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The analytic solutions for viscous-fluid Universe coupled 
with massive scalar field in the spherically symmetric 
isotropic line element are investigated, and their physical 
and geometrical properties are studied from various 
angles. 

 

INTRODUCTION 

The meson particles with the charge of the electron and masses of the order of 

magnitude of 200 electron masses are found in cosmic rays.  These particles have a good deal 
to do with the nuclear forces.  The scalar meson field is a matter field and is associated with 
zero-spin chargeless particles such as   and k  mesons.  The study of such a field in general 
relativity has been initiated to provide an understanding of the nature of space-time and the 
gravitational field associated with neutral elementary particles of zero spin.  Scalar fields, as 
they help in explaining the creation of matter in cosmological theories, represent matter fields 
with spinless quanta and can describe the gravitational fields. Yukawa’s theory (Yukawa 
introduced the short-range meson field) is based on the assumption that all interactions must 
be transmitted through space from point to point by the mediation of a field, which is 
consistent with the principle of relativity; that is, the equations must be Lorentz-invariant. 

The motivation for taking the scalar field in addition to the viscous fluid as energy-
momentum tensor is with a view to obtaining solutions for the cosmological model and to 
study its physical properties.  It is noted that all the normal stresses are equal due to the 
spherical symmetry assumed and the shear viscosity factor drops from the field equations.  
The bulk viscosity need not be zero for the viscous fluid distribution coupled with the scalar 
field.  The coefficient of bulk viscosity   in the process of studying the solutions is found to 

be accompanied by a change in volume (that is, in density). 

FIELD EQUATIONS AND THEIR SOLUTIONS 

The line element considered is 

      2 2 2 2 2 2 2 2sin ,ds e dt e dr r d r d         … (1) 

where   is a function of r and t; and   is a function of t only. 

 The energy-momentum tensor for a viscous fluid is given by 

     ,v v vT V S     

166/P013 

Acta Ciencia Indica, Vol. XL P, No. 1, 25 (2014) 



26 Acta Ciencia Indica, Vol. XL P, No. 1 (2014) 

 

where vV  and vS  are the energy-momentum tensors for the viscous fluid and the massive 

scalar field.  Here 

       2 ,v v v vV u u p H           … (2) 

where p is the isotropic pressure; ,  the fluid density;   and ,  the co-efficients of bulk and 

shear viscosity. ;u
   is the expansion factor of the fluid lines, vH  is the projection tensor 

defined by .v v vH u u g     v  is the shear tensor given by 

      ; ;
1 1

2 3
v v v vu H u H H 

           

and u  is the flow vector satisfying the relation … (3) 

     1v
vg u u

   

Thus, in addition,   2 21
,

2
v v vS g M

            … (4) 

where the scalar potential  ,r t  satisfies the Klein-Gordon equation 

     2
;

v
vg M

     … (5) 

Here,  ,r t  is the source density of the scalar field and M is related to the mass of the 

zero-spin particle by 
m

M 


 (
2

h



 , where h is Planck’s constant). 

 Considering the comoving coordinate system, we get 

     1 2 3 0,u u u      4 / 2u e . … (6) 

The orthogonality conditions for viscous fluid are satisfied identically, namely 

   0,v
vH u   0,v

vu      0v
vu      0v

vu u   … (7) 

where  ; ;
1

2
v v vu H u H 

        are the rotation tensors, and ;v vu u H
  are acceleration 

components. 

 The Einstein field equation 
1

8
2

v v vR g R GT       gives 

 
2

2 2 2 2 23
8 4 ( )

4 4 2
e e G p G e e M

r
   

      
                     

  

       …(8) 

   
2

2 2 2 2 23
8 4

4 4 2
e e G p G e e M

r
   

      
                     

  

     …(9) 

 2 2 2 2 21 2 3
8 4

4 4
e e G G e e M

r
    

                  
 

   … (10) 
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     8 G        … (11) 

The overhead dot and prime, respectively, denote differentiations w.r. to t and r; and a 
semi-colon followed by a subscript denotes covariant differentiation. 

 Subtracting (9) from (8), we have 

     
2

28
2 2 4

G
r

    
       … (12) 

Case I :  Here we assume 28 .
2

G
r


    … (13) 

Then from (12) we get 
2

0
2 4

  
   which gives 

     2 log ,
2

r
m n

 
    

 
 … (14) 

where n is an arbitrary constant and m is an arbitrary function of time.  Then from (13) and 
(14) we get   

     
 

1/ 2
1

1/ 2

2
sin ,

28

r
a

nG

  
   

 
 … (15) 

where a is an arbitrary constant. 

 Now from (8) and (9) we have 

   

2
1/ 2

/ 2 2 11 2
24 8 sin

16 28

r
p G m GM a

G nG
 

                    

  

      23 1 1 1
2

2 2 4 4
m mn

e e m m m e
r

   
      

 
      … (16) 

Again, from (10) we get 

 

2
1/ 2

1/ 22 1 2 11 3 3 9
4 2 8 sin

8 4 8 4 2
m mn r

e m e r e GM G a
G n

    

                     

  …(17) 

Then from (5) we have  

     1/ 2 1/ 22 1 3/ 23
2 8 sin 8 2 .

2 4
mr

M G a n G e r n r
c

   
  

       
  

 …(18) 

Case II : We take here           2 216 G       … (19) 

Then from (12) we get 
2

0
2 4 2r

   
    which gives 

      22log 4 ,r g d     … (20) 
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where d is an arbitrary constant and g is an arbitrary function of time. Then from  
(19) we get 

     
 2 4

r

G r g
 

 
 … (21) 

Again from (11) and (21) we have 

     
 2

2

4

g

G r g
  

 

  … (22) 

Then (21) and (22) give 

      21
log 4

2
r g

G
  


 … (23) 

Now from (8) and (9) we get 

     
3 2

2 2 2 2 21
16 4 4 2 4 8 20

2
dP e r g e r g r g gg gg g g r

G

 


          
       

        
21 2

/ 2 2 2 2 2 21
24 4 4 4 log 4

4
G ge r g e g r g M r g

 
  

        


   … (24) 

Again, from (10) we get 

       
2 22

2 2 2 2 21
4 256 4 6 log 4

8
d M

e g r g e r g r g r g
G




 
        

  
  … (25) 

From (5) we have 

          
3 2

2 2 21
48 4 exp 16 4r g d g r g

G

 
      

  

           
1

2 2 21
2 4 log 4

2
g g r g M r g

 
      


   

PHYSICAL AND GEOMETRICAL PROPERTIES 

Case I :  The metric takes the form 

    
2

2 2 2 2 2 2 2 21
sin ,

2
mds e dt n r e dr r d r d


  

        
 

 

where   and m are arbitrary functions of time.  The fluid pressure and density both are found 

to be decreasing with the increase of radial distance.  The “expansion factor” of the fluid lines 

is given by / 23

2
e m   .  Here the source density of the scalar field is a decreasing function 
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of r.  In this case, the spectral shift will be 
  / 2 ,be
  




 where b is an arbitrary 

constant. 

Case II :  In this case the metric takes the form 

      
2

2 2 2 2 2 2 2 2 24 sin ,dds e dt e r g dr r d r d          

where   and g are arbitrary functions of time.  Thus pressure and density of the fluid here, 

which are obtained respectively, both are found to be decreasing functions of r.  The 

“expansion factor” of the fluid lines is given by  
1

2 / 212 4 .g g r e


     The source 

density of the scalar field is a decreasing function of r and the scalar potential   is a 

decreasing function of time. 

The rotation tensors v  and the shear   are come out to be zero.  For this case, the 

spectral shift in wavelength, as measured at the origin, will be  

     
  / 2 ,ce
  




 

where c is an arbitrary constant. 
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