{n}} \forall n>3
$$

and

$$
\binom{r_{n}}{s_{n}}=\binom{2}{-21}
$$

thus, we have

$$
\binom{r_{n}}{s_{n}}=\left(\begin{array}{ll}
3 & 1 \tag{7}\\
-7 & 0
\end{array}\right)^{n-3}\binom{r_{3}}{s_{3}}
$$

by (6)

$$
\begin{equation*}
\Rightarrow \alpha^{n}-\beta^{n}=r_{n}(\alpha-\beta) \tag{8}
\end{equation*}
$$

Using (5) we get

$$
\begin{equation*}
r_{n}= \pm 2 \tag{9}
\end{equation*}
$$

if

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
3 & 1 \\
-7 & 0
\end{array}\right) \text { then } A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \bmod 2 \\
& A^{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \bmod 2 \\
& A^{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod 2
\end{aligned}
$$

As $n>3$ and n is odd A^{n-3} take only value $A^{2} \bmod 2$ and by (7) we get

$$
\binom{r_{n}}{S_{n}} \equiv\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\binom{0}{1} \bmod 2
$$

$$
\forall n>3 \quad r_{n} \equiv 1 \bmod 2 \quad \text { so that } r_{n} \neq \pm 2
$$

equation (1) has no solution for $n>3$.
pr $n=2$ equation (2) has no solution and $n=3, x= \pm 4$ satisfy (2) then $\alpha=\frac{1+\sqrt{-11}}{2}$, $\beta=\frac{1-\sqrt{-11}}{2}$ we proof as above.

Theorem II. The equation $x^{2}+43=11^{n}$ has no solution of integers
Proof : If (x, n) is a solution of $(1,1)$ then x is even. Hence, $x^{2}+43=3(\bmod 4)$ which \Rightarrow that n is odd when $n=1,3$ the given equation has no solution in integers. Now assume that $n \geq 5$ we rewrite the equation

$$
\begin{equation*}
(x+\sqrt{-43})(x-\sqrt{-43})=11^{n} \tag{1}
\end{equation*}
$$

is an equation in $\theta(\sqrt{-23})$ whose ring of integers θ_{23} has unique factorization $\alpha+\beta=1 \quad \alpha \beta=11$

Let $\alpha=\frac{1+\sqrt{-43}}{2}, \quad \beta=\frac{1-\sqrt{-43}}{2} \quad \alpha_{1} \beta$ are satisfy the equation

$$
\begin{equation*}
\alpha^{2}-\alpha+11=0 \text { and } \beta^{2}-\beta+11=0 \tag{2}
\end{equation*}
$$

Then equation

$$
\begin{equation*}
(x+\sqrt{-43})(x-\sqrt{-43})=\alpha^{n} \beta^{n} \tag{3}
\end{equation*}
$$

As common divisor z of $(x+\sqrt{-43})$ and $(x-\sqrt{-43})$ divides their difference $\Rightarrow N(\zeta)$ divides $N(\alpha \sqrt{-43})=172$ as $N(\alpha)=N(\beta)=11$ neither α and nor β is common divisor of $(x-\sqrt{-43})$ and $(x+\sqrt{-43})$. A θ_{-43} is a unique factorization domain whose only units are ± 1, we have

$$
\begin{equation*}
(x+\sqrt{-43})= \pm \alpha^{n} \quad \text { or } \pm \beta^{n} \text { and }(x-\sqrt{-43})=\beta^{n} \text { or } \alpha^{n} \tag{4}
\end{equation*}
$$

can be obtain

$$
\begin{equation*}
\alpha^{n}-\beta^{n}= \pm 2(\alpha-\beta) \tag{5}
\end{equation*}
$$

Let

$$
\alpha^{n}=r_{n} \alpha+S_{n} \quad \beta^{n}=r_{n} \beta+S_{n} \quad \forall n \geq 3
$$

$$
\binom{r_{n+1}}{S_{n+1}}=\left(\begin{array}{ll}
1 & 1 \\
-11 & 0
\end{array}\right)\binom{r_{n}}{S_{n}} \cdot \forall n \geq 3
$$

and $\quad\binom{r_{3}}{S_{3}}=\binom{-10}{-11}$

Thus we have

$$
\begin{align*}
& \binom{r_{n}}{S_{n}}=\left(\begin{array}{ll}
+1 & 1 \\
-11 & 0
\end{array}\right)^{n-3}\binom{r_{3}}{S_{3}} \forall n \geq 3 \\
& \alpha^{n}-\beta^{n}=r_{n}(\alpha-\beta) \tag{6}
\end{align*}
$$

by (5) and (6)
if

$$
r_{n}= \pm 2
$$

$$
A=\left(\begin{array}{ll}
1 & 1 \\
-11 & 0
\end{array}\right) \text { then } A=\left(\begin{array}{ll}
1 & 1 \\
-1 & 0
\end{array}\right) \bmod 2
$$

$$
A^{2}=\left(\begin{array}{ll}
0 & 1 \\
-1 & 1
\end{array}\right) \bmod 2 \text { and } A^{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod 2
$$

as $n>3 \quad n$ is odd A^{n-3} takes only value of $A^{2} \bmod 2$

$$
\binom{r_{n}}{S_{n}}=\left(\begin{array}{ll}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{0}{1}=\binom{1}{1} \bmod \forall n \geq 3 \quad r_{n}=1 \bmod 2
$$

So fercit $r_{n} \neq 2$ theorem is proof we share show that for other equation as $x^{2}+67=19^{n}$

References

1. Karlheinz, Spindler, Abstract Algebra with Applications, Volume II, Marcel Dekker inc.
2. Kasahara, S., On some generalizations of the Branch Contraction theorem, Math Seminar Notes, 3, 161-169 (1975).
3. Skof, F., Terana di punti Fisso per applicazioni negli spazi matric, Atti. Acad. Sci., Torino, 111, 323329 (1977).
4. Bhatta, S. Parameshwara and Shashirekha, H., A characterization of completeness for trellises, Algebra Universatis, 44, P. 305-308 (2000).
