CONTACT CONFORMAL CONNECTION IN A TRANS -SASAKIAN MANIFOLD

SAVITA VARMA

Department of Mathematics, Pt.L.M.S. Govt. P.G. College, Rishikesh, Uttarakhand, India

RECEIVED : 23 July, 2019
Oubina, J.A. [1] defined and initiated the study of TransSasakian manifolds. Blair [2], Prasad and Ojha [3], Hasan Shahid [4] and some other authors have studied different properties of C-R-Sub -manifolds of Trans-Sasakian manifolds. Golab, S. [5] studied the properties of semisymmetric and Quarter symmetric connections in Riemannian manifold. Yano, K. [6] has defined contact conformal connection and studied some of its properties in a Sasakian manifold. Mishra and Pandey [7] have studied the properties in Quarter symmetric metric F-connections in an almost Grayan manifold.
Result : In this paper we have defined and studied the contact conformal connection in a Trans-Sasakian manifold. Following the patterns of Yano [6], we have proved that if the curvature tensor of a contact conformal connection in an ($\alpha, 0$) type Trans-Sasakian manifold vanishes, then the contact Bochner curvature tensor also vanishes.
Key words: Riemannian curvature tensor, Trans-Sasakian manifold, C-R-Sub -manifolds of Trans-Sasakian manifolds, semi-symmetric and Quarter symmetric connections in Riemannian manifold, almost Grayan manifold, contact Bochner curvature tensor.

2ntroduction

Let $M_{n}(n=2 m+1)$ be an almost contact metric manifold endowed with a (1,1)-type structure tensor F, a contravariant vector field T, a -1 form A associated with T and a metric tensor ' g ' satisfying :

$$
\begin{gather*}
\mathrm{F}^{2} \mathrm{X}=-\mathrm{X}+\mathrm{A}(\mathrm{X}) \mathrm{T} \tag{1.1a}\\
\mathrm{FT}=0 \tag{1.1b}\\
\mathrm{~A}(\mathrm{FX})=0 \tag{1.1c}\\
\mathrm{~A}(\mathrm{~T})=1 \tag{1.1d}
\end{gather*}
$$

and

$$
\begin{align*}
& (\bar{X}, \bar{Y})=\mathrm{g}(\mathrm{X}, \mathrm{Y})-\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Y}) \tag{1.2a}\\
& \bar{X} \stackrel{\text { def }}{=} \mathrm{FX} \tag{1.2b}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{g}(\mathrm{~T}, \mathrm{X}) \stackrel{\text { def }}{=} \mathrm{A}(\mathrm{X}) \tag{1.2c}
\end{equation*}
$$

For all C^{∞} - vector fields X, Y in M_{n} also, a fundamental 2-form ' F in M_{n} is defined as

$$
' \mathrm{~F}(\mathrm{X}, \mathrm{Y})=\mathrm{g}(\bar{X}, \mathrm{Y})=-\mathrm{g}(\mathrm{X}, \bar{Y})=-‘ \mathrm{~F}(\mathrm{Y}, \mathrm{X})
$$

Then, we call the structure bundle $\{\mathrm{F}, \mathrm{T}, \mathrm{A}, \mathrm{g}\}$ an almost contact-metric structure [1]
An almost contact metric structure is called normal [1], if

$$
\begin{equation*}
(\mathrm{dA})(\mathrm{X}, \mathrm{Y}) \mathrm{T}+\mathrm{N}(\mathrm{X}, \mathrm{Y})=0 \tag{1.4a}
\end{equation*}
$$

where

$$
\begin{equation*}
(\mathrm{dA})(\mathrm{X}, \mathrm{Y})=\left(\mathrm{D}_{\mathrm{X}} \mathrm{~A}\right)(\mathrm{Y})-\left(\mathrm{D}_{\mathrm{Y}} \mathrm{~A}\right)(\mathrm{X}) \tag{1.4b}
\end{equation*}
$$

D is the Riemannian connection in M_{n}.
And $\quad \mathrm{N}(\mathrm{X}, \mathrm{Y})=\left(D_{X}^{-} \mathrm{F}\right)(\mathrm{Y})-\left(D_{Y}^{-} \mathrm{F}\right)(\mathrm{X})-\overline{\left(D_{X} F\right)(Y)}+\overline{\left(D_{Y} F\right)(X)}$
Is Nijenhenus tensor in M_{n}.
An almost contact metric manifold M_{n} with structure bundle $\{F, T, A, g\}$ is called a Trans-Sasakian manifold [3] \& [1], if

$$
\left(\mathrm{D}_{\mathrm{X}} \mathrm{~F}\right)(\mathrm{Y})=\alpha\{\mathrm{g}(\mathrm{X}, \mathrm{Y}) \mathrm{T}-\mathrm{A}(\mathrm{Y}) \mathrm{X}\}+\beta\left\{{ }^{‘} \mathrm{~F}(\mathrm{X}, \mathrm{Y}) \mathrm{T}-\mathrm{A}(\mathrm{Y}) \bar{X}\right\}
$$

where α, β are non -zero constants.
It can be easily seen that a Trans-Sasakian manifold is normal. In view of (1.6) one can easily obtain in M_{n}, the relations

$$
\begin{align*}
& \mathrm{N}(\mathrm{X}, \mathrm{Y})=2 \alpha^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Y}) \mathrm{T} \tag{1.7}\\
&(\mathrm{dA})(\mathrm{X}, \mathrm{Y})=-2 \alpha^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Y}) \tag{1.8}\\
&\left(\mathrm{D}_{\mathrm{X}} \mathrm{~A}\right)(\mathrm{Y})+\left(\mathrm{D}_{\mathrm{Y}} \mathrm{~A}\right)(\mathrm{X})=2 \beta\{\mathrm{~g}(\mathrm{X}, \mathrm{Y})-\mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{X})\} \tag{1.9}\\
&\left(\mathrm{D}_{\mathrm{X}}{ }^{\prime} \mathrm{F}\right)(\mathrm{Y}, \mathrm{Z})+\left(\mathrm{D}_{\mathrm{Y}}{ }^{`} \mathrm{~F}\right)(\mathrm{Z}, \mathrm{X})+\left(\mathrm{D}_{\mathrm{Z}}{ }^{‘} \mathrm{~F}\right)(\mathrm{X}, \mathrm{Y}) \tag{1.10}\\
&=2 \beta\left[\mathrm{~A}(\mathrm{Z})^{`} \mathrm{~F}(\mathrm{X}, \mathrm{Y})+\mathrm{A}(\mathrm{X}) \cdot \mathrm{F}(\mathrm{Y}, \mathrm{Z})+\mathrm{A}(\mathrm{Y})^{\prime} \mathrm{F}(\mathrm{Z}, \mathrm{X})\right] \\
&\left(\mathrm{D}_{\mathrm{X}} \mathrm{~A}\right)(\mathrm{Y})=-\alpha^{`} \mathrm{~F}(\mathrm{X}, \mathrm{Y})+\beta\{\mathrm{g}(\mathrm{X}, \mathrm{Y})-\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Y})\} \tag{1.11a}\\
&\left(\mathrm{D}_{\mathrm{X}} \mathrm{~T}\right)=-\alpha \bar{X}+\beta\{\mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{T}\} \tag{1.11b}
\end{align*}
$$

REMARK (1.1): In the above and in what follows, the letters $X, Y, Z \ldots \ldots$ etc. an C^{∞} vector fields in M_{n}.

Contact conformal connection in a trans -sasakian manifold M_{n} :
 \squareus consider a conformal connection of the metric tensor g which induces a new metric tensor \tilde{g}, given by

$$
\begin{equation*}
\tilde{g}(X, Y)=\mathrm{e}^{2 \mathrm{p}} \mathrm{~g}(\mathrm{X}, \mathrm{Y}) \tag{2.1}
\end{equation*}
$$

With regard to this metric tensor \tilde{g}, we take an affine connection B which satisfies:

$$
\begin{equation*}
\left(\mathrm{B}_{\mathrm{X}} \tilde{g}\right)=\mathrm{B}_{\mathrm{X}}\left\{\mathrm{e}^{2 \mathrm{p}} \mathrm{~g}(\mathrm{X}, \mathrm{Y})\right\}=2 \mathrm{e}^{2 \mathrm{p}} \mathrm{p}(\mathrm{X}) \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z}) \tag{2.2}
\end{equation*}
$$

where p is a $\mathrm{C}^{\infty}-$ Scalar point function in M_{n}.and

$$
\begin{equation*}
\mathrm{p}(\mathrm{X}) \stackrel{\text { def }}{=} \mathrm{g}(\mathrm{P}, \mathrm{X}) \tag{2.3}
\end{equation*}
$$

being covariant derivative of the scalar p with respect to the metric tensor g, is a 1-form in M_{n}, where contra-variant associate vector field is P,further, we assume that the torsion tensor of the connection B satisfies :

$$
\begin{equation*}
S(X, Y)=-2 \cdot F(X, Y) U \tag{2.4}
\end{equation*}
$$

Where U is certain contra-variant vector field in M_{n}. In view of (2.2) and (2.4), we can easily obtain a relation between the connection B and the Riemannian connection D [6], given by

$$
\mathrm{B}_{\mathrm{Y}} \mathrm{Z}-\mathrm{D}_{\mathrm{Y}} \mathrm{Z}+\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\} \mathrm{p}(\mathrm{Z})+\{\mathrm{Z}-\mathrm{A}(\mathrm{Z}) \mathrm{T}\} \mathrm{p}(\mathrm{Y})-\mathrm{g}(\bar{Y}, \bar{Z}) \mathrm{P}+\mathrm{u}(\mathrm{Y}) \bar{Z}+\mathrm{u}(\mathrm{Z}) \bar{Y}-\mathrm{'} \mathrm{~F}(\mathrm{Y}, \mathrm{Z}) \mathrm{U}
$$

where

$$
u(X) \stackrel{\text { def }}{=} g(U, X)
$$

Now, suppose that B is an F-connection, then

$$
\begin{aligned}
\left(\mathrm{B}_{\mathrm{Y}} \mathrm{~F}\right)(\mathrm{Z})=0=\left(\mathrm{D}_{\mathrm{Y}} \mathrm{~F}\right)(\mathrm{Z})+\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\} \mathrm{p}(\bar{Z})-\mathrm{p}(\mathrm{Z}) \bar{Y}+{ }^{\mathrm{'}} \mathrm{~F}(\mathrm{Y}, \mathrm{Z}) \mathrm{P}+\mathrm{g}(\bar{Y}, \bar{Z}) \bar{P}+\mathrm{u}(\bar{Z}) \bar{Y} \\
+\mathrm{u}(\mathrm{Z})\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\}-\mathrm{g}(\bar{Y}, \bar{Z}) \mathrm{u}+{ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z}) \bar{u}
\end{aligned}
$$

Using (1.6), the above relation becomes

$$
\begin{aligned}
\alpha\{\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{T}-\mathrm{A}(\mathrm{Z}) \mathrm{Y}\}+\beta & \{\mathrm{'} \mathrm{~F}(\mathrm{Y}, \mathrm{Z}) \mathrm{T}-\mathrm{A}(\mathrm{Z}) \bar{Y}\}+\mathrm{p}(\bar{Z})\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\}-\mathrm{p}(\mathrm{Z}) \bar{Y}+{ }^{'} \mathrm{~F}(\mathrm{Y}, \mathrm{Z}) \mathrm{P} \\
& +\mathrm{g}(\bar{Y}, \bar{Z}) \bar{P}+\mathrm{u}(\bar{Z}) \bar{Y}+\mathrm{u}(\mathrm{Z})\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\}-\mathrm{g}(\bar{Y}, \bar{Z}) \mathrm{u}+{ }^{'} \mathrm{~F}(\mathrm{Y}, \mathrm{Z}) \bar{u}=0
\end{aligned}
$$

Contracting the above equation with respect to Y , we have

$$
-2 \mathrm{~m} \alpha \mathrm{~A}(\mathrm{Z})+2 \mathrm{mp}(\bar{Z})-\mathrm{p}(\bar{Z})-\mathrm{p}(\bar{Z})+2 \mathrm{mu}(\mathrm{Z})-\mathrm{u}(\mathrm{Z})-\mathrm{u}(\mathrm{Z})+2 \mathrm{~A}(\mathrm{U}) \mathrm{A}(\mathrm{Z})=0
$$

If we put

$$
\begin{equation*}
\mathrm{A}(\mathrm{U})=\mathrm{u}(\mathrm{~T})=\alpha \tag{2.7}
\end{equation*}
$$

in (2.6), then we get
or

$$
\begin{align*}
u(Z) & =\alpha \mathrm{A}(\mathrm{Z})-\mathrm{p}(\bar{Z}) \tag{2.8a}\\
\mathrm{U} & =\alpha \mathrm{T}+\bar{P}
\end{align*}
$$

Here, we take $\bar{P}=\mathrm{Q}$ so that $\mathrm{q}(\mathrm{Z})=\mathrm{g}(\mathrm{Q}, \mathrm{Z})=-\mathrm{p}(\bar{Z})$ and $\mathrm{p}(\mathrm{Q})=\mathrm{q}(\mathrm{P})=0$
Then (2.8) become
or

$$
\begin{align*}
\mathrm{u}(\mathrm{Z}) & =\alpha \mathrm{A}(\mathrm{Z})+\mathrm{q}(\mathrm{Z}) \tag{2.9a}\\
\mathrm{U} & =\alpha \mathrm{T}+\mathrm{Q} \tag{2.9b}
\end{align*}
$$

Using the equation (2.9) in (2.5), we have

$$
\begin{aligned}
\mathrm{B}_{\mathrm{Y}} \mathrm{Z} & =\mathrm{D}_{\mathrm{Y}} \mathrm{Z}+\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\} \mathrm{p}(\mathrm{Z})+\{\mathrm{Z}-\mathrm{A}(\mathrm{Z}) \mathrm{T}\} \mathrm{p}(\mathrm{Y})-\mathrm{g}(\bar{Y}, \overline{\mathrm{Z}}) \mathrm{P} \\
& +\{\alpha \mathrm{A}(\mathrm{Y})+\mathrm{q}(\mathrm{Y})\} \bar{Z})+\{\alpha \mathrm{A}(\mathrm{Z})+\mathrm{q}(\mathrm{Z})\}(\bar{Y})-{ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z})\{\alpha \mathrm{T}+\mathrm{Q}\}
\end{aligned}
$$

Further, we suppose that B is a T-connection, then

$$
\begin{equation*}
\mathrm{B}_{\mathrm{Y}} \mathrm{~T}=0=\mathrm{D}_{\mathrm{Y}} \mathrm{~T}+\mathrm{p}(\mathrm{~T})\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\} \mathrm{p}(\mathrm{~T})+\alpha \bar{Y} \tag{2.11}
\end{equation*}
$$

Using (1.11)(b) in the above equation, we obtained

$$
\begin{equation*}
\mathrm{p}(\mathrm{~T})=\mathrm{A}(\mathrm{P})=-\beta \tag{2.12}
\end{equation*}
$$

Thus, we have
Proposition (1): In a Trans-Sasakian manifold M_{n}, the affine connection B which is an $\mathrm{F}-\mathrm{T}$-connection and whose torsion tensor satisfies (2.4), is given by (2.10), with the conditions
and

$$
\mathrm{u}(\mathrm{~T})=\alpha=\mathrm{A}(\mathrm{U}) ; \mathrm{p}(\mathrm{~T})=\mathrm{A}(\mathrm{P})=-\beta
$$

Qurvature tensor of the contact conformal connection

The curvature tensor of the contact conformal connection given by (2.10) is given by

$$
\begin{equation*}
\mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{B}_{\mathrm{X}} \mathrm{~B}_{\mathrm{Y}} \mathrm{Z}-\mathrm{B}_{\mathrm{Y}} \mathrm{~B}_{\mathrm{X}} \mathrm{Z}-\mathrm{B}_{[\mathrm{X}, \mathrm{Y}]} \mathrm{Z} \tag{2.1.1}
\end{equation*}
$$

Using (2.10), (2.12), (1.1),(1.2),(1.3), (1.6) and (1.11) in the above equation and after a straight forward computation, we obtained
where

$$
\begin{array}{rr}
‘ \mathrm{P}(\mathrm{Y}, \mathrm{Z})=\left(\mathrm{D}_{\mathrm{Y}} \mathrm{p}\right)(\mathrm{Z})+\alpha^{2} \mathrm{~A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z})+\alpha \mathrm{A}(\mathrm{Z}) \mathrm{q}(\mathrm{Y})+\alpha \mathrm{A}(\mathrm{Y}) \mathrm{q}(\mathrm{Z}) & \ldots(2.1 .3 \mathrm{a}) \\
-\mathrm{p}(\mathrm{Y}) \mathrm{p}(\mathrm{Z})+\mathrm{q}(\mathrm{Y}) \mathrm{q}(\mathrm{Z})+\frac{1}{2} \mathrm{p}(\mathrm{P}) \mathrm{g}(\bar{Y}, \bar{Z}) \\
\mathrm{P}(\mathrm{Y})=\mathrm{D}_{\mathrm{Y}} \mathrm{P}+\alpha^{2} \mathrm{~A}(\mathrm{Y}) \mathrm{T}+\alpha \mathrm{q}(\mathrm{Y}) \mathrm{T}+\alpha \mathrm{A}(\mathrm{Y}) \mathrm{Q}-\mathrm{p}(\mathrm{Y}) \mathrm{P} & \ldots(2.1 .3 \mathrm{~b}) \\
+\mathrm{q}(\mathrm{Y}) \mathrm{Q}+\frac{1}{2} \mathrm{p}(\mathrm{P})\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\}
\end{array}
$$

$$
‘ \mathrm{Q}(\mathrm{Y}, \mathrm{Z})=\left(\mathrm{D}_{\mathrm{Y}} \mathrm{q}\right)(\mathrm{Z})-\mathrm{q}(\mathrm{Z}) \mathrm{p}(\mathrm{Y})-\mathrm{q}(\mathrm{Y}) \mathrm{p}(\mathrm{Z})-\alpha \mathrm{A}(\mathrm{Z}) \mathrm{p}(\mathrm{Y})-\alpha \mathrm{A}(\mathrm{Y}) \mathrm{p}(\mathrm{Z})
$$

$$
\begin{equation*}
+\frac{1}{2} \mathrm{p}(\mathrm{P}) \cdot \mathrm{F}(\mathrm{Y}, \mathrm{Z}) \tag{2.1.4a}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{Q}(\mathrm{Y})=\mathrm{D}_{\mathrm{Y}} \mathrm{Q}-\mathrm{q}(\mathrm{Y}) \mathrm{P}-\mathrm{p}(\mathrm{Y}) \mathrm{Q}-\alpha \mathrm{A}(\mathrm{Y}) \mathrm{p}-\alpha \mathrm{p}(\mathrm{Y}) \mathrm{T}+\frac{1}{2} \mathrm{p}(\mathrm{P}) \bar{Y} \tag{2.1.4b}
\end{equation*}
$$

$$
\begin{equation*}
\cdot \mathrm{V}(\mathrm{X}, \mathrm{Y})=-(\mathrm{dq})(\mathrm{X}, \mathrm{Y})=-\left\{\left(\mathrm{D}_{\mathrm{X}} \mathrm{q}\right)(\mathrm{Y})-\left(\mathrm{D}_{\mathrm{Y}} \mathrm{q}\right)(\mathrm{X})\right\} \tag{2.1.5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{w}(\mathrm{Z})=2[\mathrm{p}(\mathrm{Z}) \mathrm{Q}-\mathrm{q}(\mathrm{Z}) \mathrm{P}+\beta \mathrm{A}(\mathrm{Z}) \mathrm{Q}-\beta \mathrm{q}(\mathrm{Z}) \mathrm{T}] \tag{2.1.6}
\end{equation*}
$$

Since $p(X)$ is a gradient vector, then

$$
\begin{equation*}
\left(D_{X} p\right)(Y)-\left(D_{Y} p\right)(X)=0 \tag{2.1.7}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{K}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})-\{\mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{T}\}{ }^{\prime} \mathrm{P}(\mathrm{Y}, \mathrm{Z})+\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\}{ }^{\prime} \mathrm{P}(\mathrm{X}, \mathrm{Z}) \\
& -\mathrm{g}(\bar{Y}, \mathrm{Z}) \mathrm{P}(\mathrm{X})+\mathrm{g}(\bar{X}, \bar{Z}) \mathrm{P}(\mathrm{Y})-‘ \mathrm{Q}(\mathrm{Y}, \mathrm{Z}) \bar{X}+{ }^{\prime} \mathrm{Q}(\mathrm{X}, \mathrm{Z}) \bar{Y}-{ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z}) \mathrm{Q}(\mathrm{X}) \\
& +{ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Z}) \mathrm{Q}(\mathrm{Y})-\mathrm{F}(\mathrm{X}, \mathrm{Y}) \bar{Z}-{ }^{\text {'F }}(\mathrm{X}, \mathrm{Y}) \mathrm{w}(\mathrm{Z}) \\
& +\left[\left(\alpha^{2}+\beta^{2}\right) \cdot \mathrm{F}(\mathrm{Y}, \mathrm{Z}) \bar{X}-\left(\alpha^{2}+\beta^{2}\right) \cdot \mathrm{F}(\mathrm{X}, \mathrm{Z}) \bar{Y}-2 \alpha^{2} \cdot \mathrm{~F}(\mathrm{X}, \mathrm{Y}) \bar{Z}\right]
\end{aligned}
$$

and consequently ' $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ is symmetric, i.e.

$$
\begin{equation*}
{ }^{\prime} \mathrm{P}(\mathrm{X}, \mathrm{Y})={ }^{\prime} \mathrm{P}(\mathrm{Y}, \mathrm{X}) \tag{2.1.8}
\end{equation*}
$$

Also, we have $p(T)=-\beta$, then

Or

$$
\begin{aligned}
(\mathrm{DYp})(\mathrm{T}) & =-\mathrm{p}[-\alpha \bar{Y}+\beta\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\}] \\
& =\alpha \mathrm{p}(\bar{Y})-\beta \mathrm{p}(\mathrm{Y})-\beta^{2} \mathrm{~A}(\mathrm{Y})
\end{aligned}
$$

Or

$$
\begin{equation*}
\left(D_{Y} p\right)(T)=-\alpha q(Y)-\beta p(Y)-\beta^{2} A(Y) \tag{2.1.9}
\end{equation*}
$$

Which is obtained by using $(1.11)(\mathrm{b})$ and $\mathrm{q}(\mathrm{Y})=-\mathrm{p}(\bar{Y})$
Now, from (2.1.3)(a), we get

$$
\begin{aligned}
\cdot \mathrm{P}(\mathrm{Y}, \mathrm{~T}) & =\left(\mathrm{D}_{\mathrm{Y}} \mathrm{p}\right)(\mathrm{T})+\alpha^{2} \mathrm{~A}(\mathrm{Y})+\alpha \mathrm{q}(\mathrm{Y})+\beta \mathrm{p}(\mathrm{Y}) \\
& =-\alpha \mathrm{q}(\mathrm{Y})-\beta \mathrm{p}(\mathrm{Y})-\beta^{2} \mathrm{~A}(\mathrm{Y})+\alpha^{2} \mathrm{~A}(\mathrm{Y})+\alpha \mathrm{q}(\mathrm{Y})+\beta \mathrm{p}(\mathrm{Y})
\end{aligned}
$$

Or

$$
\begin{equation*}
' \mathrm{P}(\mathrm{Y}, \mathrm{~T})=\left(\alpha^{2}-\beta^{2}\right) \mathrm{A}(\mathrm{Y})={ }^{\prime} \mathrm{P}(\mathrm{~T}, \mathrm{Y}) \tag{2.1.10}
\end{equation*}
$$

From which, we get

$$
\begin{equation*}
' \mathrm{P}(\bar{Y}, \mathrm{~T})=0=\mathrm{`}(\mathrm{~T}, \bar{Y}) \tag{2.1.11}
\end{equation*}
$$

Again, by taking covariant derivative of $\mathrm{q}(\mathrm{T})=0$ and using (1.11)(b), we obtain

$$
\begin{aligned}
\left(\mathrm{D}_{\mathrm{Y}} \mathrm{q}\right)(\mathrm{T}) & =-\mathrm{q}\left(\mathrm{D}_{\mathrm{Y}} \mathrm{p}\right)(\mathrm{T})=-[\alpha \bar{Y}+\beta\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\}]=\alpha q(\bar{Y})-\beta \mathrm{q}(\mathrm{Y}) \\
& =\alpha \mathrm{p}(\mathrm{Y})+\alpha \beta \mathrm{A}(\mathrm{Y})-\beta \mathrm{q}(\mathrm{Y})
\end{aligned}
$$

Using the above equation in (2.1.4)(a),we obtain

$$
\begin{align*}
& ' \mathrm{Q}(\mathrm{Y}, \mathrm{~T})=\left(\mathrm{D}_{\mathrm{Y}} \mathrm{q}\right)(\mathrm{T})-\alpha \mathrm{p}(\mathrm{Y})+\beta \mathrm{A}(\mathrm{Y})+\beta \mathrm{q}(\mathrm{Y}) \\
& =\alpha p(Y)+\alpha \beta A(Y)+\beta q(Y)-\alpha p(Y)+\alpha \beta A(Y)-\beta q(Y) \\
& \cdot \mathrm{Q}(\mathrm{Y}, \mathrm{~T})=2 \alpha \beta \mathrm{~A}(\mathrm{Y}) \tag{2.1.12}
\end{align*}
$$

Further, differentiating covariantly with respect to X , the expression

$$
\mathrm{p}(\bar{Z})=-\mathrm{q}(\mathrm{Z})
$$

we have

$$
\left(\mathrm{D}_{\mathrm{Y}} \mathrm{p}\right)(\bar{Z})+\mathrm{p}\left(\mathrm{D}_{\mathrm{Y}} \mathrm{~F}\right)(\mathrm{Z})+\mathrm{p}\left(\overline{D_{Y} Z}\right)=-\left(\mathrm{D}_{\mathrm{Y}} \mathrm{q}\right)(\mathrm{Z})-\mathrm{q}\left(\mathrm{D}_{\mathrm{Y}} \mathrm{Z}\right)
$$

Using (1.6) here in the above equation, we get

$$
\left(\mathrm{D}_{\mathrm{Y}} \mathrm{p}\right)(\bar{Z})+\mathrm{p}\left[\alpha\{\mathrm{~g}(\mathrm{Y}, \mathrm{Z}) \mathrm{T}-\mathrm{A}(\mathrm{Z}) \mathrm{Y}\}+\beta\left\{{ }^{‘} \mathrm{~F}(\mathrm{Y}, \mathrm{Z}) \mathrm{T}-\mathrm{A}(\mathrm{Z}) \bar{Y}\right\}\right]=-\left(\mathrm{D}_{\mathrm{Y}} \mathrm{q}\right)(\mathrm{Z})
$$

Or
$\left(\mathrm{D}_{\mathrm{Y}} \mathrm{p}\right)(\bar{Z})-\alpha \beta \mathrm{g}(\mathrm{Y}, \mathrm{Z})-\alpha \mathrm{A}(\mathrm{Z}) \mathrm{p}(\mathrm{Y})-\beta^{2} \mathrm{~F}(\mathrm{Y}, \mathrm{Z})+\beta \mathrm{A}(\mathrm{Z}) \mathrm{q}(\mathrm{Y})=-\left(\mathrm{D}_{\mathrm{Y}} \mathrm{q}\right)(\mathrm{Z})$
Now, taking account of (2.1.3)(a) and (2.1.4)(a) in the above equation, we obtain

$$
\begin{gathered}
\qquad \mathrm{P}(\mathrm{Y}, \bar{Z})-\alpha \mathrm{A}(\mathrm{Y}) \mathrm{p}(\mathrm{Z})-\alpha \beta \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z})-\mathrm{p}(\mathrm{Y}) \mathrm{q}(\mathrm{Z})-\mathrm{q}(\mathrm{Y}) \mathrm{p}(\mathrm{Z})-\beta \mathrm{A}(\mathrm{Z}) \mathrm{q}(\mathrm{Y}) \\
\quad+\frac{1}{2} \mathrm{p}(\mathrm{P}) \cdot \mathrm{F}(\mathrm{Y}, \mathrm{Z})-\alpha \beta \mathrm{g}(\mathrm{Y}, \mathrm{Z}) \\
=-\alpha \mathrm{A}(\mathrm{Z}) \mathrm{p}(\mathrm{Y})-\beta^{2}{ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z})+\beta \mathrm{A}(\mathrm{Z}) \mathrm{q}(\mathrm{Y})
\end{gathered}
$$

$$
\begin{aligned}
=-' \mathrm{Q}(\mathrm{Y}, \mathrm{Z})-\mathrm{q}(\mathrm{Z}) \mathrm{p}(\mathrm{Y})-\mathrm{q}(\mathrm{Y}) \mathrm{p}(\mathrm{Z})-\alpha \mathrm{A}(\mathrm{Z}) \mathrm{p}(\mathrm{Y})- & \alpha \mathrm{A}(\mathrm{Y}) \mathrm{p}(\mathrm{Z}) \\
& +\frac{1}{2} \mathrm{p}(\mathrm{P}){ }^{‘} \mathrm{~F}(\mathrm{Y}, \mathrm{Z})
\end{aligned}
$$

Or

$$
\begin{aligned}
' \mathrm{P}(\mathrm{Y}, \overline{\mathrm{Z}})=-\mathrm{Q}(\mathrm{Y}, \mathrm{Z})+\alpha \beta \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z})- & \alpha \mathrm{A}(\mathrm{Z}) \mathrm{p}(\mathrm{Y})+\beta \mathrm{A}(\mathrm{Z}) \mathrm{q}(\mathrm{Y})+\alpha \beta \mathrm{g}(\mathrm{Y}, \mathrm{Z}) \\
& +\alpha \mathrm{A}(\mathrm{Z}) \mathrm{p}(\mathrm{Y})+\beta^{2} ‘ \mathrm{~F}(\mathrm{Y}, \mathrm{Z})-\beta \mathrm{A}(\mathrm{Z}) \mathrm{q}(\mathrm{Y})
\end{aligned}
$$

Or

$$
\begin{equation*}
' \mathrm{P}(\mathrm{Y}, \bar{Z})=‘ \mathrm{Q}(\mathrm{Y}, \mathrm{Z})+\alpha \beta \mathrm{g}(\mathrm{Y}, \mathrm{Z})+\alpha \beta \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z})+\beta^{2}{ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z}) \tag{2.1.13}
\end{equation*}
$$

From which by barring Z, using (1.1) and (2.1.10), we get

$$
\begin{equation*}
' \mathrm{Q}(\mathrm{Y}, \bar{Z})={ }^{\prime} \mathrm{P}(\mathrm{Y}, \mathrm{Z})-\alpha \beta ' \mathrm{~F}(\mathrm{Y}, \mathrm{Z})+\beta^{2} \mathrm{~g}(\mathrm{Y}, \mathrm{Z})-\alpha^{2} \mathrm{~A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z}) \tag{2.1.14}
\end{equation*}
$$

Barring Y and using symmetricity of ' P and (2.1.13), we obtain

$$
\begin{align*}
& ' \mathrm{Q}(\bar{Y}, \bar{Z})=-‘ \mathrm{Q}(\mathrm{Z}, \mathrm{Y})+2 \alpha \beta \mathrm{~g}(\mathrm{Y}, \mathrm{Z}) \text { also, in view of (2.1.14), we get } \ldots(2.1 .15) \\
& ' \mathrm{Q}(\mathrm{Y}, \bar{Z})-{ }^{\prime} \mathrm{Q}(Z, \bar{Y})=-2 \alpha \beta ' \mathrm{~F}(\mathrm{Y}, \mathrm{Z}) \tag{2.1.16}
\end{align*}
$$

Further, putting $\mathrm{Y}=\mathrm{T}$ in (2.1.13) and using (2.1.11) also (2.1.12), we have

$$
\begin{equation*}
‘ \mathrm{Q}(\mathrm{~T}, \mathrm{Z})=2 \alpha \beta \mathrm{~A}(\mathrm{Z})=‘ \mathrm{Q}(\mathrm{Z}, \mathrm{~T}) \tag{2.1.17a}
\end{equation*}
$$

and $\quad ' \mathrm{Q}(\mathrm{T}, \bar{Z})=-' \mathrm{Q}(\bar{Z}, \mathrm{~T})=0$
Now, putting $\mathrm{Y}=\mathrm{T}$ in (2.1.5) and using (2.1.17)(a)
We can easily obtain

$$
\begin{equation*}
\cdot \mathrm{V}(\mathrm{X}, \mathrm{~T})=0 \tag{2.1.18}
\end{equation*}
$$

Also from (2.1.6), we have

$$
\begin{equation*}
\mathrm{w}(\mathrm{~T})=0, \tag{2.1.19a}
\end{equation*}
$$

and

$$
\begin{equation*}
‘ \mathrm{w}(\mathrm{Z}, \mathrm{~T})=\mathrm{g}(\mathrm{w}(\mathrm{Z}), \mathrm{T})=0 \tag{2.1.19b}
\end{equation*}
$$

Now, from (2.1.5) and (2.1.6), we obtain
and

$$
\begin{equation*}
V^{*}=-2 \mathrm{D}_{\mathrm{iv}} \mathrm{P}+4 \mathrm{~m} \beta^{2} \tag{2.1.20a}
\end{equation*}
$$

where we have taken $V^{*}=F^{k j} V_{k j}$ and $w^{*}=F^{k j} w_{k j}$ then, we get

$$
\begin{equation*}
V^{*}-\mathrm{w}^{*}=-2\left\{\mathrm{D}_{\mathrm{iv}} \mathrm{P}+2 \mathrm{p}(\mathrm{P})-2(\mathrm{~m}+1) \beta^{2}\right\} \tag{2.1.21}
\end{equation*}
$$

Now, taking account of ' $\mathrm{K}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U})=$ ' $\mathrm{K}(\mathrm{Z}, \mathrm{U}, \mathrm{X}, \mathrm{Y})$
where, ' $K(X, Y, Z, U) \stackrel{\text { def }}{=} g(K(X, Y, Z), U)$, we obtain from (2.1.2)

$$
\begin{align*}
& \text { 'F(X,U) \{‘Q(Y,Z) +'Q(Z,Y) }\} \text { - 'F(Y,U) \{‘Q(X,Z) -'Q(Z,X) }\} \\
& + \text { ' } \mathrm{F}(\mathrm{Y}, \mathrm{Z})\{‘ \mathrm{Q}(\mathrm{X}, \mathrm{U})+\text { ' } \mathrm{Q}(\mathrm{U}, \mathrm{X})\}-\mathrm{F}(\mathrm{X}, \mathrm{Z})\left\{{ }^{\prime} \mathrm{Q}(\mathrm{Y}, \mathrm{U})+\text { ' } \mathrm{Q}(\mathrm{U}, \mathrm{Y})\right\} \\
& +' \mathrm{~F}(\mathrm{Z}, \mathrm{U})\{\mathrm{V}(\mathrm{X}, \mathrm{Y})-\mathrm{'w}(\mathrm{X}, \mathrm{Y})\}-\mathrm{F}(\mathrm{X}, \mathrm{Y})\{\mathrm{V}(\mathrm{Z}, \mathrm{U})-‘ \mathrm{w}(\mathrm{Z}, \mathrm{U})\}=0 \tag{2.1.22}
\end{align*}
$$

From (2.1.22), we obtain, after a straight forward computation

$$
\begin{equation*}
' \mathrm{Q}(\mathrm{Y}, \mathrm{Z})+' \mathrm{Q}(\mathrm{Z}, \mathrm{Y})=\frac{4 \alpha \beta}{(\mathrm{~m}+1)} \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z}) \tag{2.1.23}
\end{equation*}
$$

Using this in (2.1.15), we have

$$
\begin{equation*}
' \mathrm{Q}(\bar{Y}, \bar{Z})=' \mathrm{Q}(\mathrm{Y}, \mathrm{Z})+2 \alpha \beta \mathrm{~g}(\mathrm{Y}, \mathrm{Z})-\frac{4 \alpha \beta}{(\mathrm{~m}+1)} \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z}) \tag{2.1.24}
\end{equation*}
$$

Again using (2.1.23) in (2.1.22), we obtain, a after a straight forward computation

$$
\begin{equation*}
\mathrm{V}(\mathrm{Z}, \mathrm{U})-\mathrm{w}(\mathrm{Z}, \mathrm{U})=\frac{1}{2 \mathrm{~m}}\left(\mathrm{~V}^{*}-\mathrm{w}^{*}\right)^{‘} \mathrm{~F}(\mathrm{Z}, \mathrm{U}) \tag{2.1.25}
\end{equation*}
$$

And in consequence of (2.1.21), we also have

$$
\begin{equation*}
\mathrm{V}(\mathrm{Z}, \mathrm{U})-‘ \mathrm{w}(\mathrm{Z}, \mathrm{U})=\frac{1}{2 \mathrm{~m}}\left[\mathrm{D}_{\mathrm{iv}} \mathrm{P}+2 \mathrm{p}(\mathrm{P})-2(\mathrm{~m}+1) \beta^{2}\right]^{‘} \mathrm{~F}(\mathrm{Z}, \mathrm{U}) \tag{2.1.26}
\end{equation*}
$$

Now, from (2.1.4)(a) and (2.1.5), we obtain

$$
\begin{equation*}
‘ \mathrm{Q}(\mathrm{Y}, \mathrm{Z})-‘ \mathrm{Q}(\mathrm{Z}, \mathrm{Y})=-\mathrm{V}(\mathrm{Y}, \mathrm{Z})+\mathrm{p}(\mathrm{P}){ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z}) \tag{2.1.27}
\end{equation*}
$$

Using (2.1.23) in the above equation, we get

$$
\begin{equation*}
' \mathrm{~V}(\mathrm{Y}, \mathrm{Z})=-2 \cdot \mathrm{Q}(\mathrm{Z}, \mathrm{U})+\mathrm{p}(\mathrm{P}) \cdot \mathrm{F}(\mathrm{Z}, \mathrm{U})+\frac{4 \alpha \beta}{(\mathrm{~m}+1)} \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z}) \tag{2.1.28}
\end{equation*}
$$

So, in consequence of (2.1.28), (2.1.26) gives

$$
\begin{aligned}
‘ \mathrm{w}(\mathrm{Z}, \mathrm{U})=-2 \cdot \mathrm{Q}(\mathrm{Z}, \mathrm{U})+\mathrm{p}(\mathrm{P}) \cdot \mathrm{F}(\mathrm{Z}, \mathrm{U}) & +\frac{4 \alpha \beta}{(\mathrm{~m}+1)} \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z}) \\
& +\frac{1}{\mathrm{~m}}\left[\mathrm{D}_{\mathrm{iv}} \mathrm{P}+2 \mathrm{p}(\mathrm{P})-2(\mathrm{~m}+1) \beta^{2}\right] \cdot \mathrm{F}(\mathrm{Z}, \mathrm{U})
\end{aligned}
$$

Or

$$
\begin{array}{r}
‘ \mathrm{w}(\mathrm{Z}, \mathrm{U})=-2 ‘ \mathrm{Q}(\mathrm{Z}, \mathrm{U})+\frac{1}{\mathrm{~m}}\left[\mathrm{D}_{\mathrm{iv}} \mathrm{P}+(\mathrm{m}+2) \mathrm{p}(\mathrm{P})-2(\mathrm{~m}+1) \beta^{2}\right] ‘ \mathrm{~F}(\mathrm{Z}, \mathrm{U}) \\
+\frac{4 \alpha \beta}{(\mathrm{~m}+1)} \mathrm{A}(\mathrm{Z}) \mathrm{A}(\mathrm{U}) \quad . . \tag{2.1.29}
\end{array}
$$

From (2.1.3)(b) after contracting it, with respect to Y, we get

$$
\begin{equation*}
\mathrm{P}^{*}=\mathrm{D}_{\mathrm{iv}} \mathrm{P}+\mathrm{mp}(\mathrm{P})+\alpha^{2}-\beta^{2} \tag{2.1.30}
\end{equation*}
$$

Then (2.1.29) becomes

$$
\begin{array}{r}
‘ \mathrm{w}(\mathrm{Z}, \mathrm{U})=-2 ‘ \mathrm{Q}(\mathrm{Z}, \mathrm{U})+\frac{1}{\mathrm{~m}}\left\{\mathrm{P}^{*}+2 \mathrm{p}(\mathrm{P})-\alpha^{2}-(2 m+1) \beta^{2}\right\} \cdot \mathrm{F}(\mathrm{Z}, \mathrm{U}) \\
+\frac{4 \alpha \beta}{(\mathrm{~m}+1)} \mathrm{A}(\mathrm{U}) \mathrm{A}(\mathrm{Z}) \tag{2.1.31}
\end{array}
$$

Now, we suppose the curvature tensor with respect to the connection B vanishes, i.e., $R(X, Y, Z)=0$

Then from (2.1.2), we have

$$
\begin{aligned}
\mathrm{K}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\{\mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{T}\} & \text { '} \mathrm{P}(\mathrm{Y}, \mathrm{Z})-\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\} \\
& \text { ' } \mathrm{P}(\mathrm{X}, \mathrm{Z}) \\
& +\mathrm{g}(\bar{Y}, \bar{Z}) \mathrm{P}(\mathrm{X})-\mathrm{g}(\bar{X}, \bar{Z}) \mathrm{P}(\mathrm{Y})+{ }^{\prime} \mathrm{Q}(\mathrm{Y}, \mathrm{Z}) \bar{X}-{ }^{\prime} \mathrm{Q}(\mathrm{X}, \mathrm{Z}) \bar{Y}
\end{aligned}
$$

$$
\begin{array}{r}
+‘ \mathrm{~F}(\mathrm{Y}, \mathrm{Z}) \mathrm{Q}(\mathrm{X})-{ }^{‘} \mathrm{~F}(\mathrm{X}, \mathrm{Z}) \mathrm{Q}(\mathrm{Y})+{ }^{‘} \mathrm{~B}(\mathrm{~B}(\mathrm{X}, \mathrm{Y})) \bar{Z}+{ }^{‘} \mathrm{~F}(\mathrm{X}, \mathrm{Y}) \mathrm{w}(\mathrm{Z}) \\
-\left[\left(\alpha^{2}+\beta^{2}\right){ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z}) \bar{X}-\left(\alpha^{2}+\beta^{2}\right)^{‘} \mathrm{~F}(\mathrm{X}, \mathrm{Z}) \bar{Y}-2 \alpha^{2}{ }^{‘} \mathrm{~F}(\mathrm{X}, \mathrm{Y}) \bar{Z}\right] \quad \ldots(2.1 .32) \tag{2.1.32}
\end{array}
$$

Now, using (2.1.32) in

$$
' K(X, Y, Z, U)+' K(Y, Z, X, U)+' K(Z, X, Y, U)=0
$$

We obtain in consequence of the equation (2.1.14), (2.1.23), (2.1.28) and (2.1.29)

$$
\begin{aligned}
& +\frac{1}{m}\left[{ }^{\prime} \mathrm{F}(\mathrm{Z}, \mathrm{U}){ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Y})+{ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{U}) \cdot \mathrm{F}(\mathrm{Y}, \mathrm{Z})+{ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{U}){ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Z})\right] \\
& +\left[\mathrm{P}^{*}+2 \mathrm{p}(\mathrm{P})-\alpha^{2}-2(m+1) \beta^{2}+\mathrm{mp}(\mathrm{P})-2 \mathrm{~m} \beta^{2}\right] \\
& +\frac{4 \alpha \beta}{(\mathrm{~m}+1)}\left[\mathrm{A}(\mathrm{U}) \mathrm{A}(\mathrm{Z}){ }^{`} \mathrm{~F}(\mathrm{X}, \mathrm{Y})+\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{U}){ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z})+\mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{U}){ }^{‘} \mathrm{~F}(\mathrm{X}, \mathrm{Z})\right] \\
& =0
\end{aligned}
$$

Barring U in the above equation, we get

$$
\begin{equation*}
\mathrm{P}^{*}+(\mathrm{m}+2) \mathrm{p}(\mathrm{P})-\alpha^{2}-\beta^{2}=0 \tag{2.1.34}
\end{equation*}
$$

Using this in (2.1.31), we have

$$
\begin{equation*}
' \mathrm{w}(\mathrm{Z}, \mathrm{U})=-2 ‘ \mathrm{Q}(\mathrm{Z}, \mathrm{U})-\left(\mathrm{p}(\mathrm{P})+2 \beta^{2}\right) \cdot \mathrm{F}(\mathrm{Z}, \mathrm{U})+\frac{4 \alpha \beta}{(\mathrm{~m}+1)} \mathrm{A}(\mathrm{U}) \mathrm{A}(\mathrm{Z}) \tag{2.1.35}
\end{equation*}
$$

Barring Y in (2.1.23), we have

$$
‘ \mathrm{Q}(\bar{Y}, \mathrm{Z})+‘ \mathrm{Q}(\mathrm{Z}, \bar{Y})=0
$$

Using it and (2.1.14) in (2.1.28), we get

$$
\begin{array}{r}
\mathrm{V}(\bar{Y}, \mathrm{Z})=2 ‘ \mathrm{P}(\mathrm{Y}, \mathrm{Z})-2 \alpha^{2} \mathrm{~A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z})-2 \alpha \beta{ }^{\prime} \mathrm{F}(\mathrm{Z}, \mathrm{Y})+2 \beta^{2} \mathrm{~g}(\mathrm{Z}, \mathrm{Y}) \\
-\mathrm{p}(\mathrm{P}) \mathrm{g}(\bar{Y}, \mathrm{Z}) \tag{2.1.36}
\end{array}
$$

Also barring Z in (2.1.35), and using (2.1.14), we get

$$
\begin{array}{r}
‘ \mathrm{w}(\bar{Z}, \mathrm{U})=2 ‘ \mathrm{P}(\mathrm{U}, \mathrm{Z})-2 \alpha^{2} \mathrm{~A}(\mathrm{U}) \mathrm{A}(\mathrm{Z})-2 \alpha \beta \cdot \mathrm{~F}(\mathrm{U}, \mathrm{Z})+2 \beta^{2} \mathrm{~g}(\mathrm{U}, \mathrm{Z}) \\
-\mathrm{p}(\mathrm{P}) \mathrm{g}(\bar{U}, \mathrm{Z}) \tag{2.1.37}
\end{array}
$$

Contracting with respect to the equation (2.1.32) and using (2.1.14), (2.1.36) and (2.1.37), we obtain

$$
\begin{align*}
& \operatorname{Ric}(\mathrm{Y}, \mathrm{Z})=2(\mathrm{~m}+2)^{\prime} \mathrm{P}(\mathrm{Y}, \mathrm{Z})-\left\{\mathrm{P}^{*}-\alpha^{2}+3 \beta^{2}\right\} \mathrm{A}(\mathrm{U}) \mathrm{A}(\mathrm{Z}) \\
& +\left\{\mathrm{P}^{*}-3 \alpha^{2}+7 \beta^{2}\right\} \mathrm{g}(\mathrm{Y}, \mathrm{Z}) \tag{2.1.38a}
\end{align*}
$$

Or

$$
\begin{align*}
\mathrm{K}(\mathrm{Y})=2(\mathrm{~m}+2) \mathrm{P}(\mathrm{Y})-\left\{\mathrm{P}^{*}+\alpha^{2}+3 \beta^{2}\right\} & \mathrm{A}(\mathrm{Y}) \mathrm{T} \\
& +\left\{\mathrm{P}^{*}-\alpha^{2}+7 \beta^{2}\right\} \mathrm{Y} \tag{2.1.38b}
\end{align*}
$$

Contracting which with respect to Y , we get

$$
\mathrm{k}=4(\mathrm{~m}+1) \mathrm{P}^{*}-2(3 \mathrm{~m}+2) \alpha^{2}+2(7 \mathrm{~m}+2) \beta^{2}
$$

from which, we get

$$
\begin{aligned}
P^{*} & =\frac{1}{4(m+1)}\left[k+2(3 m+2) \alpha^{2}\right]-\frac{7(m+2)}{2(m+1)} \beta^{2} \\
& =-L-\frac{7(m+2)}{2(m+1)} \beta^{2}
\end{aligned}
$$

Where

$$
\mathrm{L}=-\frac{1}{4(\mathrm{~m}+1)}\left[\mathrm{k}+2(3 \mathrm{~m}+2) \alpha^{2}\right]
$$

and k is scalar curvature
Now, using (2.1.38)(c) in (2.1.38)(a), we get

$$
\begin{align*}
\cdot \mathrm{P}(\mathrm{Y}, \mathrm{Z})=- & \cdot \mathrm{L}(\mathrm{Y}, \mathrm{Z})-\frac{(\mathrm{m}-4) \beta^{2}}{(4 \mathrm{~m}+1)(\mathrm{m}+2)} \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z}) \\
& -\frac{(7 \mathrm{~m}+12) \beta^{2}}{(4 \mathrm{~m}+1)(\mathrm{m}+2)} \mathrm{g}(\mathrm{Y}, \mathrm{Z}) \tag{2.1.39a}
\end{align*}
$$

where

$$
\begin{align*}
‘ \mathrm{~L}(\mathrm{Y}, \mathrm{Z})=-\frac{1}{2(\mathrm{~m}+2)}[\operatorname{Ric}(\mathrm{Y}, \mathrm{Z})+(\mathrm{L} & \left.+3 \alpha^{2}\right) \mathrm{g}(\mathrm{Y}, \mathrm{Z}) \\
& \left.-\left(\mathrm{L}-\alpha^{2}\right) \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z})\right] \tag{2.1.39b}
\end{align*}
$$

Similarly, we obtain

$$
\begin{align*}
‘ \mathrm{Q}(\mathrm{Y}, \mathrm{Z})=' \mathrm{M}(\mathrm{Y}, \mathrm{Z})+\alpha \beta \mathrm{g}(\mathrm{Y}, \mathrm{Z})+\alpha \beta \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z}) & \\
& +\frac{\left(4 \mathrm{~m}^{2}+5 \mathrm{~m}-4\right) \beta^{2}}{4(\mathrm{~m}+1)(\mathrm{m}+2)} \tag{2.1.40a}
\end{align*} \mathrm{F}(\mathrm{Y}, \mathrm{Z})
$$

where

$$
\begin{equation*}
' \mathrm{M}(\mathrm{Y}, \mathrm{Z})=-\frac{1}{2(\mathrm{~m}+2)}\left[\operatorname{Ric}(\bar{Y}, \mathrm{Z})+\left(\mathrm{L}+3 \alpha^{2}\right) \cdot \mathrm{F}(\mathrm{Y}, \mathrm{Z})\right] \tag{2.1.40b}
\end{equation*}
$$

Now, from (2.1.38)(c) in (2.1.34), we get

$$
\begin{equation*}
\mathrm{p}(\mathrm{P})=-\frac{1}{(\mathrm{~m}+2)}\left(\mathrm{L}+\alpha^{2}\right)+\frac{(9 \mathrm{~m}+4) \beta^{2}}{2(\mathrm{~m}+1)(\mathrm{m}+2)} \tag{2.1.41}
\end{equation*}
$$

Now, using (2.1.41) , (2.1.40)(a) in (2.1.28)

$$
\begin{align*}
\mathrm{V}(\mathrm{X}, \mathrm{Y})=2{ }^{\prime} \mathrm{M}(\mathrm{X}, \mathrm{Y}) & +\frac{1}{(\mathrm{~m}+2)}\left(\mathrm{L}+\alpha^{2}\right) \mathrm{F}(\mathrm{X}, \mathrm{Y})-\frac{2(\mathrm{~m}-2) \beta^{2}}{(\mathrm{~m}+2)}{ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Y}) \\
& -\frac{2 \alpha \beta(\mathrm{~m}-1)}{(\mathrm{m}+1)} \mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Y})-2 \alpha \beta \mathrm{~g}(\mathrm{X}, \mathrm{Y}) \tag{2.1.42}
\end{align*}
$$

Similarly we can obtain

$$
\mathrm{w}(\mathrm{Z}, \mathrm{U})=2{ }^{\prime} \mathrm{M}(\mathrm{Z}, \mathrm{U})-\frac{1}{(m+2)}\left(\mathrm{L}+\alpha^{2}\right)^{\prime} \mathrm{F}(\mathrm{Z}, \mathrm{U})-\frac{\left(4 \mathrm{~m}^{2}+12 \mathrm{~m}+4\right) \beta^{2}}{(\mathrm{~m}+1)(\mathrm{m}+2)} \quad \mathrm{F}(\mathrm{Z}, \mathrm{U})
$$

$$
\begin{equation*}
-\frac{2 \alpha \beta(\mathrm{~m}-1)}{(\mathrm{m}+1)} \mathrm{A}(\mathrm{U}) \mathrm{A}(\mathrm{Z})-2 \alpha \beta \mathrm{~g}(\mathrm{Z}, \mathrm{U}) \tag{2.1.43}
\end{equation*}
$$

Now, putting results (2.1.39)(a), (2.1.40)(a), (2.1.42) and (2.1.43) in (2.1.32), we obtain

$$
\begin{align*}
& B^{*}(X, Y, Z)-\frac{(3 m+8) \beta^{2}}{2(m+1)(m+2)}\{A(Y) A(Z) X-A(X) A(Z) Y+A(X) T g(Y, Z) \ldots \tag{2.1.44}\\
& -\mathrm{A}(\mathrm{Y}) \operatorname{Tg}(\mathrm{X}, \mathrm{Z})\}+\frac{(7 \mathrm{~m}+12) \beta^{2}}{2(\mathrm{~m}+1)(\mathrm{m}+2)}\{\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}\}-\alpha \beta\{\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \bar{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \bar{Y} \\
& +{ }^{‘} \mathrm{~F}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{'} \mathrm{~F}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}+\mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z}) \bar{X}-\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Z}) \bar{Y}+\mathrm{A}(\mathrm{X}) \mathrm{T}{ }^{`} \mathrm{~F}(\mathrm{Y}, \mathrm{Z}) \\
& \left.-\mathrm{A}(\mathrm{Y}) \mathrm{T}{ }^{`} \mathrm{~F}(\mathrm{X}, \mathrm{Z})-2 \mathrm{~g}(\mathrm{X}, \mathrm{Y}) \bar{Z}-2{ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Y}) \bar{Z}-2 \mathrm{~A}(\mathrm{Z}) \mathrm{T}{ }^{‘} \mathrm{~F}(\mathrm{X}, \mathrm{Y})-2 \mathrm{~A}(\mathrm{X}) \mathrm{A}(\mathrm{Y}) \bar{Z}\right\} \\
& -\frac{4 \alpha \beta}{(\mathrm{~m}+1)}\{\mathrm{A}(\mathrm{Z}) \mathrm{T} \cdot \mathrm{~F}(\mathrm{X}, \mathrm{Y})+\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Y}) \bar{Z}\}-\frac{\left(2 \mathrm{~m}^{2}+\mathrm{m}-8\right) \beta^{2}}{2(\mathrm{~m}+1)(\mathrm{m}+2)}\left\{{ }^{‘} \mathrm{~F}(\mathrm{Y}, \mathrm{Z}) \bar{X}-\mathrm{'} \mathrm{~F}(\mathrm{X}, \mathrm{Z}) \bar{Y}\right\} \\
& +\frac{3 m(2 m-3) \beta^{2}}{(m+1)(m+2)} ' F(X, Y) \bar{Z}=0
\end{align*}
$$

Putting these results in (2.1.44), we have

$$
\begin{align*}
& \mathrm{K}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})-\frac{1}{2(\mathrm{~m}+2)} \operatorname{Ric}(\mathrm{Y}, \mathrm{Z})\{\mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{T}\} \\
& -\frac{1}{2(\mathrm{~m}+2)} \operatorname{Lg}(\bar{Y}, \bar{Z})\{\mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{T}\}+\frac{1}{2(\mathrm{~m}+2)} \operatorname{Ric}(\mathrm{X}, \mathrm{Z})\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\} \\
& +\frac{1}{2(\mathrm{~m}+2)} \operatorname{Lg}(\bar{X}, \bar{Z})\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\}-\frac{1}{2(\mathrm{~m}+2)} \mathrm{g}(\bar{Y}, \bar{Z}) \mathrm{K}(\mathrm{X}) \\
& -\frac{1}{2(\mathrm{~m}+2)} \mathrm{Lg}(\bar{Y}, \bar{Z})\{\mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{T}\}+\frac{1}{2(\mathrm{~m}+2)} \mathrm{g}(\bar{X}, \bar{Z}) \mathrm{K}(\mathrm{Y}) \\
& +\frac{1}{2(\mathrm{~m}+2)} \operatorname{Lg}(\bar{X}, \bar{Z})\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\}-\frac{1}{2(\mathrm{~m}+2)} \operatorname{Ric}(\bar{Y}, \bar{Z}) \bar{X} \\
& -\frac{1}{2(\mathrm{~m}+2)} \mathrm{L}{ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z}) \bar{X}+\frac{1}{2(\mathrm{~m}+2)} \operatorname{Ric}(\bar{X}, \mathrm{Z}) \bar{Y}+\frac{1}{2(\mathrm{~m}+2)} \mathrm{L}{ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Z}) \bar{Y} \\
& +\frac{1}{(\mathrm{~m}+2)}\left[{ }^{‘} \mathrm{~F}(\mathrm{X}, \mathrm{Y}) \mathrm{K}(\bar{Z})+\mathrm{L}{ }^{`} \mathrm{~F}(\mathrm{X}, \mathrm{Y}) \bar{Z}+\operatorname{Ric}(\bar{X}, \mathrm{Y}) \bar{Z}+\mathrm{L}{ }^{ } \mathrm{F}(\mathrm{X}, \mathrm{Y}) \bar{Z}\right] \\
& -\frac{(3 m+8) \beta^{2}}{2(m+1)(m+2)}[A(Y) A(Z) X-A(X) A(Z) Y+A(X) T g(Y, Z)-A(Y) T g(X, Z)] \\
& +\frac{(7 m+12) \beta^{2}}{2(m+1)(m+2)}\{g(Y, Z) X-g(X, Z) Y\}-\frac{(2 m-m-8) \beta^{2}}{2(m+1)(m+2)}\left\{{ }^{\prime} F(Y, Z) \bar{X}-' F(X, Z) \bar{Y}\right\} \\
& +\frac{3 \mathrm{~m}(2 \mathrm{~m}-\mathrm{m}) \beta^{2}}{(\mathrm{~m}+1)(\mathrm{m}+2)} \cdot \mathrm{F}(\mathrm{X}, \mathrm{Y}) \bar{Z}=0 \tag{2.1.46}
\end{align*}
$$

Or $\quad \mathrm{K}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})-\frac{1}{2(\mathrm{~m}+2)}[\operatorname{Ric}(\mathrm{Y}, \mathrm{Z})\{\mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{T}\}-\operatorname{Ric}(\mathrm{X}, \mathrm{Z})\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\}$
$+\mathrm{g}(\bar{Y}, \bar{Z}) \mathrm{K}(\mathrm{X})-\mathrm{g}(\bar{X}, \bar{Z}) \mathrm{K}(\mathrm{Y})+\operatorname{Ric}(\bar{Y}, \mathrm{Z}) \bar{X}-\operatorname{Ric}(\bar{X}, \mathrm{Z}) \bar{Y}+{ }^{\mathrm{F}}(\mathrm{Y}, \mathrm{Z}) \mathrm{K}(\bar{X})$
$\left.-{ }^{`} \mathrm{~F}(\mathrm{X}, \mathrm{Z}) \mathrm{K}(\bar{Y})-2{ }^{`} \mathrm{~F}(\mathrm{X}, \mathrm{Y}) \mathrm{K}(\bar{Z})-2 \operatorname{Ric}(\bar{X}, \mathrm{Y}) \bar{Z}\right]$
$+\frac{\mathrm{k}}{4(\mathrm{~m}+1)(\mathrm{m}+2)}\left[\mathrm{g}(\bar{Y}, \bar{Z})\{\mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{T}\}-\mathrm{g}(\bar{X}, \bar{Z})\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\}+{ }^{`} \mathrm{~F}(\mathrm{Y}, \mathrm{Z}) \bar{X}\right.$
$\left.-\mathrm{F}(\mathrm{X}, \mathrm{Z}) \overline{\mathrm{Y}}-2{ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Y}) \bar{Z}\right]-\frac{(3 \mathrm{~m}+8) \beta^{2}}{2(\mathrm{~m}+1)(\mathrm{m}+2)}[\mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z}) \mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Z}) \mathrm{Y}$
$+\mathrm{A}(\mathrm{X}) \mathrm{T} \mathrm{g}(\mathrm{Y}, \mathrm{Z})-\mathrm{A}(\mathrm{Y}) \mathrm{T} \mathrm{g}(\mathrm{X}, \mathrm{Z})]+\frac{(7 \mathrm{~m}+12) \beta^{2}}{2(\mathrm{~m}+1)(\mathrm{m}+2)}\{\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}\}$

$$
-\frac{\left(2 \mathrm{~m}^{2}-\mathrm{m}-8\right) \beta^{2}}{2(\mathrm{~m}+1)(\mathrm{m}+2)}\left\{{ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z}) \bar{X}-{ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Z}) \bar{Y}\right\}+\frac{3 \mathrm{~m}(2 \mathrm{~m}-3) \beta^{2}}{(\mathrm{~m}+1)(\mathrm{m}+2)} \quad \mathrm{F}(\mathrm{X}, \mathrm{Y}) \bar{Z}=0
$$

Contacting above equation with respect to X , we get

$$
\begin{aligned}
\frac{6 m \beta}{(m+2)} A(Y) A(Z)-\frac{6 m \beta}{(m+2)} g(Y, Z)+\frac{6 m \beta}{(m+2)} A(Y) A(Z) & +\frac{m(7 m+12) \beta^{2}}{(m+1)(m+2)} g(Y, Z) \\
& -\frac{m(3 m+12) \beta^{2}}{(m+1)(m+2)} A(Y)(Z)=0
\end{aligned}
$$

From which, we get

$$
\begin{aligned}
& \beta\left[\frac{6 m \beta}{(m+2)}-\frac{2 m^{2} \beta}{(m+2)}+\frac{m(2 m+1)(7 m+12) \beta}{(m+1)(m+2)}+\frac{m(3 m+8) \beta}{(m+1)(m+2)}\right]=0 \\
\Rightarrow & \text { either } \quad
\end{aligned} \quad \beta=0, \text { or } \beta=-\frac{3(m+1) \beta}{(6 m+1)(m+2)},
$$

Theorem (2.1.2) : Let the curvature tensor with respect to contact conformal connection (2.10) vanishes. if $\alpha=0$ then M_{n} is either Cosymplectic manifold or ($0, \beta$) type Trans-Sasakian manifold with

$$
\beta=-\frac{3(m+1) \beta}{(6 m+1)(m+2)}
$$

References

1. T. Tamir, "On radio-wave propagation in forest environment", IEEE, Trans. Antennas Propagat, Vol. AP-15, pp. 808-817, Nov. (1967).
2. J.A. Obina : New classes of almost contact metric structure publ. Math. 32,pp187-193 (1985).
3. D.E. Blair : Contact manifold in Riemannian geometric lecture note in Math. Vol. 509, Springer Verlag, N.4(1978).
4. Prasad, S. and R.H. Ojha : C-Rsubmanifolds of Trans-Sasakian manifold, Indian Journal of pure and Applied Math. 24 (7 and 8), pp. 427-434 (1993).
5. Hasan Shahid,M.: C-R sub manifolds of Trans- Sasakian manifold, Indian Journal of pure and Applied Math. Vol.22, pp.1007-1012 (1991).
6. S. Golab : On semi-symmetric and quarter symmetric linear connections; Tensor, N.S.; 29(1975)
7. K. Yano : On contact conformal connection; KodiaMath.Rep.,28(1976 pp.90-103.
8. Mishra, R.S. and S.N. Pandey : On quarter symmetric metric F-connections; Tensor, N.S. Vol. 31, pp1-7 (1978).
9. Pandey, S.N. : Some contribution to Differential Geometry of differentiable manifolds, Thesis, B.H.U.Varanasi (India) (1979).
