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The theory of acoustoelectronic effects in many-valley 
piezoelectrics should differ from the “single-valley” case. 
The objective of this paper is to determine the degree of 
this difference. Accordingly, we calculate the 

acoustoelectric current ( )aej  and field ( )aeE  as well as 

the electron absorption coefficient ( )e  and the variation of 

the acoustic wave velocity ( )sv  for a piezoelectrically 

active acoustic wave with q  110  and polarization 

vector   110e  in semiconductors of the n-GaP type, 

and we investigate the influence of    on ,aej  ,aeE   ,e  

 .sv . 

KEYWORDS : Many-valley semiconductors, acousto-
electronic coupling force, polarization vector, piezoelectric 
polarization. 
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INTRODUCTION 

Acoustoelectric effects in a many–valley semiconductors have been investigated 

heretofore only in the case of nonpiezoelectric material [1-6], in which the interaction of an 
acoustic wave with current carriers is realized through the deformation potential. The results 
are also applicable to piezoelectrics, but in the case of “piezoelectrically inactive” wave [7]. 
However, the analogous effects associated with pizeoelectrically active waves can be many 
times stronger [7, 8]. Several many-valley pizeoelectrics are known and are finding important 
engineering application at the present time, for example GaP, GaAs, CdS, AlSb, AlAs and AlP 
(n-type), in which the lowest conduction band has the structure of the n-Si conduction band 
[9-15]. It might seem at first glance that the theory developed for “single valley” 
semiconductor would be applicable to these crystals. Indeed, the piezoelectric potential, unlike 
the deformation potential, displaces all valleys identically, so that the intervalley transitions, 
so it would seem, should not influence acoustoelectronic effects. That being the case, the net 
effect of mutual influence of the valleys would merely be their contribution to the total 
screening. If the latter is weak, the crystal should behave as a set of independent valleys.             

However, such is not the case. As a matter of fact, the action of an acoustic wave on 
electrons of the -th valley is determined, not by the potential, but by the acoustoelectronic 
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coupling force (–), which is proportional to the acoustic wave vector q. Due to the 
anisotropy of the effective mass, the different orientations of q relative to the principal axes of 
different valleys elicit unequal accelerations of the electrons in them, even when the force is 
identical. This situation causes unequal heating of the electron gas, an effect that is manifested 
in differences between the symmetrical parts of the nonequilibrium distribution functions in 
different valleys (another factor responsible for this effect is scattering anisotropy, i.e., the 
tensor nature of the momentum relaxation time). As a result, the “partial” (for the carrier 
energy ε) dynamic equilibrium between valleys is upset, inducing a redistribution of electrons 

in them, if the probability   of intervalley Umklapp events is much lower than the acoustic 

frequency ω, i.e., if such events are rare, then the heating differences are a maximum. If, on 

the other hand, .   , then these differences are annihilated by rapid intervalley mixing. 

But this means that “piezoelectrically active” acoustoelectronic effects will depend on .  

However, unlike the case of deformation potential interaction [1-10], this dependence is a 
purely anisotropic effect. 

THEORY AND CALCULATION 

The method of calculation generalizes the method of Gantsevich and Gurevich [4], 

differing from the latter in that : (1) The electric potential φ generated by the piezoelectric 
polarization and space charge is included in the kinetic equation; (2) the neutrality condition is 
replaced by the Poisson equation for a piezoelectric semiconductor, permitting an arbitrary 
degree of screening to be taken into account; (3) the number (Nv) and positions of the valleys 

as well as 1 q q q  and a  are assumed to be arbitrary in the initial equations, and the 

problem is reduced to a coupled system of Nv kinetic equations and the Poisson equation; (4) 

the intervalley elastic collision operator is approximated by the tensor ˆP  and ˆP  and   

are assumed to have an arbitrary dependence on the carrier energy  (however intervalley 
transitions are assumed to take place at impurities, as is valid for sufficiently low 
temperatures). The calculations are confined to the domain. 

     ;  1,     p i e pql  …(1) 

where , ,  p e i  are the momentum, energy, and intervalley relaxation times, respectively, and 

lp, is the “momentum” mean free path of the carriers. The parameters i  and e  can be 

arbitrary. (The inequality   i e  is substantiated in [7] for n-Ge.) Nondegenerate statistics 

are postulated. Expanding in terms of the small parameter 0/ ,   e T  where   is the sum 

of the electric and deformation potentials, we obtain a system of Nv equations for the complex 

amplitudes of the isotropic nonequilibrium parts of the distribution functions ( ).
f  
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Here f0 is the equilibrium distribution in one valley,  is the complex amplitude of the 

electric potentials, U0 is the initial displacement amplitude in the acoustic wave, 
eqC  is the 

convolution of the deformation-potential tensor in the -th valley with the vectors e and q, 
m  is the effective mass of the density of states in one valley, the brackets <<…>> denote 

averaging over the isoenergetic surface, such averaging in the -th and -th valleys is implicit 

in , sW v  is the acoustic wave velocity , ( )
    W  is the probability of the inter-valley 

transition ( , ) ( , ),       and V is the volume of the crystal.  

On the basis of the second-order kinetic equations in �  we express ej  in terms of f 


 

and � : 
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Here 0
q  is the component of the vector q0 along the axis of rotation of the -th valley 

(energy ellipsoid), 1
,( )m 
�  and , �  are the principal components of the reciprocal 

effective mass tensor and the tensor ˆP , and the brackets <…> denote the usual average of 

kinetic theory. The overbar denotes arithmetic averaging over all valleys. 

The quantities f 


 and �  are determined from the system (2) and the Poisson equation 

for a piezoelectric semiconductor; e  and  sV  can be determined from the equation of 

motion of an elastic piezoelectric many-valley medium and the Poisson equation by 

expressing them in terms of 




f and the corresponding coupling constants (deformation-

potential and piezoelectric). We now note that for a wave with 110 ,  110   q e  and 

polarization vector 110 e  we have 0 eqC  for all . Thus, using the well-known 

Herring equation for the deformation-potential tensor, 

                               ,      eq d ij u i jC K K  

where 
iK  denotes the projections of the unit vector directed from the centre of the Brillouin 

zone to the centre of the -th valley and , d u  are the Herring constants, we obtained. 
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Expression (4a) is clearly equal to zero for valleys centered on the coordinate axes. Thus, 
the given wave is “deformation-potential inactive”, but of course it is piezoelectrically active, 
because the corresponding coupling constant.  
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(where qeq  is the convolution of the piezoelectric tensor with the vectors q0 and e0, 0 is the 

permittivity of the medium and e is the carrier charge). The calculations yield the following 

expressions for e, Vs,
ej , :eE , 
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Here J is the acoustic energy flux density vector,  is the density of the medium, n0 is the 
equilibrium number density of carriers in the crystal, rD is the screening radius, and p1, 2 is the 
probability of transitions between valleys situated on different coordinate axes and is, as will 
become apparent, a quantity on which the acoustoelectronic effects depend. This dependence 
vanishes in the isotropic case, as can be verified on the basis of (5). 

In the case of ultimately slow intervalley relaxation (i >> 1; q2Di >> 1, where D is the 

average diffusivity) and weak screening   ( << 1), we infer from (5) the exact results for aej  

and e from the corresponding theory for single-valley semiconductors, summed over all 
valleys. The comparison in this case must be made in the “mesoultrasonic” range (e >> 1; 
qlp < 1), because the energy relaxation in (5) is neglected in accordance with (1). 

In the opposite case of ultimately fast intervalley relaxation   (i << 1; q2Di << 1) and 
arbitrary screening, we infer from (5) the results of in which the partial mobility tensor 
ˆ ( ) x   is replaced by the arithmetic average (over all valleys) of the corresponding 

tensors for the individual valleys. The reason for this is that rapid inter-valley mixing, in 
effect, creates a single valley with the average mobility. 
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 A comparison of these limiting cases enables us to determine the significance of the 

dependence of ,aej  e etc., on   in the investigated crystals. An investigation has shown 

that this dependence is essentially very weak. A variation of   over the entire interval 

between the indicated limiting cases does not change ,aej  e, ,sv  aeE  by more than a few 

percent. The reason for this result is the following. In n-GaP AlSb, AlAs, and AlP, the 

isoenergetic ellipsoids are greatly elongated along the axes of rotation ( ).m m�  The 

vector q is directed relative to the ellipsoids on the x, y, and z axes in such a way that the 
effective partial mobilities are, respectively, 

     ,
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;  ( ). 
2
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Thus, for an arbitrarily strong anisotropy of the partial mobility in one valley ˆ( ),
  the 

anisotropy of   turns out to be comparatively slight. Consequently, the differences in the 

“heating” of the valleys will also be slight. Clearly, another significant consideration is the 

fact that the number of electrons with effective mobility (1/2) 
  is twice that of electrons 

with .
  Therefore, the pair of valleys  = x, y exists in effective dynamic equilibrium with, 

the valley  = z. It is interesting to note that if the ellipsoids were highly prolate ( ),m m�  

the effective mobilities  ,x y  and  z  would differ greatly, since  
, (1/ 2) ; ,x y z      �  

whereupon aej  and e would depend strongly on .  

The inferred virtual independence of piezoelectrically active acoustoelectronic effects on 
the probability of intervalley transitions in crystals of the n-GaP type is of heuristic 
significance, because it extends to a broader range of conditions than in the present article. It 
is valid under the strong influence of carrier traps, electron-electron collisions, various 
nonlinearities, and in the presence of an external electric field aligned with q (i.e., for the 

theory of sound  amplification), because the cause of the small influence of   remains in 

effect. In all of these cases, the allowance for   would make the theory inordinately 

cumbersome. 

CONCLUSION 

We note in conclusion the existence of another piezoelectrically active wave in cubic 

semiconductors: 111e q     . Because of its complete symmetry with respect to all 

valleys of the type <100> the influence of   on aej  and e  vanishes.  
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