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In this note we obtain a novel theorem on the extension of 
bilateral generating functions involving biorthogonal 
polynomials suggested by Laguerre polynomials derived 
by Shreshtha and Bajracharya from the group theoretic 
view point. At first we introduce a novel linear partial 
differential operator and the extended group corresponding 
to the operator and finally, we obtain our desired result by 
applying the operator and group effect on a unilateral 
generating function involving the polynomials under 
consideration. Some application of our result is also given 
here. 
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INTRODUCTION 

In [1, 2], J.D.E. Konhauser  discussed the biorthogonality and some other properties of 

( ; )nY x k and ( ; )nZ x k for any positive integer k , where ( ; )nY x k is a polynomial in x and 

( ; )nZ x k  is a polynomial in , 1,kx k    is a positive integer. For 1,k   these polynomials 

reduce to the generalized Laguerre polynomials ( )nL x [3]. In the present paper we are 

interested only on ( ; ).nY x k  An  explicit representation for the polynomials ( ; )nY x k was 

given by Carlitz [4] in the following form: 

           
0 0

1 1
( ; ) ( 1) ,

! !

n ii
j

n
ni j

x jiY x k
jn i k



 

   
   

 
   

where ( )na is a Pochhammer symbol [5]. 

In [6], Shreshtha and Bajracharya obtain the following theorem on bilateral generating 

function involving ( ; )nY x k by using one parameter group of continuous transformations. 

Theorem-1 :  If 
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The aim at writing this note is to prove the following theorem on the extension of the 
above theorem on bilateral generating functions involving biorthogonal polynomials suggested 
by Laguerre polynomials with the help of group-theoretic method. 

 Theorem-2: If  
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which does not seem to have appeared before. 

The importance of the above theorem lies in the fact that whenever one knows a unilateral 
generating relation of type (1.2), then the corresponding bilateral generating relation can at 
once be written down from (1.3). Thus a large number of bilateral generating relations can be 

obtained by attributing different suitable values to na in (1.2). 

Proof of the Theorem-2 

For the polynomials ( ; ) ,nY x k  we first define the following linear partial differential 

operator R: 
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The extended form of the group generated by R is given by,  
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 Let us consider the following generating relation, 
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Replacing w by wyz  and then operating exp ( )wR  on both sides, we get 
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Using (2.2), then left hand side of (2.4) become 
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Again using (2.1), then right hand side of (2.5) becomes 
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Now equating (2.5) and (2.6) and then replacing twz  , we get 
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This completes the proof of the Theorem-2. 

Corollary 1: Now putting 0m    in (2.7), we get the result found derived in [6]. 

We now discuss some special cases: 

Special Case 1.   If we put 1k   we get the corresponding result involving generalized 
Laguerre  polynomials found derived in [7] . 

   Result 2: Putting 0m  in Special case 1, we get the result found derived in [8]. 

 

 

APPLICATION  
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Below we give an application of our main result (Theorem-2). 

At first we consider the following generating relation [ 4 ]: 
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 By the application of our theorem we get the following generalization of  the result (3.1) . 
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CONCLUSION 

From the above discussion, it may be concluded that any unilateral generating functions 

of type (1.2) may be immediately generalized with the help of the relation (1.3). 
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