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In this paper we are interested in the equation of circle and
equation of straight line at a point of a smooth curve in the
argand plane. Instead of rewriting the equation in real
variables, we are solved the same example by complex
number and represent straight line and circle for given
point.
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InTRODUCTION

et Z be any point on the straight line joining z; and z,.

Then
Z, z z, z
A P B P

(1) argP:A =7 (P is an internal point)
PB

Z_Zl Zl —Z

= arg or arg =7
22 —Z 22 —Z
Zl —-Z .

= arg is purly real.

Zy)—Z

(2) argP:A =0 is P is an internal point
PB

z—Z —Z

=0

Z—2zy Z—2zy

= arg purly real

Hence whether the part P is internal of internal in AB.

z—Z

Now

Z—Zl
=real = Img =0

Z—Zy Z—ZIy

_l)zma fz-m
2i|z—-2, z—2,
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z—Z

where Img z =—
2i

and z—Z :E—Ez
2=z _[z-2z :[ —31]
Z—2y z—12, -2z
(z-2)(-%)=(z-2)(-7)

;/%{—ZEZ _ZIE+ZIEZ :/Z{—ZEI—ZzE‘FEIZZ

IREST

zZ| — 22y —2Z) + 22y + 2125 — 2921 =0

2(z1-2)-Z(za—zn)+az5 - 27 =0 (D
is called equation of straight line in complex plane with point z;,z,
Multiplying by i of (1)
iz(z -2y ) —izZ (21 — 23 ) +iz1Z5 —iz37; = 0
Let us assume —i(z;—zp)=¢ and i(Z;—Z,)=q and i(zZ; —z,7; ) =r
zg+qz+r=0 ¢g=#0 ris
Let z=x+iy and z=x-1iy 9
P

for any point of circle | z—a | =CP

|z—a|2 =12 CP=r (Radius)

e 2 - —
(Z—a)(z—a) =r-or (z-a)(z-a)= I
Z-az—az+aa-r> =0 is called equation of circle General equation of circle putting
2

c=aa-r

then zz—az—az+c=0 put b=—a
Z+bz+bz+c=0

Equation of circle passing through three points 4, B and C.

pointsare z; =4, z;=B and z3=C

By fig.
ZACB = ZAPB
arg:B = argg
CA PA
argz2 B P B
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3 — 21 z—Z
or arg =arg
Z3—2Zyp Z—2Zzy

23 —Z Z—Z
arg] 3L /2 “Lil_g
Z3 —2Zp zZ—2zZ
3 — 7 Z-7
or 5374 Kl I
Z3—Zy Z—z
required equation of circle passes through z,z,,z3 points z,z,,z5 are in concyclic order,
Zy —Z zZ—z
Im{| =1 Llt=0
Z3—2Zp Z—2zy
3 — 71 zZ—Z .
= is purely real
Z3—2Zp Z—Zyn

To find equation circle taining the point z; and z, as a diameter

then,

Let P be any point on the circle where diameter is 4B
A= 7 and B= Zy

then arg [g] I (by property of Geometry)
P4) 2
Zp—ZzZ | . .
arg is purely Imaginary.
21—z
then
Rel(zz — Z] =0
Zl —Z
-z [2=-z|_,
2|z1-z Z1—z
22 —Zz _ Ez -z
71—z 21—z
2:7-2(Z71+25 )—Z (71 + 23 )+ 723 + 2,7, =0
Ex. (1). Prove that 21 constant and amp. (Z — j = constant are orthogonal circles.
z+1 z+1
- —1+i
Ans. |2 l‘ =) (say)= u =
+1 x+1+iy
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=04y o
(x+1)% +°
2
:>x2+y2+2[k2+1jx+1:0 which is the form of x2+y2+2yx+l:0 and
A -1
represents a circle.
. (z—l)
again amp = constant
z+1

= amp (z—1)—amp(z+1) = constant

= amp (x—1+iy)—amp(x+1+iy) = constant

= tan”! 2 _ tan ™! DA constant
x—1 x+1
_ 2
= tan 12—)’ = constant
x“+y -1
2
x“+y° -1

3)62+y2 —zy—1=o this circle is form of x2+y2+2fy+c:0
n

Ex. 2. Find all the circles which are orthogonal to |z| =1 and |z—1/=4.

Ans. Let |z—2|=l where 2=a+ib where a, b and k be the circle which cuts

orthogonally, then using property that the sum of square of their radii is equal to the square of
the distance between their centres, |z —2|=k

lzl=1or |z-0/=1
la—0? =k*+1=ad

and k? +16=|0c—1|2 =(a-D(a-1)
K +1=(a-D(@a-1-15

g&/:,or&/—&—owl—lS

o+a=-14
a+}2{+a—j5:—14
2a=-14 = a=-7
Now o=a+ib=-7+ib
also I = o 1= (=7 +ib) (=7 —ib) -1

= 49+b% —1=48+b*
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required family of circles |z +7 — pi] = V48+ b?

ConcLusion

n this paper we shall solve the given problems of circle and straight line in complex
representation using z =x+iy, z = x—iy.
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