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INTRODUCTION 

Random fixed point theory has received much attention in recent years and it is needed 

for the study of various classes of random equations. The study of random fixed point 
theorems was initiated by the Prague school of probabilistic in the 1950s.The interest in this 
subject enhanced after publication of the survey paper of Adomain [1], Bharuch-Reid [2], Itoh 
[8] and Fan [7]. 

In polish spaces, random fixed point theorems for contraction mappings were proved by 
Sonodia, et. al [11]. 

 In this direction Mehta and Dhagat [9], Shrivastava, et. al [12] proved some fixed point 
theorems in polish spaces. Chouhan [5] established common fixed point theorem for four 
random operator in Hilbert space. Beg et al. [3] obtained random version in convex separable 
complete metric spaces and Nashine [10] proved  new random fixed point results for 
generalized altering distance functions. Recently Dhage et al. [6] proved fixed point theorems 
for a pair of generalized weakly contractive mapping in polish space.    

PRELIMINARIES 

Let (X, d) be a polish space that is separable complete metric space and (Ω, α) be 

measurable space. Let 2x be a family of all subsets of x and CB(X) denote the family of all 
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nonempty bounded closed subsets of X. A mappings : 2xT   is called measureable if for 

any open subset C of X, 1( ) { : ( ) } .T C w T w C        A mapping : X   is said 

to be measurable sector of a measurable mapping : 2 ,xT   if  is measurable and for any 

, ( ) ( ).w w T w    A mapping :f xX X   is called random operator if for any 

, (:, )x X f x  is measurable. A mapping : ( )T xX CB X   is a random multivalued 

operator, if for ever x  X, (:, )T x  is measurable. A measurable mapping ξ : Ω → X is called 

random fixed point of a random multivalued operator : ( ) ( : ).T xX CB X f xX X     If 

for every , ( ) ( , ( )) ( ( , ( )) ( )).w w T w w f w w w        Let : ( )T xX CB X   be a random 

operator and { }n is said to be asymptotically T-regular, if ( ( ), ( , ( ))) 0.n nd w T w w    

COMMON RANDOM FIXED POINT FOR MULTIVALUED OPERATIONS WITH 

GENERALIZED CONTRACTION 

Theorem 3.1: Let X be a polish space. Let T, S :  x X  CB(X) be tow continuous 

random multivalued operators. If there exists a measurable mapping  :   (0, 1), such that 
H (S(, x), T (, y))   () [d(x, S(, x)) + d(y, T (, y))]  

 For each x, y  X,    and  is non-negative with () < 
1

,
2

 then there exists a 

common random fixed point of S and T (here H represents the Hausdorff metric on CB(X) 
induced by metric d).  

Proof: Let 0 : X  be an arbitrary measurable mapping and choose a measurable 

mapping 1 : X  such that 1 0( ) ( ( ))S     for each   . Then for each   ,  

 0 1 0 0 1 1( ( , ( )), ( , ( ))) ( )[ ( ( ), ( , ( ))) ( ( ), ( , ( )))]H S T d S d T                     

It further implies [4, lemma 2.3], then there exists a measurable mapping 2 : X   

such that for any   , 2()  T(, 1()) and  

   1 2 0 1( ( ), ( )) ( ( , ( )), ( , ( )))d H S T            

   1 2 0 1 1 2( ( ), ( )) ( )[ ( ( ), ( )), ( ( ), ( ))]d d d                 

         1 2 0 1
( )

( ( ), ( )) ( ( ), ( ))
1 ( )

d d
 

        
 

 

                 1 2 0 1( ( ), ( )) ( ( ), ( ))d k d         , where 
 

 
  

( )
1.

1 ( )
k  

By above lemma 2.3 of [4] in the same manner, there exists a measurable mapping           
3 :   X, such that for any   , 3() S(, 2()) and  

     2 3 1 2( ( ), ( )) ( ( , ( )), ( , ( )))d H T S            

       1 1 2 2( )[ ( ( ), ( , ( ))) ( ( ), ( , ( )))]d T d S               

       1 2 2 3( )[ ( ( ), ( )) ( ( ), ( ))]d d             
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   2 3 1 2
( )

( ( ), ( )) ( ( ), ( ))
1 ( )

d d
 

        
 

 

   2
2 3 0 1( ( ), ( )) ( ( ), ( )).d k d          

Similarly, proceeding in the same way by induction method, we produce a sequence of 

measurable mapping :n x   such that for h > 0 and any   , 

    2 1 2 2 2 2 1( ) ( , ( )), ( ) ( , ( ))h h h hS T                 

and   1 1 0 1( ( ), ( )) ( ( ), ( )) .... ( ( ), ( )).n
n n n nd kd k d                 

Furthermore for m > n 

1 2( ( ), ( )) ( ( ), ( )) ( 1( ), ( ))n m n n n nd d d                +.....+ 1( ( ), ( ))m md      

               1 1
0 1{ ..... } ( ( ), ( ))n n mk k k d          

0 1( ( ), ( )) ( ( ), ( )) 0
1

n

n m
k

d d
k

         


 as n, m   

It follows that { ( )}n   is a Cauchy sequence and there exists a measurable mapping        

 :   X such that n ()  () for each   . It further implies that 2 1( ) ( )h      

and 2 2 ( ) ( ).h      Thus we have for any   .,   

      2 2 2 2( ( ), ( , ( ))) ( ( ), ( )) ( ( ), ( , ( )))h hd S d d S                  

        2 2 2 1( ), ( )) [ ( ( , ( )), ( , ( )))]h hd H T S              

                2 2 2 1( ( ), ( )) ( )[ ( ( ),h hd d         

2 1( , ( ))) ( ( ), ( , ( )))]hT d S          

    2 2 2 1( ( ), ( )) ( )[ ( ( ),h hd d          2 2 ( )) ( ( ), ( , ( )))]h d S         

Letting h  , we have  

      ( ( ), ( , ( ))) ( ) ( ( ), ( , ( ))).d S d S              

Hence ( ) ( , ( ))S       for   . Similarly, for any  ,  

      2 1( ( ), ( , ( ))) ( ( ), ( ))hd T d            + 2 1( ( ), ( , ( )))hd T      

                       ( ) ( ( ), ( , ( ))).d T         

Therefore () T(, ()) for each   .  

Corollary 3.2: Let X be a polish space and T :  x X  CB(X) be a continuous random 
multivalued operator. If there exists a measurable mapping : (0,1)   such that ,  

( ( , ), ( , )) ( )[ ( , ( , )) ( , ( , ))]H T x T y d x T x d y T y         for each x, y  X, and is non-

negative with  < 
1

2
 then there exists a sequence {n} of measurable mappings :n X   

which is asymptotically T-regular and converges to a random fixed point of T.  
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COMMON RANDOM FIXED POINT OF PAIR OF MULTIVALUED OPERATORS 

Theorem 4.1: Let X be a polish space, T :  x X  CB(X) and : ( )S xX CB X    be 

two continuous random operators satisfying (1). If there exists an asymptotically T-regular and 

S-regular sequences {n} of measurable mappings : ,n x    then there exists a measurable 

mapping : X   such that for any   , ( ) ( , ( ))T       and ( ) ( , ( )).S       

Moreover ( , ( )) ( , ( ))nT T        and ( , ( )) ( , ( )).nS S        

Proof: By previous theorem and induction method, we produce a sequence of measurable 
mapping :n X   such that for m > 0 and any    

   1 2 1( ) ( , ( )), ( ) ( , ( ))m m m mS T               

and    1 1 0 1( ( ), ( )) ( ( ), ( )) .... ( ( ), ( )).n
n n n nd kd k d                 

Furthermore, for m > n,  

      1 1 2( ( ), ( )), ( ( ), ( )) ( ( ), ( )) ...n m n n n nd d d                 1( ( ), ( ))m md       

                   1 1
0 1[ .... ] ( ( ), ( )).n n mk k k d          

It follows that { ( )}n   is a Cauchy sequence and there exists a measurable mapping 

: X   such that ( ) ( )n      for each   . It further implies that 1( ) ( )m      

and 2 ( ) ( )m     . That we have for any   , 

 2 2( ( ), ( , ( ) ( ( ), ( )) ( ( ), ( , ( )))n n n m m nd S d d S                  

      2 1( ( ), ( )) ( ( , ( )), ( , ( )))n m m nH T S              

           2 1 1( ( ), ( )) ( )[ ( ( ), ( , ( )))n m m md d T              ( ( ), ( , ( )))n nd S       

            2 1 2( ( ), ( )) ( )[ ( ( ), ( ))n m m md d               ( ( ), ( , ( )))].n nd S      

Letting m  , we have 

   ( ( ), ( , ( )) ( ) ( ( ), ( , ( ))).n n n nd S d S              

Hence ( ) ( , , ( ))n nS       for .  

Similarly, for any   ,  

 1 1( ( ), ( , ( ))) ( ( ), ( )) ( ( ), ( , ( )))n n n m m nd T d d T                  

     1( ( ), ( )) ( ( , ( )), ( , ( )))n m m nd H S T             

     ( ) ( ( ), ( , ( ))).n nd T         

Therefore ( ) ( , ( ))n nT       for each   . Now 

   ( ( , ( )), ( , ( )) ( ( , ( )), ( ))n m n nH S T d S               

      ( ( ), ( )) ( ( ), ( , ( ))).n m m md d T           
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Thus { ( , ( ))}nT     and { ( , ( ))}nS     are Cauchy sequences in ( ),CB X  therefore there 

exists ( ) ( )A CB X   such that ( ( , ( )), ( )) 0nH S A      (By Itoh [81, Proposition 1], 

: ( )A CB X  is measurable). Let : X   be a measurable mapping such that for each 

, ( ) ( )A      then for any ,  

       ( ( ), ( , ( )) ( ( ), ( , ( )))d T H A T           

   = lim ( ( , ( )), ( , ( )))n
n

H S T


       

   lim ( ),[ ( ( )) ( , ( ))) ( ( ), ( , ( )))]n n
n

d S d T


               

   lim ( )[ ( ( ), ( )) ( ( ), ( , ( )))]n n
n

d d T


              

or  ( ( ), ( , ( ))) ( ) ( ( ), ( , ( ))).d T d T              

It further implies that (1 ( )) ( ( ), ( , ( ))) 0d T        for each .  

Therefore for all   ,  

   ( ( ), ( , ( ))) 0d T       and hence ( ) ( , ( )).T       

Similarly ( ( ), ( , ( ))) ( ( ), ( , ( )))d S H A S           

                                = lim ( ( , ( )), ( , ( ))).n
n

H T S


       

Hence ( ) ( , ( ))S       for all . Now for any ,  

 ( ( ), ( , ( ))) lim ( ( , ( )), ( , ( )))n
n

H A T H S T


            

   ( ( ), ( , ( ))) ( ) ( ( ), ( , ( ))).d T d T              

It further implies that ( ( ), ( , ( ))) 0.d T        

It follows that ( , ( )) ( ) lim ( , ( ))n
n

T A T


           for each   . Similarly 

      ( ( ), ( , ( ))) lim ( ( , ( )), ( , ( )))n
n

H A S H T S


            

       ( ( ), ( , ( ))) ( ), ( ( ), ( , ( ))).d S d S              

It further implies that ( ( ), ( , ( ))) 0.d S        

It follows that ( , ( )) ( ) lim ( , ( ))n
n

S A S


          for each  .  
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