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In this paper we have extended the result of Sayyed[10].
The purpose of this paper to further demonstrate the
effectiveness of the compatible map concept as a mean of
multivalued and single valued maps satisfying a
contractive type condition.
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InTRODUCTION

anach obtained a fixed point theorem for contraction mapping, appearance of the

celebrated Banach contraction principle, several generalizations of this theorem in the setting
of point mappings have been obtained. Nadler [7] was the first to extend Banach contraction
principle to multivalued contracting mapping.

Rhoades [9] gave a complete and comparison of various definitions of contraction
mapping and also survey of the subject. The result is a generalized concept of commuting and
compatible mappings under some conditions and corresponding result of Beg and Azam [1],
Jungck [3, 4], Kaneko [5] Nadler [7], Reich [8], Sayyed, et.al [11] and many others. In this
direction Faset, et. al. [2] proved a fixed point theory for multivalued generalized non
expansive mappings. Recently Lateef et al. [6], Yadad et al. [13] and Wang and Song [12]
proved a fixed point theorem for multivalued maps.
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PRELIMINARIES

et (X, d) be a metric space and let CB(X) denote the family of all non-empty bounded

closed subsets of X. For 4, B € CB (X), let H(A, B) denote the distance between A and B in
Hausdorff metric, that is

H(A, B) =infE
where Ep={€>0:4cN(,B),BcN(g A}
N, A)={x:d(x,4A)<e}.

A point x is said to be a fixed point of a single valued mapping f: X — X (multivalued
mapping 7 : X - CB(X)) provided x = fx (x € Tx). The point x is called coincidence point of f’
and 7, if fx € Tx. If each element of X is a coincidence point of f and 7, then f is called a
selection of T.

Let 7 : X — CB(X) be a mapping, then Cpr ={f: X > X:TX c f X and (Vxe X)
(fTx=T fx)}.Tand f are said to be commuting mappings if for each x e X
S(Ix) = fTx = Tfx = T(fx).

Lemma 2.1: {Beg [1, Lemma 2.1]}. Let S, T be two multivalued mappings of X into
CB(X). Let x;,x; € X.Then for each y € T (x;) one hasd(y,Sxy) < H(Tx;,Sxy).

Theorem 2.2: Let S, T be two mappings from a complete metric space X into CB(X) and
let f € Cg N Cybe continuous mapping. Suppose that for all x, y € X,

[H (Sx, Ty))* < ald( e, SO)d(f, Ty) +d(f, Ty)d (f, Sx)]
+BLd(fx,Sx)d (fy,Sx) +d(fy, Ty)d (fx,Ty)]
+vd (fx, fy)H (Sx,Ty) (D)
where a, B, vy > 0 and 0 < a + 2p + y <1. Then there exists a common coincidence point of f

and 7 and fand S.

Proof: Define M = Lﬁﬂ/. Let xybe an arbitrary, but fixed element of X. We shall

construct two sequences {x, }and {y,} as follows.

Let x; € X be such that y; = fx; € Sx;, using the definition of Hausdorff metric and fact
that Txc fx, we may choose x,e€X such that y,=fk,eTx; and
d(y1>y2) = d(fxy, fxp) < H(Sxg, Tx) +(a+ B +7).

Since S(X)c f(x), we may choose x3eX such that y;=fi;eSx, and
(a+B+)”

1-B

By induction, we produce two sequence of points of X such that

d(y2,y3) =d(fxp, fx3) < H(Tx;,8%y) +

Yokl = Popa1 € Sxpps

Vaks2 = Pogksa €Txgpps 2)
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where £ is any positive integer. Further more

d(Vok+1Vok+2) = d(Fop1s foks2)

2k+1

(a+B+7v)
(1-p)*

< H(Ska,Tx2k+1)+

d(Vak+2>Yor+3) = d(fropias fooge3)

(o +B+Y)2k+2

< H(Txppq1,Sxp42) + (1-p)]

Hence

[d(feps1s fropo) T < 0ld (S, S50 )] d(fapors Txogsr)
+d (feap, Txpps1) d(fopirs Sxop )]
+BLd(fxo» Sxap ) d (fxopi1>Sxox)

+d (faprrs Tog1) d(fag s Txpp41)]

(G+B+Y)2k+1

(1-py*
d (fpps1s> foagen) <(@+B+v)d(fag, fooprr) +Bd (feagirs froria)]
(Q+B+Y)2k+1
+—
(1-py**

+vd (Sop> o) d (fogsns foogan) +

@B+ g yp (@B

(1-B) = B)2k+1

d(feopst fapsn) < Md(fropr fropsy) +M2K*1
(1-py*!
Therefore,  d(froy, foppe1) < Md(fpp—y, frog) 4 M2k

d(fXops1> Pogs2) S

Similarly, — d(fok, fgg1) < Hd(Txg Sxgp ) +

It further implies that
d (V> Yps1) M (v, y,)+ M"
<M" (3, 3y) +(n=DM"
<M"Y ( fiy, firo)+ (n—1)M"
for p > 1, we have

d(yn+layn+p+l) S d(yn+l7yn+2)+d(yn+27yn+3)+""+d(yn+p7yn+p+l)

<{M"d(fxy, firy)+nM™
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HM " d(fy, o)+ (n+ DM 4

HM"™ P fiy, fiy)+(n+ p-DM" P}

n+p-l n+p-1 .
< Y MUd(fy, f)+ Y M
i=1

i=n
It follows that the sequence {y,, } is Cauchy sequence. Hence there exists z in X such that
Vp = z. Therefore fix,;,; = z and fxy; , — z. From (2), we have

2
S X0k = g € fSxp < Sfxggs

2
and S Xop2 = Mokia € fTxopqn < Tfxgpyy.

Now using lemma 2.1
[d(f2. S <[d(f, /P x2p042) +d(f P x3p42052)T
<[d(fz, [ xop02) + H(Tfeos, 521
= [d(fz, /2 x002)V + 2H (Do i1, S2)d (fz, /2 X0)
+[H (Thizgey1S2)F
<L fer f x24T + 2H (Tfig 1. S2)A(for [ X0442)
+ ald(f2,S2)d(f 2 xape i1 Thigan) +d (2 Thpgan)
A(fxo441.52)] + BlA(f2.S2)d(f P xzy 11, 52)
+d (%1 Thiapan) d (2 Thiggean)]
+0d (2, f 2 x241) H(Tfeps,52)
<A (fer f 52140 + 2H (Tfig 1. S for [ X0442)
+ald(f,52)d(f 2 Xap i1 S Xops2) + A2 S x0102)
A(f %31, + BIA(f2,S2)d(f P x3p 11, 52)
+ d( Pt S X2 [ 30p02)]

+ yd(fz, [ x0p00) d(f 220405 52)

Since f'is continuous, by letting K — o, we obtain
[d(f2,52)F <Bld(fS2)F

or d(fz,S2) < JBd(fz,z).
Thus fz € Sz. Similarly,
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[d(fz,T2) <[d(fz, [ x001) +d(f 2200, T2
<[d(fz, f2 20 01) + H(Sfop T

<Bld(fS2)F
Therefore fz € Tz. Hence Z is a coincidence point of fand S and f'and T.

Corollary 2.3: Let S, T be continuous mappings from a complete metric space X into
CB(X) and f €CgnCpbe a continuous mapping. Assume that (1) is satisfied. If

f(2) e SzNTz implies lim f"z=t, then ¢ is a common fixed point of S, T and f.
n—»0

Proof: Clearly, fieSzimplies that f?ze fSz < Sfz. Therefore f"'zeSf"zZ. If
follows that ¢ € St. Similarly ¢ € Tt. Moreover.

fi=flim f"z= lim f"™'z=1.

n—>0 n—»0
Hence ¢ is a common fixed point of f, Sand T.

In the following theorem the continuity of f'and its commutativity with S and 7 are not
required.

Theorem 2.4: Let S, T be two mappings from a metric space X into CB(X) and let /: X —
X be a mapping such that f{(X) is complete, T(X) < f(X)and S(X) < f(X). Suppose that (1)
is satisfied, then there exists a common coincidence point of fand 7 and f'and S.

Proof: As in the proof of theorem 2.2 we construct the Cauchy sequence y, = fx, € X.

By our hypothesis it follows that there exists a point « in X such that y, — z = fu. Now using
Lemma 2.1, we have

[d( fir, Tu)* <[d( fit, frypsr) +d(fiopr Tu))
<[d( fit, fogpr) + H(Sxpp, Tu))?
<[d(fit, fiopa) ) +2H (Sxop, Tu)d( fi, fioper)

+[H(Sxqp,, Tu)]?

<[d(fit, firgger DI +2d (it firgper1)H (S Tu)

+afd(fig, Sxop )d(fir, Tu)+d( fapy, Tu) d(fit, Sxpy )]
+BIA(froy Sxpp ) d(fu, Sxpp ) +d (fuu, Tu)
d (feo, Tu)]+vd (ficgy, fur) H (Sxpy, Tu)

<[d(fu, fxgp.q )]2 +2d(fu, fxgp1)d(fxop 1, Tw)
told (foog, frogsr)d (fu, Tu)+d (fxop, Tu) d(fu, fippi)]
+B[d(fxap, fap1) A(fu, fXopq) + d(fu,Tu)
d(fxgy, Tw)+vd(fxgy, fu)d(fxep,1,.Tu).
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Letting k — oo, we obtain

[d(fu, Tw))* < Bld(fu,Tu)]?

or d(fu, Tu) < JBd ( fu, Tu)
Hence fu € Tu. Similarly,
[d(fit, ) <[d(fit, frgger2) +d(frgpers Su)
<d(fu, figgsn)+ H(Txyypy, Su)]
<Bld( fir, Su)l?
Hence fu e Su.
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