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This paper is devoted to introduce and study regular b-
Lindelöf, countably rb-compact & sequentially rb-compact 
topological  spaces and their interrelationship. In this 
context the concept of second countable rb-space is 
projected and interrelated to rb-Lindelöf space with proper 
examples.  

 The rb-convergence of a sequence due to regular b-open 
sets in topological space has been conceptualized and the 
relation of rb-convergence with rb-continuity and rb-
irresolute mapping has been discovered here. It also deals 
with the relation between rb-convergent sequence and 
convergence of a sequence in a space with suitable 
example. 
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INTRODUCTION & PRELIMINARY 

The notions of b-open sets and regular b-closed sets have been introduced and 

investigated by D. Andrijevic [1] and N. Nagaveni & A. Narmadha [2] and [3], respectively. 
In 2007, M. Caldas & S. Jafari projected some applications of b-open sets in topological 
spaces [4] whereas 2009 was the year for the conceptualization of the class of generalized b-
closed sets and its fundamental properties by A. Al-Omari & M.S.M. Noorami [5]. 

The class of generalized closed sets & regular generalized closed sets was coined & 
framed by N. Levine [6] and N.Palanniappan & K. Chandrasekhar Rao [7], respectively. 

 We, here, introduce and study rb-Lindelöf space, countably rb-compact space and 
sequentially rb-compact space. We also study the new concept of second countable rb-space 
along with the rb-converge of a sequence and its behavior under rb-continuity/irresolute in a 
topological space. 

As usual throughout this paper (X, T) means a topological spaces on which no separation 
axioms are assumed unless otherwise mentioned. 
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For a subset A of a space (X, T), cl (A) and int (A) stand as the closure of A and the 
interior of A, respectively. 

Also, X-A or AC represents the complements of A in X. 

Now, the following definitions  are recalled which are useful in the sequel : 

Definition (1.1): A subset A of  a space (X, T) is said to be b-open [1]  if  

                               A  int (cl (A))    cl (int (A)). 

Definition (1.2): A subset A of a space (X, T) is said to be regular closed [8] if                  
A = cl(int(A)). 

Definition (1.3): A subset A of a space (X, T) is said to be regular b-closed (briefly rb-
closed) [3] if r cl (A) U whenever A   U and  U is b-open in (X, T). 

Definition (1.4): A subset A of a space (X, T) is said to be 

 (1) Generalized closed (briefly g-closed) [6] set if cl (A) ⊂	U whenever A ⊂ U & U is 
open in X. 

(2) Generalized semi-closed (briefly gs-closed) [9] set if  scl (A) ⊂ U whenever  A ⊂ U  
& U is open in X. 

(3) Semi-generalized closed (briefly sg-closed) [10] set if scl (A) ⊂ U whenever A ⊂ U  
& U is semi-open in X . 

(4) Regular generalized closed ( briefly rg-closed) [7] set if cl (A) ⊂ U whenever         
A ⊂ U & U is regular open in X.  

(5) Generalized pre-closed (briefly gp-closed) [11] set if pcl (A) ⊂ U whenever A ⊂ U  
& U is open in X. 

(6) Generalized b-closed (briefly gb-closed) [5] set if bcl (A) ⊂ U whenever A ⊂ U & 
U is open in X. 

The compliments of the above mentioned closed sets are their respective open sets. 

The intersection of all regular- closed sets of X containing A is called regular-closure of A 
and is denoted by rcl (A). 

The union of all regular-open sets of X contained in A is called the regular-interior of A 
and is denoted by rint (A). 

The family of all rb-open (respectively rb-closed) sets of (X, T) is denoted by RBO(X) 
(respectively RBC(X)).The family of rb-open sets of (X, T) containing a point x	∈ X is denoted 
by RBO(X, x). 

The following diagram is obtained as a part of diagram in [12]. 

                                              Diagram 

regular closed          closed                    rg-closed                           g-closed 

 

                                 p-closed                    b-closed 

 

rb closed                 gp-closed                                                           gb-closed 

Now, the compactness is dealt with covering the sets by rb-open sets as mentioned in the 
following definitions: 



Acta Ciencia Indica, Vol. XL M, No. 2 (2014) 259 

Definition (1.5) : In a topological space (X, T), a collection  C of rb-open sets in X is 
called a rb-open cover of A ⊆ X if  A	⊆	∪{Vr : Vr ∈	C}. 

Definition (1.6) : A topological space (X, T) is called a rb-compact space/rb-Lindelöf 
space if every cover of X by rb-open sets has a finite subcover/countable subcover. 

Definition (1.7) : In a topological space (X, T), a subset A of X  is said to be rb- compact 

relative to X if for every rb-open cover C of A, there is a finite sub collection *C  of C that 
covers A. 

Definition (1.8) : A subspace of a topological space, which is rb-compact as a topological 
space in its own right, is said to be rb-compact subspace. 

The following lemma (1.1) is enunciated for the above definitions to be consistent: 

Lemma (1.1): 

           (1)   Every rb-compact space is a rb-Lindelöf space. 

           (2)   Every rb-Lindelöf space is a Lindelöf space. 

           (3)   Every countable space is a rb-Lindelöf space. 

        (3(a))  A  rb-Lindelöf space need not be a rb-compact space. 

          (4)    rb-compactness is not hereditary. 

Proof:  The statement follows from definitions (1.6), (1.7) & (1.8). 

SECOND COUNTABLE RB-SPACE 

Definition (2.1):A topological space (X, T) is said to be a second countable rb-space or 

a  second axiom rb-space if it  the following axiom, known as the “Second Axiom of rb-
countability” (framed analogous to second Axiom of countability): 

[C1] There exists a countable rb-open base for the topology T. 

We, however, coin rb-open base for the space (X, T) as a sub collection B	⊆ RBO(X) such 
that every member of T is a union of members of B. 

Thus, a topological space (X, T) is called a second countable rb-space iff there exists a 
countable rb-open base for T. 

Theorem (2.1): Every second countable rb-space is a rb-Lindelöf space. 

Proof: Let the topological space (X, T) be a second countable rb-space.  

Let  G 
 be a rb-open cover of X. Then  

     X G


 
 

…(1) 

 As X being  second countable rb-space, there exists a countable rb-open base for the 
topology T. Let B = (Vn) be a countable rb-open base for T. From (1) it follows that for each 

x	∈ X, there exists  x  such that                                          

                                        
x

x G  …(2) 

 Now, since B is a rb-open base for T, each open set is a union of some members of B. It, 

therefore, follows from statement (2) that for each x	∈ X, 
xnV B    Such that  
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x xn rx V G   …(3) 

Hence,    
xn

x X

X V


   …(4) 

Since, the family  :
xnV x X  B and B is countable, it follows that the family 

 :
xnV x X  is countable. Hence, we can write  

        0: :
x kn nV x X V k    …(5)  

where 0  is a  countable index set. 

This means that for each 0 , kk x X    such that .
k xkn nV V  

Hence, according to (2) & (3), for each 0,k  we select one index 
kx  such that   

     
x xk kn rV G  …(6) 

Thus, from (4), (5), (6), we have  

     

0 0

x x xk kn n
x X k k

X V V G
  

      

But always   

0

.
xk

k

G X


  

Hence,    

0

xk
k

X G


   … (7) 

Moreover the family 0{ : }
xkrG k   is countable, hence by (7), this family is a countable 

rb-open subcovering of X. 

Thus, every second countable rb-space is a rb-Lindelöf space. 

Hence, the theorem. 

 SEQUENTIALLY RB-COMPACT SPACES 

The notion of convergence is fundamental in analysis and topology. Before we take up 

the concept of sequentially rb-compact spaces & countably rb-compact spaces, we project the 
notion of rb-convergence of a sequence, rb-limit of a sequence, rb-accumulation point of a set  
in a topological space in the following manner: 

Definition (3.1) : Let (X, T) be a topological space and A	⊆ X. 

A point p	∈ X is called a rb-limit point (or a rb-cluster point or a rb-accumulation point) 
of A iff every rb-open set containing p contains a point of A other than p.  

i.e. symbolically [p	∈ (X, T) A	⊆ X]   [p = A rb-limit point for A] 

                                                              [∀ N ∈	RBO (X) p	∈   [N – {p}] ∩	A	≠	φ]] 
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Definition (3.2) : rb-convergent sequences : A sequence {xn} in a topological space    
(X, T) is said to  be rb-convergent to a point x0 or to converge to a point x0 ∈	X with respect to 

rb-open sets , written as 0 ,
rb cgt

nx x


 if  for every rb-open set L containing x0, there exists 

a positive integer m, s.t.  n	≥	m ⇒ xn ∈	L. 

This concept is symbolically presented as: 

                             0 0lim
rb cgt

n n
n

x x rb x x



     

Obviously, a sequence {xn} in a topological space (X, T) is said to be rb-convergent to a 
point x0 in X iff it is eventually in every rb-open set containing x0. 

Definition (3.3) : rb-limit point of a sequence : A point x0 in X is said to be rb-limit 
point of a sequence {xn} in a topological space (X, T) iff every rb-open set L containing x0 
there exists a +ve integer n for each +ve integer m such that n	≥ m ⟹ xn  ∈  L. 

This means that a sequence {xn} in a topological space (X, T) is said to have x0 ∈ X  as a 
rb-limit point iff for every rb-open set  containing x0 contains xn for finitely many n. 

Definition (3.4) : Sequentially rb-compact spaces : A topological space (X, T)  is said to 
be sequentially rb-compact iff every sequence in X contains a sub-sequence which is rb- 
convergent to a point of X. 

Definition (3.5) : Countably rb-compact spaces : A topological space (X, T) is said to 
be countably rb-compact (or to have rb-Bolzano Weierstrass Property) iff every infinite subset 
of X has at least one  rb-limit point in X. 

Or 

A topological space (X, T) is known as countably rb-compact iff every countable T-rb-
open cover of X has a finite sub-cover. 

Remark (3.1):  

(i) Every finite subspace of a topological space is sequentially rb-compact. 

(ii) Every  rb-compact space is a countably rb-compact space. 

(iii) Every cofinite topological space is a countably rb-compact space. 

Theorem (3.1) : Every sequentially rb-compact topological space (X, T) is countably rb-
compact . 

Proof:  Let (X, T) be a sequentially rb-compact topological space. Let E be any infinite 
subset of X. Then there exists an infinite sequence{xn} in E with distinct terms. 

Since (X, T) is  sequentially rb-compact , the sequence {xn} contains a sub sequence {xnk} 
which is rb-convergent  to x0 ∈	X. 

This means that each rb-open set containing x0 contains an infinite number of elements of 
E. 

Hence, x0 is an rb-accumulation point of E. 

Thus, every infinite subset E of X has at least one rb-accumulation point in X. 
Consequently (X, T) is countably rb-compact. 

i.e. sequentially rb-compactness implies countable rb-compactness. 

Hence, the theorem. 
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Remark (3.2) :  A countably rb-compact space is not necessarily sequentially rb-compact  
as illustrated by following example: 

Example (3.1) : Let N = {n : n is a natural number}. 

Let T be topology on N generated by the family H = {{2n – 1, 2n} : n ∈ N}of subsets of 
N. 

Let E be a non-empty subset of N. 

Let m0 ∈  E. If m0 is even m0 – 1 is a rb-accumulation point of E and if m0 is odd m0 + 1 is 
a rb-accumulation point of E. Hence, every non-empty subset of N has a rb-accumulation 
point, so that (N, T) is countably rb-compact. 

Also, (N, T) is not sequentially rb-compact because the sequence 

{2n – 1 : n	∈ N} has no rb-convergent sub-sequence. 

Therefore,  

      Countably rb-compactness ⇏ rb-sequentially compactness. 

                                            																⇏ rb-compactness. 

Definition (3.6): rb-continuity at a point: 

A mapping : ( , ) ( , )f X T Y   from one topological space (X, T) to another topological 

space (Y, σ) is said to be rb-continuous at a point x0	∈ X if for every σ-open set V containing 
f(x0) there exists a rb-open set L in (X, T) containing x0 such that f (L) ⊆ V. 

Definition (3.6) (a): rb-irresolute at a point: A mapping : ( , ) ( , )f X T Y   from one 

topological space (X, T) to another topological space (Y, σ) is said to be rb-irresolute at a point 
x0 ∈ X if for every rb-open set V containing f (x0) there exists a rb-open set L in (X, T) 
containing x0 such that f (L) ⊆ V. 

We, here, produce the following two theorems concerned with rb-convergence & 
convergence of a sequence and its image sequence under rb-continuity & rb-irresoluteness: 

Theorem (3.2) : In a topological space (X, T) if a sequence  {xn} is rb-convergent to a 
point x0	∈ X, then it is also simply convergent to  that point. But the converse may not be true. 

Proof : Let K be an open set in a topological space (X, T) containing x0 ∈ X, then K is also 
a rb-open set . 

Now, let {xn} be a rb-convergent sequence which rb-converges to the point x0 ∈ X. Then 
for every rb-open set L containing x0 there exists a +ve integer m such that xn	∈ L for all      
n	≥ m. 

Thus,   0 0( ) &
rb cgt

nx x L RBO X x L


    implies that there exists a positive 

integer m	> 0 such that  n	≥ m	⇒	 xn	∈ 
L. This is also true for every open set K ∈ T. Since K 

is an arbitrary open set containing x0, hence,
 0.

cgt
nx x  

But “the converse is not true” is supported by the following example: 

Example (3.2): Let  X = {a, b, c}, T = {φ, {a, b}, X}.  

Then {b} is a rb-open set but not an open set. Let xn = a for all n, then ,
cgt

nx a
 
 as 

well as ,
cgt

nx b  because open subsets containing a and b are {a, b} and X. 
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 But {xn} is not rb-cgt to “b” because there exists a rb-open set containing “b” as {b} 
which does not contain “a”. 

Hence, the theorem. 

Theorem (3.3) : If  f (X, T) ⟶ (Y, σ) be a rb-continuous mapping from a topological 
space (X, T) into another topological space (Y, σ) and {xn} be rb-convergent to x0 ∈ X, then     
{f (xn)} is convergent to f (x0) ∈ Y. 

Proof : Given that the mapping f : (X, T) ⟶ (Y, σ) is rb-continuous so that it is rb-
continuous at every point of X. 

Let {xn} be a sequence in (X, T), which is rb-convergent to x0 ∈ X. 

Let V be a σ-open set in (Y, σ) containing f (x0). Then the rb-continuity of f at x0 implies 
that there is an rb-open set L in (X, T) containing x0 such that f (L) ⊆ V. 

Since, 0 ,
rb cgt

nx x


  there exists an natural number m such that n	≥ m	⟹ xn	∈	L  

⟹ �(xn) ∈ V. Combining these, we say that the sequence {f (xn)} is cgt. to f (x0) because for 
every σ-open set V containing f (x0), there exists an natural number m such that 

      n	≥ m		⟹  �(xn) ∈ V.    

Hence, Symbolically, 

   0 0( ) ( )
rb cgt cgt

n nx x f x f x


   ,  rb-continuous maps f. 

Hence, the theorem. 

Corollary (3.1) : If f : (X, T) ⟶ (Y, σ) be a rb-irresolute mapping and {xn} be rb-
convergent to x0 ∈ X, then  

     0 0( ) ( )
rb cgt rb cgt

n nx x f x f x
 

   . 

Proof : The proof is straight forward & natural, so omitted. 

We, now, produce the following theorem concerned with rb-continuous image of a 
sequent ially rb- compact set of a topological space. 

Theorem(3.4) : A rb-continuous image of a sequentially rb-compact set is sequentially 
compact. 

Proof: Suppose, f is a rb-continuous mapping. Let A be a sequentially rb-compact set in 
topological space (X, T) and we have to show that f (A) is sequentially compact subset of (Y, σ) 
where f (X, T) ⟶	(Y, σ). 

Let {yn} be an arbitrary sequence of points in f (A), then for each n	∈	N there exists xn	∈ A 
such that f (xn) = yn and thus we obtain a sequence {xn} of points of A. 

 But A is sequentially rb-compact w.r.t. T so that there is a subsequence {xnk} of {xn} 
which is rb-compact to a point say, x of A. 

Therefore, ( ) ( ) ( )
rb cgt

nk nkx x f x f x f A


     as f is rb-continuous. 

 Hence, f (xnk) is a subsequence of the sequence {yn} of f (A), converging to a point f (x) in 
f (A). Consequently, f (A) is sequentially compact. 

Corollary (3.2) : The rb-irresolute image of a sequentially rb-compact set is a 
sequentially rb-compact.  
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This means that sequentially rb-compactness is a topological property under rb–irresolute 
mappings. 

CONCLUSION 

Since, compactness is one of the most important useful and fundamental concepts in 

topology so its structural properties as emphasized in the form of rb-open sets, rb-convergent 
sequences, rb-Lindelöf spaces etc open a new horizon in the world of Mathematics through 
this paper. The structures mentioned in the paper have wide applications and it surely pleases 
the Mathematician if one of his abstract structures finds an application [13]. 

The future scope of study is to obtain results in respective paracompactness. 
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