THERMODYNAMICAL PROPERTIES OF COMPLEX FORMING AI-Mg BINARY ALLOYS

ANIL KUMAR, S.M.RAFIQUE^a, M.M.KHAN AND S.K.MANDAL

^aRetd. Prof. and Head,

P.G. Deptt. of Physics, T.M. Bhagalpur University, Bhagalpur-812007 (Bihar) INDIA

RECEIVED : 8, May 2013

Some thermo dynamical properties of liquid Al-Mg alloy are investigated with the presumption that a chemical complex of the form Al₃Mg₂ exists near melting. The computed results of free energy of mixing as a function of concentration are in fairly good agreement with the experimental findings.

KEYWORDS : Chemical complex (n_3) , free energy of mixing (G_m) , heat of formation (H_m) , entropy of mixing (S_m) .

INTRODUCTION:

In recent past there have been considerable interest in the study of various thermo dynamical properties of liquid binary alloys [1-5]. Very recently Roik *et al* [2] has investigated the specific features of structure factor of binary and ternary liquid alloys of aluminium with 3d-, 4d- transition metals. Few thermo dynamical properties like heat of formation, entropy of mixing, concentration in long wave length limit are computed by Jha *et al* [6].

On the scheme suggested by Bhatia and Hargrove [12, 14], the free energy of mixing (G_m) , heat of mixing (H_m) and entropy of mixing (S_m) with the use of equilibrium values of chemical complexes n_3 with the condition $(\delta G_m / \delta n_3)_{T,P,C} = 0$. The comparison with the experimental results are presented in present paper.

THEORY : COMPLEX FORMATION MODEL

Let a liquid binary alloy containing in all $N_A = (1-C) N$ atoms of A and $N_B = CN$ atoms of B be assumed to consists of n_1N free atoms A, n_2N free atoms B and n_3N complexes $A\mu Bv$ which also acts as independent scattering points in the alloy from conservation of atoms,

$$n_1 = 1 - C - \mu n_3$$

$$n_2 = C - \nu n_3$$

$$n = n_1 + n_2 + n_3$$

$$N_s = n_A + n_B + n_m = nN$$

Here C is the concentration of the second species B.

The free energy of mixing G_M of the mixture may be written as [Jha et al (1990)]

$$G_M = -n_3 g + G^1$$
 151/P013

where g is the formation energy of the complex and thus the first term $(-n_3g)$ represents the lowering of the free energy due to the formation of complex in the alloy. G^1 is the free energy of mixing of the ternary mixture of A, B and AµBv. Since strong interactions are taken care of, via the formation of chemical complexes the mixture can be treated as weakly interacting system. Hence, for G^1 , the conformal solution approximation [Longuet-Higgins (1951)] can be considered. This enables to express G_M as [Jha *et al* (1990)].

$$G_M = -n_3 g + RT \sum_{i=1}^3 n_j (\ln n_i - \ln n) + \sum_{i < j} \frac{N_{ij}}{n} \qquad \dots (1)$$

where

 W_{ij} (*i*, *j* = 1, 2, 3) are the interaction energies.

Equilibrium values of chemical complex Formulae:

he equilibrium values of the chemical complex n_3 may be obtained through the condition

$$\left[\frac{\partial G_m}{\partial n_3}\right]_{T,P,C} = 0 \qquad \dots (2)$$

which gives

$$\frac{n_1^{\mu} n_2^{\nu}}{n^{\mu+\nu-1}} = e^{-g/RT} \exp(y_1 + y_2 + y_3) \qquad \dots (3)$$

where,

$$y_{1} = (w_{12}/RT) [(\mu+\nu-1) (n_{1}n_{2}/n^{2}) - (\mu n_{2}/n) - (\nu n_{1}/n)]$$

$$y_{2} = (w_{13}/RT) [(\mu+\nu-1) (n_{1}n_{3}/n^{2}) - (\mu n_{3}/n) - (n_{1}/n)]$$

$$y_{3} = (w_{23}/RT) [(\mu+\nu-1) (n_{2}n_{3}/n^{2}) - (\nu n_{3}/n) - (n_{2}/n)](4)$$

This equation can be solved numerically to obtain the equilibrium value of n_3 .

The interaction energies W_{ij} are determined following the procedure suggested by Bhatia and Hargrove 1974. At first g is taken nearly equal to $(\mu+w) G_M$ as a starting point and W_{12} , W_{13} and W_{23} are adjusted to get the concentration dependent free energy of mixing through equations (1) & (2). The process is repeated for different sets of energy parameters until a good fit for G_M is obtained. Once the energy parameters have been selected, they remain the same for all mixing all concentrations.

The heat of formation H_M can be obtained through equation (1) and relation.

$$H_M = G_M - T \left(\delta G_M / \delta T \right)_{PCN} \tag{5}$$

On differentiation of equation (1) we get

$$(\delta G_M / \delta T) = -n_3 (\delta g / \delta T) + R \sum_{i=1}^n n_i (\ln n_i - \ln n) + \sum_i \sum_{j=1}^{i=1} (n_i n_j / n) (\delta W_{ij} / \delta T) \dots (6)$$

Putting equations (1) and (6) into (5) yields

$$H_{M} = -n_{3} \left[g - T \left(\delta g / \delta T \right) \right] + \sum_{i < j} \sum_{i < j} (n_{i} n_{j}) \left[W_{ij} - T \left(\delta W_{ij} / \delta T \right) / n \right] \qquad \dots (7)$$

where $\delta g / \delta T$ and $\delta W / \delta T$ are the temperature dependent energies.

Now entropy of mixing is given by

Acta Ciencia Indica, Vol. XXXIX P, No. 2 (2013)

$$S_M = (H_M - G_M)/T$$
 ... (8)

Computation

The free energy of mixing (G_m) is computed from eq. (1), where the interaction energy W_{ij} and have been determined following the procedure suggested by Bhattia and Hargrove (1974). As a starting point g has been taken nearly equal to $-(\mu+\nu) G_m$ and then the interaction energy W_{12} , W_{13} and W_{23} have been adjusted to get the concentration dependent free energy of mixing through equation (2) and (3). The process has been repeated for different set of energy parameters unit a good fit for G_m is obtained.

Other properties, like heat of mixing (H_m) and entropy of mixing (S_m) have been calculated from eq. (7) and (8), respectively. The computed research of G_M , are presented in Table – 1 and the result of H_m and S_m presented in table – 2.

Results and discussion

EQUILIBRIUM VALUE OF CHEMICAL COMPLEX (n₃) AND

FREE ENERGY OF MIXING (G_m) OF LIQUID Al₃Mg₂ ALLOY

(Al_3Mg_2)

Chemical Complex

 $\mu Al_3 + \nu Mg_2 = Al_{\mu}Mg_{\nu}$ $\mu = 3 \qquad \nu = 2$ Interaction Energy at $T = 1073^{\circ}$ K g/RT = 2.0

 $W_{12}/RT = -0.9$

$$W_{13}/RT = -0.5$$

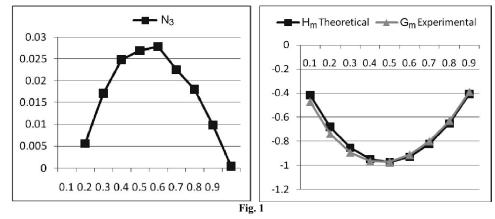
$$W_{23}/RT = -0.4$$

Table-1

С	<i>n</i> ₃	Gm		
		Theoretical	Experimental	
0.1	0.0055736	-0.4177	-0.472	
0.2	0.017063	-0.6804	-0.7385	
0.3	0.028	-0.8584	-0.8952	
0.4	0.032274	-0.9557	-0.9689	
0.5	0.02786	-0.9752	-0.9722	
0.6	0.018694	-0.9265	-0.9145	
0.7	0.0095095	-0.8186	-0.8009	
0.8	0.003139	-0.6504	-0.6297	
0.9	0.00039044	-0.4068	-0.3899	

HEAT OF FORMATION (H_m) AND

ENTROPY OF MIXING (S_m) OF LI	QUID Al ₃ Mg ₂ AL	LOY (Al_3Mg_2)
---------------------------------	---	------------------


g/RT = 2.0	Dg/RT = 2.0
$W_{12}/RT = -0.9$	$DW_{12}/RT = 0.62$
$W_{13}/RT = -0.5$	$DW_{13}/RT = 3.5$
$W_{23}/RT = -0.4$	$DW_{23}/RT = 4.5$

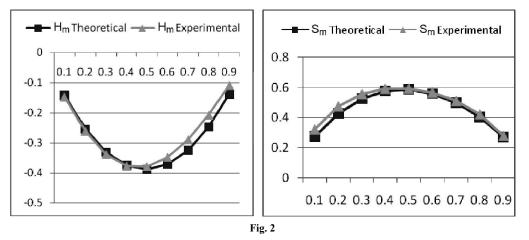

С	N ₃	H _m		S _m				
		Theoretical	Experimental	Theoretical	Experimental			
0.1	0.0055736	-0.14141	-0.1464	0.2763	0.3257			
0.2	0.017063	-0.2537	-0.2604	0.4266	0.4778			
0.3	0.028	-0.3309	-0.3373	0.5274	0.5578			
0.4	0.032274	-0.3745	-0.3768	0.58113	0.592			
0.5	0.02786	-0.3882	-0.3782	0.58764	0.5941			
0.6	0.18694	-0.3713	-0.3472	0.5554	0.5674			
0.7	0.0095095	-0.323	-0.2881	0.4955	0.5125			
0.8	0.003139	-0.2445	-0.206	0.4058	0.4234			
0.9	0.00039044	-0.13696	-0.1079	0.2698	0.2819			

Table-2

Observation

The investigated values of number of complexes (n_3) and free energy of mixing (G_m) are plotted in fig. 1. The experimental values [22] are also depicted in the fig. Our calculated values are found in fairly good agreement with the experiment. The computed values of heat of mixing (H_m) and entropy of mixing S_m are plotted in figure 2. The computed results H_m and S_m are in good agreement with the experimental findings.

Conclusion

In the present paper, for the study, the number of complexes (n_3) is found maximum around the stoichiometric composition in the liquid binary alloy. Free energy of mixing in the liquid alloys considered here for the study is the asymmetric about C = 0.5. The thermo dynamical properties calculated here for Al₃Mg₂ are in well agreement with experimental.

References

- 1. Sonvane, Y.A., Patel, J.J., Gajjar, P.N., Thakur, Pankaisinh, B. and A.R. Jani, 665, 143 (2013).
- 2. Roik, O.S., Anikeeto, A.V. and N.N. Medvedev, J. Mol. Liquids, 161, 78 (2011).
- 3. Chakrabarti, S.K., Yadav, R.P. and R.N. Yadav, 1(2), May (2011).
- 4. Molina, R., Amalberto, P., and M. Rosso, **29(1)**, (2011).
- 5. Kumar, Ashwani and Durga, P. Ojha, 41,574 (2010).
- 6. Jha, N., Rafique, S.M., Mishra, A.K., Singh, R.N., and V.N. Singh, *I.J. Physics*, **74** A(5), 461-465(2000).
- 7. Singh, B., Kumar, J., Jha, I. And D. Adhikari, 1 no.-3, 97-100 (2011).
- 8. Thakur, P.B., Gajjar, P.N. and A.R. Jani, 49, 21 (2011).
- 9. Bhattia, A.B. and Hargrova, W.H., *Phys. Rev.*, B 10, 3186 (1974).
- 10. Bhattia, A.B., Hargrova W.H.and Thornton, D. E., Phys. Rev., B 9, 435 (1974).
- 11. Bhattia, A.B., Proc. 3rd Int. Cons. On liquid metals Bristol, **30**, 2(1977).
- 12. Bhattia, A.B. and Singh, R.N., Phys. Chem. Liq,, 11, 285 (1982).
- 13. Jha, N., Rafique, S.M., Mishra, A.K. and Singh, A.N., I.J. Physics, 75 A, 519(2000).
- 14. Mishra, A.K., Singh, R.N., Rukhaiyar, A.K. and Sahay, B.B., Phys. Stat. Solids(a), 144, 335 (1994)
- 15. Longuet-Higgins, H.C., Proc. R. Soc. A 47, 205 (1951).
- 16. Harrison, W.A., Pseudopotential in the theory of Metals, (Benjamin Inc. N.Y.), 1966.
- 17. Singh, R.N., Pandey, D.K., Sinha, S., Mitra, N.R. and Srivastava, P. L., Physica, 145 B, 358 (1987).
- 18. Faber, T.E., Introduction to the Theory of Liquid Metals, Cambridge Oxford Press, London (1972).
- 19. Singh, R.N., Pandey, D.K.. and I.S. Jha, J. Phys., C 5, 2469(1987).
- 20. Jha, I.S., Singh, R.N. and D.K. Pandey, Sol. St. Phys. BARC, 33c, 63 (1990).
- 21. Ratti, V.K. and A.B. Bhatia, J. Phys. F: Met. Phys. 7, 647(1977).
- 22. Hultgren, R., Desai, P. D., Hawkins, T. D., Gleiser, M., Kelley, K. K., Selected Values of the thermodynamic Properties of Binary Alloys, ASM, Metals Park, OH.