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 ON THE SYSTEM OF DOUBLE EQUATIONS  

b – T = x2, 
2

b
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The number 10 has the peculiar property that if unity is 
subtracted to it, the difference is a perfect square, 9 and if 
unity is subtracted to its half, 5, the result, 4, is also a 
perfect square. There are infinity of numbers satisfying the 
above pattern and they are obtained by solving the system 

of equations   21b x  and   21
2

b
y  and this result has 

appeared in [1].  This property has motivated us to search 
for non-zero integers b and T (  a square) such that 

  2,b T x   2.
2

b
T y  The system of double equations 

given by     2 2, , square
2

b
b T x T y T a is analysed for 

its non-trivial integral solutions. A few interesting properties 
are also presented and discussed.  

 

KEYWORDS : The double equations, the recurrence 
relations satisfied by the solutions, the few interesting 
properties. 
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INTRODUCTION 

The number10 has the peculiar property that if unity is subtracted to it, the difference is 

a perfect square, 9 and if unity is subtracted to its half, 5, the result, 4, is also a perfect square. 
There are infinity of numbers satisfying the above pattern and they are obtained by solving the 

system of equations 21b x   and 21
2

b
y   and this result has appeared in [1].  This 

property has motivated us to search for non-zero integers b and T (  a square) such that

2 ,b T x    2

2

b
T y   The recurrence relations satisfied by the solutions are also given. In 
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[3], we have analysed the system of double equations 2 2, , square
2

b
b T x T y T a     for 

its non-trivial integral solutions and a few interesting properties have presented.  

METHOD OF ANALYSIS 

Let b and T (  a square) be any two non-zero integers such that 

     2b T x        … (1.1) 

                   2

2

b
T y                                                 … (1.2) 

Eliminating b, we get the Pell equation 

     2 22 .x y T   … (1.3) 

The general solutions [2] of (1.1), (1.2) are given by   

          1 1
0 0 0 0

1
[(3 2 2) ( 2 ) (3 2 2) ( 2 )]

2
n n

nx x y x y  
      
 

,    … (1.4) 

          1 1
0 0 0 0

1
[(3 2 2) ( 2 ) (3 2 2) ( 2 )]

2 2

n n
ny x y x y  
      
 

,   … (1.5) 

where 0 0( 2 )x y  is the fundamental solution of (1.3). 

Thus, knowing the values of ,n nx y  in (1.1, 1.2), the sequence of values of b are obtained.  

In particular from (1.1) and (1.4), we get 

               
2

1 1
0 0 0 0

1
[(3 2 2) ( 2 ) (3 2 2) ( 2 )]

2
n nb T x y x y  

       
 

,   … (1.6) 

      n = 0, 1, 2, 3,….. 

Case (I):  When 2 2 1,T       the equation (1.6) becomes  

 
2

2 1 11
2 1 [(3 2 2) ( 1 2) (3 2 2) ( 1 2)] ,

2
n nb   

               
 

 … (1.7) 

where 0 02 1 2x y      is the fundamental solution of 2 2 22 2 1.x y       

For the sake of simplicity a few solutions of (1.7) for T = 2, 7, 14 are presented in the 
table 1.  

Table 1 

Serial 

No. 

The values of 
n 

The solutions b 

for T = 2 

The solutions  b 

for T = 7 

The Solutions b 

for T = 14 

1 

2 

3 

4 

0 

1 

2 

3 

102 

3366 

114246 

3083902 

176 

5632 

190976 

6487216 

270 

8478 

287310 

9759390 
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5 

6 

4 

5 

131836326 

4478554086 

220374032 

7486229536 

331531278 

11262303390 

It is interesting to note that all the solutions obtained in this case are even. When T = 2, 7, 
14, the solutions of last digits form the following patterns respectively:  

 2 6 6;        6            2          6;          0          8         0 

as seen from the above table. 

Further the solutions satisfy the following recurrence relation:  

(a) Recurrence relations for solution (b) among different values of T :  

  (i)  1/ 2 1/ 2 1/ 2
2 1[ ( 2)] 2[ ( 1)] [ ( )] 0b c b c b c              

         where 2( ) 2 1.c        

            In particular for c (3) = 14, c (2) = 7 and c (1) = 2, when  =1, we have  

  (ii) 1/ 2 1/ 2 1/ 2
3 2 1[ 14] 2[ 7] [ 2] 0, when 0.b b b n        

(b) Recurrence relations for solutions ( )nb  among the particular value of T : 

  (i) 
1/ 2 1/ 2 1/ 2

( ) ( ) ( )
2 16 0,nn nb C b C b C  

 
          
     

where 2 2 1.C       

  In particular for C = 2 when  = 1 and C = 7 when  = 2, We have   

  (ii) 
1/ 2 1/ 2 1/ 2

(1) (1) (1)
3 2 12 6 2 2 0b b b          

     
, when n = 1. 

  (iii) 
1/ 2 1/ 2 1/ 2

(2) (2) (2)
3 2 17 6 7 7 0,b b b          

     
 when n =1 

 Case (ii) : When 2 4 4,T       the equation (1.6) becomes 

2
2 1 11

4 4 [(3 2 2) ( 2 2 2) (3 2 2) ( 2 2 2)] ,
2

n nb   
               

 
                                                                                                          

      … (1.8) 

where 0 0 02 ( 2) 2 2x y y       is the fundamental solution of  

         2 2 22 4 4.x y       … (1.9) 

For the sake of simplicity a few solutions of (1.8) for T = 1, 8, 17 are presented in the 
table 2. 

Table 2 

Serial 

No. 

The values 
of n 

The solutions b for 

T = 1 

The solutions  b for 

T = 8 

The Solutions b for 

T = 17 

1 

2 

3 

4 

0 

1 

2 

3 

10 

290 

9802 

332930 

24 

408 

13464 

456984 

42 

546 

17706 

600642 
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5 

6 

4 

5 

11309770 

384199202 

14899608 

527345304 

20403306 

693110946 

It is interesting to note that all the solutions obtained in this case are even. When T = 1, 8, 
17, the solutions of last digits form the following patterns:  

    0   0 2;     4      8 4;     2        6         6 

as seen from the above table. 

Further the solutions satisfy the following recurrence relations:  

(a) Recurrence relations for solutions (b) among different values of T:  

  (i) 1/ 2 1/ 2 1/ 2
2 1[ ( 2)] 2[ ( 1)] [ ( )] 0b c b c b c              

        where 2( ) 4 4.c          

   In particular for c (3) = 17, c (2) = 8 and c (1) = 1, when  = 1, we have  

  (ii) 1/ 2 1/ 2 1/ 2
3 2 1[ 14)] 2[ 7] [ 2] 0,b b b       when n = 0. 

 (b) Recurrence relations for solutions ( )nb  among the particular value of T: 

  (i)  
1/ 2 1/ 2 1/ 2

( ) ( ) ( )
2 16 0,nn nb C b C b C  

 
          
     

where 2 4 4.C        

  In particular for C = 1 when  = 1 and C = 8 when  = 2, we have   

  (ii)   
1/ 2 1/ 2 1/ 2

(1) (1) (1)
3 2 11 6 1 1 0,b b b          

     
 when n = 1. 

  (iii)  
1/ 2 1/ 2 1/ 2

(2) (2) (2)
3 2 18 6 8 8 0,b b b          

     
 when n = 1. 

CONCLUSION 

In this paper, we have analysed for its non-trivial integral solutions of the system of 

double equations: 2 2, , square
2

b
b T x T y T a     and a few interesting  properties have 

presented. To conclude one may search for other non-trivial integral solutions of the system of 
the above double equations. 
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