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We consider a wave function of an electron in a periodic 
potential of metal. The wave function of electron for a periodic 
potential are the product of plane wave and a periodic 
function. In this paper we shall discuss the Dirac delta 
function, Bloch theorem, discontinuity and continuity 
conditions. The solution of time independent Schrödinger 
wave equation involves periodic potential in one-
dimension. The potential is zero near the nucleus and is 
maximum at the point half way between two neighbouring 
atoms. We also assume that the product of the potential 
height (V0) and the width is a constant value, Even in the 
limiting case of large potential the product remains a finite 
quantity. 

INTRODUCTION :   

In the Kronig Penney model, the discret energy level scheme of isolated atoms, the 

energy bands would be infinitely continuous. In generally is observed a region of forbidden 
energies between the two successive bands. An energy bands is almost cantered around its 
parent level. Kronig and Penney2,3(1930) demonstrated after the Bloch theorem1to7 (1928) 
came in to existence. That regions of forbidden energies intervene the regions of allowed 
energies. They accomplished that using a one-dimension square-well crystal potential as 
depicted. By Fourier analysis I found that the wave differed from the plane wave of free 
electrons only by a periodic modulation. F-Bloch prove theorem that the solutions of time 
independent Schrödinger equation for a periodic potential is given by  

     Φk(x) = uk(x) exp (ikx) 

where uk(x) is a periodic function on the crystal lattice, that is, 

     uk(x+a) = uk(x) 

Proof of the Bloch Theorem6:- 

Let us consider the motion of an electron in a periodic potential. The system is one-
dimensional crystal and consist of N atoms in a length Na with inter atomic spacing a. The 
potential energy is a periodic with V(x) = V(x+1a), where l is an integer. 

We are imposed by the symmetry of the solution of the wave function such that 

                                Φ(x+a) = TΦ(x)                                                 (1) 

where T is a constant number. 

 Let us determine the number T appearing in equation (1) for this purpose. We write the 
relation on going once  in a length Na  

                                Φ(x+Na) = TN Φ(x) = Φ(x)                               ...(2) 
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Because Φ(x) must be single value. Consequently, 

                                          TN = 1 

                                           T = exp (i2πn/N)                                                          ...(3) 

where n = 0,1,2.......,N-1 

We see that  

                             Φk(x) = uk(x)exp[i2πnx/(Na)]                        ...(4) 

where  uk(x) = uk(x+a) is a arbitrary periodic function with lattice constant a with k=2πn/Na. 

Dirac Delta function : 

This is the most important function δ(t). This function is define to be 0, if t≠0 and to be ∞ 
at t = 0 such that,  

           ( ) 1



  t dt                                      ...(5) 

This is very large and very small region and 0, outside this region and has a unit integral. 
Suppose that the function δ(t) has following values: 
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 ...(6) 

where ɛ may be made as small as we require. 

Periodic potential Kronig-Penney model : 

Electrons in a lattice represent in a periodic potential due to the presence of the atoms in 
fig 1. 

  
Figure 1. Periodic potential in a one-dimensional lattice. 

Consider the potential energy V(x) of an electron shown in the illustration with an infinite 
sequence of potential wells of depth -V0 and width a, arranged with a spacing. The width and 
the curvatures of the allowed bands increase with energy. This periodic potential will open 
gaps in the dispersion relation, To solve this problem we will assume that the width of the 
potential energy term goes to zero, we represent them as -functions fig 2 
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Figure 2. Periodic -function potentials 

For this system potential energy is given by, 

                               0( ) ( )



 V x V x Na  ...(7)              

Which represents a series of delta function, Now we solve the one dimension Schrödinger 
wave equation for the kronig-penney model,  

     
2

2 2

( ) 2
( ( )) ( ) 0


   


d x m
E V x x

dx
 ...(8) 

For periodic potential given by 

                                    V(x+a) = V(x)                                              ...(9) 

Now u(x) has the periodicity of the lattice i.e. 

                                  u(x+a)  =  u(x)                                 ...(10) 

Thus, 

                                   ( )( ) ( )   ik x a
k x a e u x a  

                     ( ( )) ika ikxe e u x  

                     ( ) ikae x  ...(11) 

Now derivative of Φ(x) is  

                                         ( )( ) ( )
( )

 ik x a ikxd x du x
ike u x e

dx dx
  (12) 

Similarly 
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In general 
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where ɛ is infinitesimal quantity 

Now we calculate the discontinuities of 
( )d x

dx
 at a point where ( )xV  is a Delta function. 

Integrating the equation (8) from x = –ɛ to x = +ɛ  then, 
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Hence, from equation (15) we get  

              
2
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Let us consider the solution of Schrödinger equation in the region   x a , But   
tends to 0 for region-1, where V(x) = 0 in this region the solution of Schrödinger equation is 

                 ( )   iax iaxx De Be                                  ...(18) 

where                                               2 22 / a mE                                                  ...(19) 

By the use of boundary conditions  

       ( ) (0)   ikae a  

     [ ]     ika i a i ae De Be D B  
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But   tends to 0 
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Where    
2

2 0mv
P 


 ...(22) 

From equation (20) and (21) we get 
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This is the general solution of the Kronig-penney model. This solution can be obtained by 
matrix method which is tedious. 

DISCUSSION: 

In equation (23), the quantity cos ka  can vary only between +1 and –1, If k is real This 

implies that only some value of  are allowed which means that all values of energy E are not 
allowed in fig-3. The shaded regions represent the allowed values of cos ka . 

 
Fig-3 

The width of the allowed region is increases as energy increases. The width of the 
allowed region also depends on P. When P tends to infinity, the allowed region change to 
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discrete levels such that a n   . Where n is positive integer when P tends to 0 the forbidden 
regions disappear and the electron behave likes a free particle8to10. 

CONCLUSION: 

The equation (23) is derived on the basis of Dirac-Delta function, Bloch function with 
boundary conditions. This solution of Schrödinger equation simplest as compare to matrix 
method. The elegance with which the Kronig-Penney model predicates the assurance of band-
gapes enhances the significance of the model well beyond its historical value11to17.  
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