ON THE SYSTEM OF DOUBLE EQUATIONS

$$
b-T=x^{2}, \frac{b}{2}-T=y^{2}, T \neq a \text { SQUARE }
$$

DR. P. JAYAKUMAR, K. SANGEETHA

AVVM Sri Pushpam College (Autonomous), Poondi, Thanjavur (Dt) - 613503 (Tamil Nadu), India
AND
G. SHANKARAKALIDOSS

Department of Mathematics, Kings College of Engineering, Punalkulam, Pudukkottai (Dist) (T.N.), India
RECEIVED : 15 January, 2014
The number 10 has the peculiar property that if unity is subtracted to it, the difference is a perfect square, 9 and if unity is subtracted to its half, 5 , the result, 4 , is also a perfect square. There are infinity of numbers satisfying the above pattern and they are obtained by solving the system of equations $b+1=x^{2}$ and $\frac{b}{2}+1=y^{2}$ and this result has appeared in [1]. This property has motivated us to search for non-zero integers b and $T(\neq$ a square) such that $b-T=x^{2}, \frac{b}{2}-T=y^{2}$. The system of double equations given by $b-T=x^{2}, \frac{b}{2}-T=y^{2}, T \neq a$ square is analysed for its non-trivial integral solutions. A few interesting properties are also presented and discussed.

KEYWORDS : The double equations, the recurrence relations satisfied by the solutions, the few interesting properties.

2010 Mathematics Subject Classifications: 11A, 11D

Introduction

The number 10 has the peculiar property that if unity is subtracted to it, the difference is a perfect square, 9 and if unity is subtracted to its half, 5 , the result, 4 , is also a perfect square. There are infinity of numbers satisfying the above pattern and they are obtained by solving the system of equations $b+1=x^{2}$ and $\frac{b}{2}+1=y^{2}$ and this result has appeared in [1]. This property has motivated us to search for non-zero integers b and T (\neq a square) such that $b-T=x^{2}, \quad \frac{b}{2}-T=y^{2}$ The recurrence relations satisfied by the solutions are also given. In
[3], we have analysed the system of double equations $b+T=x^{2}, \frac{b}{2}+T=y^{2}, T \neq a$ square for its non-trivial integral solutions and a few interesting properties have presented.

Method of analysis

Let b and $T(\neq a$ square $)$ be any two non-zero integers such that

$$
\begin{align*}
b-T & =x^{2} \tag{1.1}\\
\frac{b}{2}-T & =y^{2} \tag{1.2}
\end{align*}
$$

Eliminating b, we get the Pell equation

$$
\begin{equation*}
x^{2}-2 y^{2}=T \tag{1.3}
\end{equation*}
$$

The general solutions [2] of (1.1), (1.2) are given by

$$
\begin{align*}
& x_{n}=\left\{\frac{1}{2}\left[(3+2 \sqrt{2})^{n+1}\left(x_{0}+\sqrt{2} y_{0}\right)+(3-2 \sqrt{2})^{n+1}\left(x_{0}-\sqrt{2} y_{0}\right)\right]\right\}, \tag{1.4}\\
& y_{n}=\left\{\frac{1}{2 \sqrt{2}}\left[(3+2 \sqrt{2})^{n+1}\left(x_{0}+\sqrt{2} y_{0}\right)-(3-2 \sqrt{2})^{n+1}\left(x_{0}-\sqrt{2} y_{0}\right)\right]\right\}, \tag{1.5}
\end{align*}
$$

where $\left(x_{0}+\sqrt{2} y_{0}\right)$ is the fundamental solution of (1.3).
Thus, knowing the values of x_{n}, y_{n} in (1.1,1.2), the sequence of values of b are obtained. In particular from (1.1) and (1.4), we get

$$
\begin{array}{r}
b=T+\left\{\frac{1}{2}\left[(3+2 \sqrt{2})^{n+1}\left(x_{0}+\sqrt{2} y_{0}\right)+(3-2 \sqrt{2})^{n+1}\left(x_{0}-\sqrt{2} y_{0}\right)\right]\right\}^{2}, \quad \ldots(1.6) \tag{1.6}\\
n=0,1,2,3, \ldots \ldots
\end{array}
$$

Case (I): When $T=\alpha^{2}+2 \alpha-1$, the equation (1.6) becomes

$$
\begin{equation*}
b=\alpha^{2}+2 \alpha-1+\left\{\frac{1}{2}\left[(3+2 \sqrt{2})^{n+1}(\alpha+1+\sqrt{2})+(3-2 \sqrt{2})^{n+1}(\alpha+1-\sqrt{2})\right]\right\}^{2} \tag{1.7}
\end{equation*}
$$

where $x_{0}+\sqrt{2} y_{0}=\alpha+1+\sqrt{2}$ is the fundamental solution of $x^{2}-2 y^{2}=\alpha^{2}+2 \alpha-1$.
For the sake of simplicity a few solutions of (1.7) for $T=2,7,14$ are presented in the table 1.

Table 1

Serial No.	The values of \boldsymbol{n}	The solutions \boldsymbol{b} for $\boldsymbol{T}=\mathbf{2}$	The solutions \boldsymbol{b} for $\boldsymbol{T}=\mathbf{7}$	The Solutions \boldsymbol{b} for $\boldsymbol{T}=\mathbf{1 4}$
1	0	102	176	270
2	1	3366	5632	8478
3	2	114246	190976	287310
4	3	3083902	6487216	9759390

5	4	131836326	220374032	331531278
6	5	4478554086	7486229536	11262303390

It is interesting to note that all the solutions obtained in this case are even. When $T=2,7$, 14, the solutions of last digits form the following patterns respectively:
$\begin{array}{lllllllll}2 & 6 & 6 ; & 6 & 2 & 6 ; & 0 & 8 & 0\end{array}$ as seen from the above table.

Further the solutions satisfy the following recurrence relation:

(a) Recurrence relations for solution $\left(b_{\alpha}\right)$ among different values of T :
(i) $\left[b_{\alpha+2}-c(\alpha+2)\right]^{1 / 2}-2\left[b_{\alpha+1}-c(\alpha+1)\right]^{1 / 2}+\left[b_{\alpha}-c(\alpha)\right]^{1 / 2}=0$
where $c(\alpha)=\alpha^{2}+2 \alpha-1$.
In particular for $c(3)=14, c(2)=7$ and $c(1)=2$, when $\alpha=1$, we have
(ii) $\left[b_{3}-14\right]^{1 / 2}-2\left[b_{2}-7\right]^{1 / 2}+\left[b_{1}-2\right]^{1 / 2}=0$, when $n=0$.
(b) Recurrence relations for solutions $\left(b_{n}^{\alpha}\right)$ among the particular value of T :
(i) $\left[b_{n+2}^{(\alpha)}-C\right]^{1 / 2}-6\left[b_{n+1}^{(\alpha)}-C\right]^{1 / 2}+\left[b_{n}^{(\alpha)}-C\right]^{1 / 2}=0$, where $C=\alpha^{2}+2 \alpha-1$.

In particular for $C=2$ when $\alpha=1$ and $C=7$ when $\alpha=2$, We have
(ii) $\left[b_{3}^{(1)}-2\right]^{1 / 2}-6\left[b_{2}^{(1)}-2\right]^{1 / 2}+\left[b_{1}^{(1)}-2\right]^{1 / 2}=0$, when $n=1$.
(iii) $\left[b_{3}^{(2)}-7\right]^{1 / 2}-6\left[b_{2}^{(2)}-7\right]^{1 / 2}+\left[b_{1}^{(2)}-7\right]^{1 / 2}=0$, when $n=1$

Case (ii) : When $T=\alpha^{2}+4 \alpha-4$, the equation (1.6) becomes

$$
\begin{equation*}
b=\alpha^{2}+4 \alpha-4+\left\{\frac{1}{2}\left[(3+2 \sqrt{2})^{n+1}(\alpha+2+2 \sqrt{2})+(3-2 \sqrt{2})^{n+1}(\alpha+2-2 \sqrt{2})\right]\right\}^{2} \tag{1.8}
\end{equation*}
$$

where $x_{0}+\sqrt{2} y_{0}=(\alpha+2)+2 \sqrt{2} y_{0}$ is the fundamental solution of

$$
\begin{equation*}
x^{2}-2 y^{2}=\alpha^{2}+4 \alpha-4 \tag{1.9}
\end{equation*}
$$

For the sake of simplicity a few solutions of (1.8) for $T=1,8,17$ are presented in the table 2.

Table 2

Serial No.	The values of \boldsymbol{n}	The solutions b for $\boldsymbol{T}=\mathbf{1}$	The solutions b for $\boldsymbol{T}=\mathbf{8}$	The Solutions b for $\boldsymbol{T}=\mathbf{1 7}$
1	0	10	24	42
2	1	290	408	546
3	2	9802	13464	17706
4	3	332930	456984	600642

5	4	11309770	14899608	20403306
6	5	384199202	527345304	693110946

It is interesting to note that all the solutions obtained in this case are even. When $T=1,8$, 17, the solutions of last digits form the following patterns:
0 2; 4
84; 2
6
6
as seen from the above table.

Further the solutions satisfy the following recurrence relations:

(a) Recurrence relations for solutions $\left(b_{\alpha}\right)$ among different values of T :
(i) $\left[b_{\alpha+2}-c(\alpha+2)\right]^{1 / 2}-2\left[b_{\alpha+1}-c(\alpha+1)\right]^{1 / 2}+\left[b_{\alpha}-c(\alpha)\right]^{1 / 2}=0$
where $c(\alpha)=\alpha^{2}+4 \alpha-4$.
In particular for $c(3)=17, c(2)=8$ and $c(1)=1$, when $\alpha=1$, we have
(ii) $\left.\left[b_{3}-14\right)\right]^{1 / 2}-2\left[b_{2}-7\right]^{1 / 2}+\left[b_{1}-2\right]^{1 / 2}=0$, when $n=0$.
(b) Recurrence relations for solutions $\left(b_{n}^{\alpha}\right)$ among the particular value of T :
(i) $\left[b_{n+2}^{(\alpha)}-C\right]^{1 / 2}-6\left[b_{n+1}^{(\alpha)}-C\right]^{1 / 2}+\left[b_{n}^{(\alpha)}-C\right]^{1 / 2}=0$, where $C=\alpha^{2}+4 \alpha-4$.

In particular for $C=1$ when $\alpha=1$ and $C=8$ when $\alpha=2$, we have
(ii) $\left[b_{3}^{(1)}-1\right]^{1 / 2}-6\left[b_{2}^{(1)}-1\right]^{1 / 2}+\left[b_{1}^{(1)}-1\right]^{1 / 2}=0$, when $n=1$.
(iii) $\left[b_{3}^{(2)}-8\right]^{1 / 2}-6\left[b_{2}^{(2)}-8\right]^{1 / 2}+\left[b_{1}^{(2)}-8\right]^{1 / 2}=0$, when $n=1$.

Conclusion

. double equations: $b-T=x^{2}, \frac{b}{2}-T=y^{2}, T \neq a$ square and a few interesting properties have presented. To conclude one may search for other non-trivial integral solutions of the system of the above double equations.

References

1. Acu, D., On a Diophantine equation $2^{X}+5^{Y}=z^{2}$, General. Mathematics, Vol. 15, No. 4, 145-148 (2007).
2. Barlow, P., Theory of Numbers, London : J. Johnson \& Co. (1811).
3. Beiler, Albert H., Recreation in the Numbers, Dover Publication (1963).
4. Dickson, I.E., History of Numbers, Vol. II, Chelsea Publication Company, New York (1962).
5. Gopalan, M.A. and Jayakumar, P., "On the system of double equations : $b+T=x^{2}, \frac{b}{2}+T=y^{2}, T \neq a$ square", International Journal Acta Ciencia Indica, 32M (4), 14651468 (2006).
6. Hall, H.S. and Knight, S.R., Higher Algebra, New York : Macmillan Co. (1951).
7. Kenneth, H.R., Elementry Number Theory and its Application, 4th ed., Addison Wesley Longman. Inzc.
8. Licks, H. E., Recreations in Mathematics, New York : D. Van Nostrand (1921).
9. Lucus, E., Recreations Mathematiques, Paris : Gauthier-Villars et Cie. (1882).
10. David, M.B., Elementry Number Theory, 6th ed., McGraw-Hill, Singapore (2007).
11. Ramaraj, T. and Jayakumar, P., "On the system of double equations: $b+T=x^{2}, \frac{b}{N}+T=y^{2}, N \neq a$ square", Varahmihir Journal of Mathematical Sciences, 6(2), 457463 (2006).
12. Ramaraj, T. and Jayakumar, P., "On the system of double equations : $b-T=x^{2}, \frac{b}{N}-T=y^{2}, N \neq a$ square", International Journal of Acta Ciencia Indica, 33M (2), 481485 (2007).
13. Silverman, J.H., A Friendly Introduction to Number Theory, 2nd ed., Prentice-Hall, Inc., New Jersey (2001).
14. Sierpinshi, W., Elementary Theory of Numbers, Warszawa (1964).
15. Uspensky, J.V. and Heaslet, M.A., Elementary Number Theory, New York : McGraw Book Co. (1939).
