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Heat and mass transfer in unsteady free convection flow of 
a visco-elastic fluid past an impulsively started porous wall 
have been studied. Rivlin-Ericksen model of the fluid has 
been chosen. The constitutive equations of the problem 
have been formulated and solved by perturbation 
technique applying the boundary conditions Expressions 
for velocity and temperature skin-friction and rate of heat 
transfer have been obtained. Graphs are plotted to present 
the velocity, temperature and concentration profiles, 
whereas the values of skin-friction, Nusselt number and 
concentration gradient are entered in tables. It is observed 
that the decrease in the value of permeability factor 
reduces the mean velocity as well as the transient velocity 
of the fluid. Concentration is affected by chemical reaction 
whereas temperature is influenced by source/sink 
parameter. 
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INTRODUCTION 

The unsteady free convectional flow problems are very important from technology point 

of view as it has got wide applications in the field of chemical engineering, aeronautics, 
electronics etc. Soundalgekar and Pop [1], have discussed the unsteady flow past an infinite 
vertical porous plate with constant or variable suction. The free convection flow of Walters 

B liquid past an infinite porous plate with constant suction when the wall temperature is a 
function of time is studied by Soundalgekar [2]. Mishra [3] et al. have solved the energy 
equation in the case of a particular class of non-Newtonian fluid in which the co-effecients of 
viscosity, besides being functions of physical properties, is also function of invarants of the 
rate of strain tensor. Agarwal and Upmanyu [4] have analysed the heat transfer in the presence 
of temperature dependent heat sources in a second order fluid flowing over a flat plate with 
uniform suction. The problem of unsteady free convective flow from vertical plate in the 
presence of a magnetic field with the wall temperature as a function of time has been 
presented by Mishra and Mohapatra [5]. However, the analysis of temperature field as 
modified by the generation or absorption of heat in moving fluids is important in view of 
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several physical problems such as (i) problems concerned with chemical reaction [6] and (ii) 
problems concerned with dissociating fluids [7, 8]. Teipe [9] studied the problem of the 
impulsive motion of a flat plate in a visco-elastic fluid. Choubey [10] has analysed the 
hydromagnetic flow of an electrically conducting liquid (Rivlin-Ericksen) [11] near an infinite 
horizontal flat plate started impulsively from rest in its own plane with constant velocity 
subjected to an externally applied uniform transverse magnetic field. Yadav and Singh [12] 
have studied the impulsive motion of a porous flat plate in an elastico-viscous liquid (Rivlin-
Ericksen) under the influence of uniform transverse magnetic field. They have observed that 
the velocity of the liquid is maximum near the porous plate i.e. y = 0 and decreases with 
increase of y, when the magnetic field is being considered as constant. 

 Singh and Naveen Kumar [13] have studied the free convection flow of an 
incompressible viscous fluid past an exponentially accelerated infinite vertical plate. Free 
convection effect on the flow of an elasto-viscous fluid past an exponentially accelerated 
vertical plate has been studied by Dash and Biswal [14]. Dash and Ojha [15] have studied the 
MHD unsteady free convection effect on the flow past an exponentially accelerated vertical 
plate. Biswal and Mahalik [16] have analysed the unsteady free convection flow and heat 
transfer of a viscoelastic fluid past an impulsively started porous flat plate with heat 
sources/sinks. Same researchers have investigated heat transfer in the free convection flow of 
a viscoelastic fluid inside a porous vertical channel with constant suction and heat sources 
[17]. Biswal [18] alone has studied heat and mass transfer effects of oscillatory hydromagnetic 
free convective flow of a viscoelastic fluid past an infinite vertical porous flat plate in the 
presence of Hall current. Further, Biswal [19] has analysed the unsteady free convection flow 
and heat transfer of a visco-elastic fluid past an impulsively started porous wall. 

The objective of the present problem is to study the flow, heat and mass transfer of a 
visco-elastic fluid (Rivlin-Ericksen) past an impulsively started porous wall in the presence of 
pores. 

BASIC EQUATIONS 

The second order approximation of the general constitutive equation given by Rivlin-

Ericksen [11] can be written as 

     T =  PI + A1 + A1
2 + A2 … (2.1) 

where T is the stress tensor 

  P is the pressure 

  I is the unit tensor 

  A1 and A2 are the first two Rivlin-Ericksen tensors. 

  ,  and  are three material constants.  

  A1 and A2 are given by the symmetric matrices defined by 

     1
ji

j i

vv
A

x x


 

 
 …(2.2) 

     2 2 .
ji m m

j j i j

DVDV V V
A

x Dt X Dt X X

     
          

 … (2.3) 

where, (i. j, m = 1, 2, 3) 
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Here the wall is porous and horizontal. We take X   axis along the flat wall and Y  axis 

normal to it. u  is the velocity of the fluid along X   axis and v  is the velocity along Y  axis. 

Consequently u  is a function of Y   and but v  is independent of .Y   

Let a constant impulsive velocity u be given to the plate in its own plane. For the 
boundary condition it is assumed that there is no slip at the wall. Thus the flow is governed by 
the following equations. 

Equation of Continuity : 

     0
V

V
Y


 


 = constant = V0 (2.4) 

We take V0 as the suction velocity and negative sign indicates that suction is towards the 
plate. 

Equation of Motion : 

     
2 3

0 *
2 2

u u u K u v
V v u g T T g C C

t y Ky t y
 

      
              

       
 … (2.5) 

Equation of Energy : 

      
2

2
P

T T K T
V S T T

Y t C Y


    
      

    
  … (2.6) 

Equation of Concentration : 

     
2

,
C C C

V D
t y y

    
    

   
 … (2.7) 

where     nk C C        

 , density of the fluid 

 0v
 
 

 
, the co-efficient of kinematic viscosity 

 ,k   the reaction rate constant and n is the order of the reaction followed from Aris[20] 

 K0,  the volume coefficient of elasticity of the fluid 

 K,  thermal conductivity of the fluid 

 C,  the specific heat of the fluid at constant pressure, 

 ,  the co-efficient of thermal expansion 

 *,  the co-efficient of mass expansion 

 g,  acceleration due to gravity, S, the source/sink term. 

 ,K   the dimensional permeability parameter. 

 ,S   the source/sink parameter, 

The boundary conditions imposed are 

  0,t   0u  , T T  , C C  , for 0Y    
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  0,t   ,u U   T T   +    ,iw t iwt
w wT T e C C T T e  

            for 0Y    

  0,u  T T  , C C    for Y     … (2.7) 

We introduce the following non-dimensional quantities 
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 


 in order to transform the equation of the motion and energy 

into their corresponding non-dimensional form as 
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 (2.9) 
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 
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+ S … (2.10) 
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c
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 … (2.10a) 

where, 

 Rc, the elastic parameter 

 T  , temperature of the fluid 

 wT  , temperature of the plate 

 T , temperature of the fluid at infinite 

 Gr, the Grashof Number 

 Gc, modified Grashof number, 

 K*, the dimensionless permeability parameter, 

 
0 p

r
C

P
K

 
 

 
, the Prandtl number, 

 K1, non-dimensional chemical reaction 

 S, source/sink parameter, 

 0, the coefficient of viscosity of the fluid 

 Now the modified boundary conditions are 
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      T > 0   u = 1,  = 1 + eit C = 1+ eit  at y = 0 

           u = 0,  = 0 C = 0, at y   … (2.11) 

SOLUTIONS OF THE EQUATIONS 

Equation (2.9) is a third order differential equation because of the presence of elastic 

parameter Rc. It requires three boundary conditions to be solved, while the present problem 
provides only two. Therefore, we apply small parameter perturbation technique following 
Beard and Walters [21] and assume that  

     u = u0 + eit u1 

      = 0 + eit 1, C = C0 + eitC1
  where   << 1 … (3.1) 

 Substituting equation (3.1) in (2.9) and (2.10) and then equating the coefficients of 0, , 
u0 and u1, we obtain the zeroth and first order equation for velocity and temperature as : 

Zeroth order equations: 

     0 0 0 0 0*

1
r cu Vu u G G C

K
        … (3.2) 

     0 0 0
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0
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P

       , … (3.3) 

      0 0 1 0
1

0
c

C VC K C
S

     … (3.3a) 

First order equations: 

       1 1 1 1 1*

1
1 c r ci R u Vu i u G G

K

 
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     1 1 1
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         … (3.5) 

      1 1 1 1
1

0,
c

C VC i K C
S

      … (3.5a) 

where the Prime ( )  denotes differentiation with respect to Y. 

 The boundary conditions given in equation (2.11) are further modified as 

        t > 0  u0 = 1, u1 = 0, 0 = 1, C0 = 1, 1 = C1 = 0 at y = 0 … (3.6) 

     u0 = 0, u1 = 0, C0 = 0,  0 = 0, 1 = C1 = 0 at y   

 Equation (3.3) and (3.5) are second order homogeneous differential equations which are 
solved separately with the help of boundary conditions given in (3.6) to give. 

     0 = 0rP v Ye  … (3.7) 

     C0 = 0cS V ye  … (3.7a) 
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and     
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and V = V0, obtained from the solution of equation of continuity (2.4) Hence, the 
temperature field is given by 

     0 10 1 ri t P V Y i t a Ye e e e          , … (3.9) 

     C = C0 + eitC1 = 0 2cS V y iwt a ye e e   , … (3.9a) 

where 1i    the imaginary term. 

 Next, the values of 0 and C0 from equation (3.7) and (3.7a) respectively are put in 
equation (3.2) which is a second order inhomogeneous differential equation. The 
complimentary function (C.F) and Particular integral (P.I.) of this equation are found out to be 

     C.F. = 331 2
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Hence, the complete solution of equation (3.2) is u0 = C.F. + P.I. 

Using the boundary conditions (3.6) the constants C1 and C2 are evaluated to be 
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In the similar fashion, equation (3.4) is solved with the help of equation (3.8) and (3.8a) to 
give u1 as 

u1 =
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Finally, the velocity field is given by 

      u = u0 +  eitu1 
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It is observed that the final expression for velocity (3.12) and temperature (3.9) contain 
imaginary terms along with real parts. In order to separate the real and imaginary parts, 
equations (3.12) and (3.9) can be written as 

   u =  5 0 05 4 cos sinr ca y P V Y S V y
r iP e P e e M t M t           

      + i (Mr sin t + Mi cos t)  … (3.13) 

and    = 0 +  [(r cos t) – i sin t) + i (r sin t + i  cos t)]  (3.14) 

   C = C +  (Cr cos t)  C2 sin t) + i (Cr sin t + Ci cos t)] (3.14a) 

Where the constants are 
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G G

P V P V
K



 

 

    P5 = 1 + P4 
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    P6 = 2 2cosP Ye Q Y  

    P7 = 2 2sinP Ye Q Y   

    P8 = 1 1cosPYe Q Y  , P9 = 1 1sinPYe Q Y   

    Mr = P3P6 – Q3P7 – P3 (P8 + P10) + Q3 (P9 + P11] 

    Mi = Q3 [P8 + P10] + P3 [P9 + P11] – Q3P6 – P3P7 

    r = P8, I  = P9 

    Cr = P10, Ci = P11 

Thus the velocity and temperature field in terms of the fluctuating parts (real) are 

     u (y, t) = u0 (y) +  (Mr cos t – Mi sin t) … (3.15) 

      (y, t) = 0 (y) +  (r cos t – 1 sin t) … (3.16) 

     C (y, t) = C0 (y) +  (Cr cos t   Ci sin t), … (3.17a) 

Now, the transient velocity and transient temperature for 
2

t


   are given by 

     u = u0 – Mi 

      = 0 – i, C = C0  C1  … (3.17) 

Mean Skin Friction : 

The value of the mean skin friction at the wall is given by 

     
2

0 0
2

0 0

m
w c

y y

du d u
R

dy dy 

     … (3.18) 

and putting    u0 = 3 0 05 4 ,r ca y P v y S V yP e P e e        

mean Skin friction is found out to be  

     m
w  = P5 (Rca3 – 1) a3 – P4 (RcPV0 – 1) PV0  … (3.19) 

Skin Friction : 

The value of the skin friction at the wall is given by 

     
2

2
0 0

m
w c

y y

du d u
R

dy dy 

    … (3.20) 

and is found out to be 

   m
w wT   [(Br cos t – Bi sin t) + i (Bi cos t + Br sin t)  … (3.21) 

where   Br = (P1P3 – P2P3 + Q1Q3 – 2Q Q3) + Rc 

      (P2
2P3 – P3

2
2Q  –  P1

2P3 + P3Q1
2 + 2P2Q3 2Q

 
– 2P1Q1Q3) 

    Bi = (P3Q1 – P3 2Q
 
–

 
P1Q3 + P2Q3) + Rc 

      (2P3P3 2Q  – 2P1P3Q1 – P2
2Q3 + 2

2Q Q3 + Q3P1
2 – Q1

2Q3) 
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Taking only the real part of equation (3.21) we get 

   m
w wT   [(Br cos t – Bi sin t) = m

w +  |B| cos (t + )  … (3.22) 

where    2 2
r iB B B   

      tan i

r

B

B
   

Mean rate of heat transfer : 

The mean rate of heat transfer is given by 

     0
0 0

0y

Nu PV
y




  


  … (3.23) 

Rate of heat transfer: 

The rate of heat transfer at the wall is given by 

   
0y

Nu
y




 


, which contains the real and imaginary parts as well. 

Taking the real part only, we have 

    Nu = Nu0 +  (Hr cos t – Hi sin t) 

     = Nu0 +  | H | cos (t –  ) … (3.24) 

where   Hr  = P1 

    Hi = Q1 

    | H | =  2 2
r iH H  

    tan  = i

r

H

H
 

Concentration gradient : 

    CG0  = 0

0y

C

y






, … (3.25) 

and    CG = 
0y

C

y






, … (3.26) 

Putting the value of C0 from (3.7a) in the equation (3.25), we obtain 

    CG0  =  0 00
0

0

c cS V y S V y
c

y
y

e S V e
y

 





 


  

     = ScV0, (3.27) 

Similarly, putting the value of C from equation (3.9a) in the equation (3.26), we have  
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    CG =  0 2

0

cS V y iwt a y

y

e e e
y

 




 


 

     = ScV0 + a2 e
it = ScV0 + a2 [cos t + sin t] 

     = CG0 +  (Qr cos t  Qi sin t) 

     = CG0 +  | Q | cos (t  r), … (3.28) 

where  Qr = P2, Qi = Q2,  | Q | =  2 2 , tan i
r i

r

Q
Q Q r

Q
   

RESULTS AND DISCUSSIONS 

Numerical results for velocity, temperature, skin friction and the rate of heat transfer are 

obtained with the help of the software facilities available at the computer centre of Utkal 
University, Bhubaneswar. Velocity and temperature profiles are plotted and shown by the 
curves of Fig. 1-5. while the values of shear treases and the rate of heat transfer at the wall are 
entered in Tables 1- 8. 

Fig. 1 exhibits the effects of Gc on the velocity u. It is observed that the increase in Gc 
increases the velocity u. 

 

Fig 1. Effects of Gc on transient velocity u. 

The effects of Rc, Gr and K* on the transient velocity u are shown in Fig. 2. The behaviour 
of transient velocity with the elastic property of the fluid is evidently very peculiar (curves I 
and II). The transient velocity first rises and then fall switch the rise of Rc. The point of 
transition lies at a distance 2.0 < Y < 4.0. Increase in Grashof number produces a sharp rise in 

Curve  Gc 

 I  0.0 

 II  2.0 

 III  4.0 

IV  6.0 

 V  10.0 

 

Rc = 0.05,  = 5.0 
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the transient velocity while a decrease in the value of the permeability parameter reduces the 
transient velocity. Thus the permeability of the pores controls the flow of the fluid. 

 
Fig 2 : Effects of Rc Gr and K* on transient velocity (u). 

Fig. 3 shows the influences of Pr,  and K* on transient velocity. As K* decreases the 
transient velocity decreases from the same maximum u = 1.0. It is also noticed that the rise in 
the values of  enhances the mean velocity slowly (curves II and III). Increase in Prandtl 
number decreases the transient velocity similar to that observed in case of permeability 
parameter K*. However, the nature of the curves of transient velocity for all types of variations 
of Pr,  and K* is alike with the increase of distance (y) from the plate. 

Curve Rc Gr K* 

I 0.05 5.0 1.0 

II 0.10 5.0 1.0 

III 0.10 10.0 1.0 

IV 0.10 10.0 0.5 

Pr = 9.0,  = 10.0, Gc = 0.0 
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Fig 3 : Effects of Pr  and K* on transient velocity (u). 

Mean temperature distributions in the fluid with Prandtl number are shown by the curves 
of Fig. 4. It is observed that the increases in Prandtl number decreases the mean temperature. 
Fig. 5 exhibits the effects of Pr and  on transient temperature 0. As  increases the transient 
temperature decreases and similar effect is marked in case of Pr. 

 
Fig. 4 : Effect of Pr and  on transient  temperature () 

Curve Pr  K* 

I 9.0 5.0 1.0 

II 9.0 5.0 0.5 

III 9.0 10.0 0.5 

IV 16.0 10.0 0.5 

Rc = 0.05, Gr = 5.0, Gc = 0.0 

Curve Pr  

I 16.0 7.0 

II 16.0 10.0 

III 9.0 10.0 

IV 5.0 10.0 

Gr = 5.0, Gc = 0.0, K* =0.5 



82 Acta Ciencia Indica, Vol. XL P, No. 2 (2014) 

 

Fig. 5 shows the effects of Sc on concentration while the other parameters are fixed. It is 
observed that the concentration decreases with the rise of Sc but the nature of the profiles with 
respect to the distance from the porous wall remains same irrespective of the values of 
Schmidt number. 

 

Fig. 5 : Effects of Sc on concentration C for Pr = 2.0, K1
 = 4 

Table : 1. Effect of Pr, Gr, K
* and Rc on mean skin-friction ( )m

w  for  = 5.0. 

Pr Gr K*/Rc 1.0 2.0 3.0 

  100 1.6496 0.7423 0.1531 

 5.0 20 1.44138 5.8860 × 10–1 5.2366 × 10–2 

9.0  10 1.2331 0.4349 – 0.484 

  100 4.3505 2.9497 2.0890 

 10.0 20 3.8788 2.5350 1.7285910 

  10 3.4070 2.1202 1.3681 

  100 0.9086 0.2212 – 0.2597 

 5.0 20 7.0403 × 10–1 7.0082 × 10–2 – 3.5837 × 10–1 

  10 0.4995 – 0.0810 – 0.4571 

  100 2.89684 1.9075 1.2634 

 10.0 20 2.4041 1.4979 9.071153 × 10–1 

  10 1.9397 1.0884 0.5508 
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Table 1 has been prepared to show the effects of elastic parameter. Prandtl number. 
Grashof number and permeability parameter on the mean skin friction. It is noticed that the 
mean skin friction decreases with increase of Rc and P4 but increases with rise of Grashof 
number, keeping all other parameters fixed. The mean skin friction decreases with the 
decrease of permeability parameter K*. 

Table – 2. Effects of Pr, Gr, , K* and Rc on mean skin-friction (w) 

Pr Gr  K*/Rc 1.0 2.0 3.0 

   0.0 1.7302 8241 2358 

  5.0 0.05 1.4558250 6.048250 × 10–1 7.006954 × 10–2 

 5.0  0.10 1.2720 0.4718 – 0.0132 

   0.0 1.7060310 0.7994 0.2107 

  10.0 0.05 1.4533400 5.997936 × 10–1 0.281819 × 10–2 

   0.10 1.2761710 0.4773 – 0.0066 

9.0   0.0 4.5117 3.1134 2.2545 

  5.0 0.05 3.9076 2.5674 1.7639980 

 10.0  0.10 3.4848 2.1941 1.4385 

   0.0 4.4635 3.0638 2.2041 

  10.0 0.05 3.9027 2.5574 1.74495 

   0.10 3.49307990 2.2050730 1.4517 

   0.0 0.9727 0.2860 – 0.1493 

  5.0 0.05 7.056734 × 10–1 7.281967 ×10–1 – 3.547109 × 10–1 

 5.0  0.10 0.5473 – 0.0345 – 0.4116 

   0.0 0.9536 0.2666 – 0.2140 

  10.0 0.05 0.7221 8.762772 × 10–2 – 3.412881 × 10–1 

   0.10 0.5444 – 0.0365 – 0.4129 

16.0   0.0 2.9966 2.0371 1.3942 

  5.0 0.05 2.4073 1.5034 9.144366 × 10–1 

 10.0  0.10 2.0353 1.1815 0.6417 

   0.0 2.9585 1.9983 1.35548 

  10.0 0.05 2.4401 1.5330 0.9413 

   0.10 2.0296 1.1775 0.6392 

Table 2 enables us to study the dependence of skin friction on P, G, , K* and Rc. It is 
observed that the increase in the value of Prandtl number (P) causes a lowering in the value of 

skin friction. A similar effect is also observed for Rc and 
*

1

K
. But the increase in Grashof 

number enhances the skin friction. What is most interesting is that the skin friction falls with 
the rise in  for viscous fluid (Rc = 0) while for visco-elastic fluid (Rc > 0) there is no 
remarkable change 

 Some numerical values of the amplitude | B | and phase angle tan  of the skin friction 
are presented in tables 3 and 4 respectively. From table 3 it is evident that the amplitude | B | 
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decreases with the fall in the value of K*. Rc and . However as G increases | B | also 
increases. 

Table 3. Effects of G, , K* and Rc on | B | for P = 9.0 

Pr  K*/Rc 1.0 0.5 0.3 

  0.0 0.5404 0.5377 0.5339 

 5.0 0.05 3.731497 × 10–1 3.667688 × 10–1 3.596417 × 10–2 

5.0  0.10 0.3112 0.3011 0.2909 

  0.0 3.862851 × 10–1 0.3857 0.3849 

 10.0 0.05 2.788343 × 10–1 2.264832 × 10–1 2.239676 × 10–1 

  0.10 2.178482 × 10–1 0.2148 0.2118 

  0.0 1.0807 1.0754 1.0644 

 5.0 0.5 0.7463 0.7335 7.192835 × 10–1 

10.0  0.10 0.6225 0.6022 0.5818 

  0.0 0.7726 0.7715 0.7699 

 10.0 0.05 0.4577 0.4530 0.4479 

  0.10 4.356963 × 10–1 4.296915 × 10–1 4.236445 × 10–1 

Table – 4. Effects of Pr, , K* and Rc on phase then  of the skin friction 

Pr  K*/Rc 1.0 0.5 0.3 

  0.0 – 0.8932 – 0.8526 – 0.8162 

 5.0 0.05 – 5.068940 – 4.4096190 – 3.9379840 

9.0  0.10 1.2490 1.2879 1.3173 

  0.0 – 9.325015 × 10–1 – 0.9102 – 0.8888 

 10 0.05 3.6937500 3.9219060 4.1673190 

  0.10 1.57683 × 10–1 0.1610 0.1633 

  0.00 – 0.8738 – 0.7424 – 0.8139 

 5.0 0.05 – 33.4173300 – 19.6549200 – 14.3895200 

16.0  0.10 0.6172 0.6200 0.6186 

  0.0 – 0.9163 – 0.8989 – 0.8822 

 10.0 0.05 1.6996 1.7360450 1.7711130 

  0.10 – 0.1228 – 0.1230 – 0.1239 

Table 4 envisages an enhancement of phase angle with the decrease in the value of 
permeability parameter. It is important to note here that the phase angle is negative for 
Newtonian fluid i.e. Rc = 0. For small value of  = (5.0) it is noticed that tan  decreases as 
the value of Rc goes from 0 to 0.05 and then increases for Rc = 0.1. However, this effect is 
reversed for  (= 10.0). As regards the effect of Prandtl number on the phase angle tan  it is 
concluded that the rise in the value of Pr causes a rise in the tan  value in case of Newtonian 
fluid and for non-Newtonian fluid it causes a fall in the value of tan . 
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 Further it is noticed that for Newtonian fluid (Rc = 0.0) and for non-Newtonian fluid 
having elastic-parameter Rc (= 0.1) the phase tan  decreases with the rise of  but it increases 
for Rc = 0.05. 

Table 5. Effect of Pr on mean rate of heat transfer (Nu0) for various values of Pr when 
V0 = 0.01 

Pr 5.0 9.0 12.0 16.0 

Nu0 0.5 0.9 1.2 1.60 

Table 6. Effect of Pr and  on heat transfer (Nu) for V0 = 0.1,  = 0.2 

/P 5.0 10.0 

9.0 1.9408200 2.3331510 

16.0 3.0299810 3.5524360 

Table 5 and 6 show the effects of P and  on mean rate of heat transfer and the rate of 
heat transfer respectively. It is worthy to note here that the increase in Prandtl number 
increases the value of mean rate of heat transfer and the rate of heat transfer. An increase in  
increases the rate of heat transfer while the mean rate of heat transfer remains unaffected as its 
mathematical expression does not include . 

Table 7. Effects of Pr,  and K* on | H | for Rc = 0.05, G = 5.0 

Pr /K*  1.0 0.5 0.3 

9.0 5.0 3.731497 × 10–1 3.667688 × 10–1 3.596417 × 10–1 

 10.0 2.288343 × 10–1 2.264832 × 10–1 2.2367 × 10–1 

16.0 5.0 2.743506 × 10–1 2.639454 × 10–1 2.640074 × 10–1 

 10.0 1.777074 × 10–1 1.757561 × 10–1 1.737325 × 10–1 

Table 8. Effects of Pr and  on tan  

Pr  tan  

9.0 5.0 9.0.4282 × 10–1 

 10.0 9.350950 × 10–1 

16.0 5.0 8.810339 × 10–1 

 10.0 9.143862 × 10–1 

The effect of Pr,  and K* on | H | are shown in Table-7, which leads to conclude that | H | 
decreases with the increase in any one of the above mentioned parameters. The increase in the 
value of  increases the phase tan  of the rate of heat transfer as evident from the readings of 
table 8. It also reveals that the Prandtl number increase lowers the tan  value. 

CONCLUSIONS 

The systematic study of the above problems leads to the following conclusions : 

 The velocity of the liquid decreases with the decrease of permeability 
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 The velocity is maximum near the porous wall and decrease with the increases of 
distance from the wall. 

 The increase in Prandtl number decreases the temperature of the liquid, which is 
maximum near the plate and reduces with the increase of distance from the plate. 
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