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We study the existence of measurable selectors for 
multifunctions whose values are weekly compact subset of 
a Banach Space. One side we characterize multifunction 
having strongly measurable selector on the other side we 
prove that every scalary measurable multi function admits 
measurable selectors. We try to estabilish relation between  
measurable selector, effors measurable and scalarly 
measurable selector. Our work is extension of Cascales, 
Kodet & Rodrigues [2]. 
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INTRODUCTION 

Let us suppose  p be a projection from  Y × X onto Y, B Y × X aset and define          

= p(B). A uniformization of B is a function f : X such that (t, f (t)) B for each t . 
Notice that with the aid of the axiom of choice such a uniformization f always exists. The 
problem is how nice can f be choosen when B is nice ? For instance if B is Borel measurable 
(Y and X are topological spaces) can f be chosen being Borel measurable? The study of the 
existence of nice uniformizations for Borel sets when Y = X =  attracted the 
attention of leading mathematicians from the very begning of the XX century such as Baire, 
Borel, Hadamard, Labesgue, Von Neumann, Novikov, Kondo, Yankov, Luzin, Scerpinski etc. 
and precipitated the birth and flourishment of the descriptive  set theory. More recent authors 
contributing to this topic are amongst others, Kuratowski, Ryll Nardzewski, Sion , Larman 
Mauldni, Pol, Saint-Raymond etc. Notice that for our given B we naturally can define the 

multifunction F : 2x  that at each t  is given by F (t) = {xX : (t, x)B}with this 
language properties of B are just  properties of the graph of F defind as Graph (F) ={(t, x) : t 
, x F (t)} and uniformization of B is just a selector of F i.e. a single valued function        
f : X such that f (t) F (t) for each t . When dealing with general multifunctions, the 
domainis a usually a measurable or a topological space and the range X is usually a 
topological space. In this setting analysts, topologist and applied mathematicians soon realized 
that many times when one needs to find  a nice selector f for F, the starting point is not a 
hypothesis about Graph (F). 
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 B. Calcales, Kadets, V. and Rodrigues, J. [2, 3] Chistyakov, V.V. [4] Darinka Dentcheva 
[5] Dragan Djurcie, Ljubisa D.R. Kocinac [6] Pandey S.K. [10] are eminent authors in this 
field. Throughout in this paper (µ) is a complete finite measure space and X is a real 
Banach space. By 2X  we denote the family of all non-empty subset of X and by cl(X), K (X), 
wk (X) and cwk (X). We denote respectively the subfamilies of 2X  made up of norm closed, 
norm compact weakly compact and convex, weakly compact subsets of X. 

 A multifunction F : 2X that satisfies property (1.1) in following theorem 
Kuratowski- Ryll Nordzewski  [9] is said to be Effors  meaasurable. A single  valued function 
f : X is strongly measurable if it is the µalmost every where limit of sequence of 
simple X-valued functions defined in Letus assume that X is separable and take a 
multifunction F : cl(X) Effors measurable, then apply Kuratowski- Ryll Nordzewski's 
theorem to produce a Borel measurable selector f of F and then with the help of pettis  
measurability theorem f is strongly measurable. 

Theorem (Kuratowski-Ryll Nordzewski's ) : Let () be a measurable space and X a 
separable metric space. Let F : 2X be a multifunction with complete non-empty values 
satisfying that  

     {t  : F (t) G }  … (1.1) 

For each open set GcX then F admits a Borel(X) measurable selector f. 

3. Notation, Definitions and Propositions : For the real Banach space (X, ||, ||) we denote 
by B

X
 the close unit ball and S

X
 the unit sphere. For a set DX we define  

     diam (D) = 
,

sup
x y D

 || x – y || 

and we denote by co (D) the convex hull of D. Given a multifunction F : 2X  and CX, 
we write 

     F–1(C) = {t : F (t) c } 

Definition 3.1 : We says at a multifunction F : 2X  satisfied property (p) if for each 

and each A + there exists B +
A
 and DX with diam (D) such that F (t) D 

for every t  Let the family of all A  withgiven A  the collection 

of all subsets of A belonging to is denoted by A
 .


 

Proposition 3.2 : For a function f : X  the following statements are equivalent  

(i) f satisfies property (P) 

(ii) for each e > 0 and each S+  there exists BÎ AS
  
with diam (f (B))   e. 

iii) f  is strongly measurable 

Proposition 3.3 : Let f :  x  be a multifunction  

(i)  If there exists a multifunction G : x satisfying property (p) such that              

G (t) F (t) for µ .a.e tthen F satisfies property (P) as well. 

(ii) If F admits strongly measurable selectors, then F satisfies property (p). 

Proposition 3.4 :  Suppose that X is separable. Let F : (X) be a multifunction. 

The following statements are equivalent: 
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(i) F is effors measurable. 

(ii) F–1 () for every set x which can be written as a finite intersection of 
closed half spaces. 

MAIN RESULT 

Theorem 4.1 : Let us suppose F :k (X) is measurable multifunctiom admits a 

strongly measurable selector, satisfies property (p), then threre exists a set of measure zero 

a separable subspaces YX and a multifunction G : \k (Y) that is Effors 

measurable and such that G (t) F (t)  for every t\

Proof : In order to prove this, we took following steps : 

Step 1: Let us combining property (p) and a standard exhaustion argument, we can find a 
countable partition (up to a -null set ) 1 = (An, 1) of  in  and a sequence (Dn, 1) of 

subset of X with diam (Dn, 1) such that f (t) Dn, 1 for every tAn, 1 and every       

n . 

Observe that the set Vn, 1, 1 = tAn, 1f (t) Bx) contains D
n
, 1 and so it is nonempty 

for every nN. The set E1=\UnAn, 1  has measure zero. The same argument , but 

now with 

 instead of 


allows us to find a countable partition 

2
 = (An, 2) of  in   such 

that the Vn, 2, 2 = tAn, 2 f (t)  

Bx) is the non empty for every nN since 

we also have Vn, 2, 1 = tAn, 2  f (t)  

Bx) for every nN. Again the set E2 

= \UnAn,     2 has measure zero. 

In this we can find a sequence ┌m = (An, m) of countable partitions (upto a -null set Em) 

of  in such that the sets Vn, m, k = tAn, m 
f (t)  


Bx) for every m and every 

nN. clearly the set 
0
=U

m


m
 has measure zero. 

Take vn, m, k Vn, m, k 
 for every k ≤ m and every n N and let Y be a closed linear space 

of all the vn, m, k' 
s  so that Y is separable. Since F has weakly compact values, it is clear that 

each Wn, m, k = Vn, m, k  Y is weakly closed and non empty set. 

 Given k m, set Fm, k : \

 2Y by Fm, k = nN Wn, m, k/An, mobserve that for each  

set CY we have 1
,m kF (C)  

Given kN, we define FK : \

2Y  by FK (t) = clw (mk Fm, k (t)) it is easy to see 

that for each weakly open set U Y we have kF (U) 

Step 2 : Fix t\. For each mN, let nm (t) N be such that tAnm (t) m. Observe 

that for each kN we have Fk (t) Fk + 1 (t) because the inequality k + 1 k 
allow us to 

write 

   , 1 1
1 1 ( ),

( ) ( ( ) )m k k
m m s Anm t m

F t F s Bx Y 
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( ),

( ( ) ) , ( )k
m s Anm t m m

F s Bx Y Fm k t
  

        

Set G (t) = 
k N
  (Fk (t). We will prove that the weakly closed set G (t) is non empty and 

contained in F (t). 

We have  

  G (t) Fk (t) = clw 
( ),

(
m s Anm t m 
  (F(s) + k Bx) Y) F (t) + kBx ...(4.1.1) 

for each kN, we take xk  Fk (t) and write xk = yk + zk with yk  F (t) and zk kBx. Since 

the sequence <yk> is contained in the weakly compact set F (t), it has a weak cluster point       

y  F (t). Since zk in norm as k, we conclude that y is also a weak cluster point of 

(xK). 

Taking into account that Fk + 1 (t) Fk (t) for all kN. 

It follows that   y
k N
  Fk (t) = G (t) 

     G (t) F (t). 

Step 3: It follows that G is a multifunction on \ taking values in wk (y). 

Now we shall prove G is effors measurable. 

In order to prove this we use proposition 3.4 let us fix WY of the form   

w =
1

p

i
 {y Y : yi

* (y) ai} where yi
* Y* and ai R for all 1  i p. for each kN. 

We define 

Ok =
1

p

i
 {y Y : yi

* (y) ai +1/k} each Ok 
is weakly open in Y and so Fk

-(Ok)

We observe that Ok + 1  Ok + 1  Ok 
 for all k N and that W = 

k N
  Ok. We claim that  

     G–1 (W) = 1
k

k N
F


 (Ok)  

Conversely, let us take t 1
k

k N
F


 (Ok). Select a point xk Fk (t) Ok for all k N.1 

Since F (t) is weakly compact, the sequence <xk) has a weak cluster point xG (t). 

Moreover     x k
k N

O

  = k

k N
O


  = w. 

It follow that t G–1(w).  This proves the claim and show that G is efforts measurable. 

The theorem is proved. 
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Theorem 4.2 :  Let F :k (X) be a scalary measurable multifunction. Then F admits 
a scalary measurable selector. 

Proof : In order to prove this theorem, we follow below lemma and Lebesgue's 
dominated convergence theorem.   

Lemma 4.2.1: 

           Given  C wk (X) and  x*  X*.  

  We write  C/x*xC x*(x) = max x*(C)} 
                C/x*x x*(x) = min x*(C)} 

Observe that C/–x* = C/x* and that both C/x* and C/x* belong to wk (x). 

Let  F :wk (X) be a scalary measurable multifunction and x* X*  then F/x* and   
F/x* are scalary measurable. 

We divide the proof into two cases : 

Particular case- Let us assume there is M > 0  such that for each x* Sx*, we have  

        | x*F) | µ a.e. 

Clearly assumption ensures that for each x* Sx*, we have | x*F) | µ a.e.                                 

and that F. Let us define a sequence of scalary measurable multifunction             
Fn :k (X) with Fn (t) Fn + 1 (t) for every n N and every t  . Set F1 = F and if  Fn 

   

is already defined then set Fn + 1 = Fn
xn*  where xn*  Sx*. is selected in such a way that 

     
w d* (xn*, Fn) – d

*
(xn*, Fn) dm3 DFn/2 ... (4.2.1.1) 

By above lemma 4.2.1, each Fn is scalary measurable. The multifunction G k (X) 

given by G (t) = n Fn (t) is scalary measurable by following lemma 4.2.2. 

Lemma 4.2.2 :  Fn wk (X) be a sequence of scalary measurable multifunction such 

that Fn (t) Fn + 1 (t) for every n N and every t . Then the multifunction G wk 

(X) given by G (t) = n  Fn (t) is scalary measurable. And we have G (t) F (t) for all    

t .  

In order to prove in the particular case we are dealing with it is sufficient to show that   
G = 0. We will prove this by contradiction. 

Let us assume if it is possible that  G > 0. 

Then for each n N. We have FnG > 0 and equation (4.2.1.1) yields  

     
 d*(x*, Fn) – d*(xn*, Fn) dm3 DG/2 > 0 

By Lebesgue dominated convergence theorem, there is a point t0  at which the 

function x*Fn) – 

xn*Fn) does not tend to 0 as n 

Set n = xn*Fn) (t0) – 

xn*Fn) (t0) for every n N. By passing to a subsequence, 

we may assume that infn Nn = > 0 for each nN. 
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We pick xn Fn (t0) with    xn*xn) = xn*Fn) (t0). 

Then given m > n, we have xm Fm (t0) Fn + 1 (t0) = Fn | xn*(to) 

and so              xn*xm) = xn*Fn) (t0).  

hence            || xm 
– xn|| xn* (xm – xn) = n 

 

Since all xn's belong to the norm compact set F (t0).We reach a contradiction that finishes 

the proof of this case.   Proved 

Theorem 4.3 : Every scalary measurable multifunction F wk (X) admits a scalary 

measurable selector. 

Proof : We will proof this theorem in two steps: 

First step. We will prove this theorem by cotradiction. Let us suppose if it is possible 

there is > 0 such that G > 0 of every scalary measurable multifunction Gwk (X) 

such that G (t) F (t) for all t  .We define recurrently for each {0, 1}< N a functional 
x* Sx* and a scalary measurable multifunction Fwk (X) with F (t) F (t) for all 

t  

Since F > , We can find x*  Sx* such that 

     
 d*(x*, F) – *(x*, F) d >   

Set F (0) = F|x* 
 and F (1) = F|x* so that both F(0) and F(1) are scalary measurable by   

lemma 4.2.1 

Assume that for some  {0, 1}<N the multifunction F is already constructed. Then 

F>  and we can select x*  Sx* such that 

     
 x*F) – x*F) d ... (4.3.1) 

Then we set  F^0 = F

|
x*

 and F^1= F

|x* which are scalary measurable by lemma 

4.2.1. Let us fix n N and define the measurable function anR by 

     an (t) = 1/2n 

{0, 1}n

 (x*F) (t) – x*F) (t)  

Clearly for each  n N we have | an |2M  a.e  

Moreover given any t   

        lim
n

 an (t) = 0 

By Lebesgue dominated convergence theorem we have  

     lim 0n
n

a d
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However for each  n N, by inequality (4.2.1.1) implies that 

     

{0,1}

1/ 2 *( *, )
n

n
na d x F d  



        

This contradiction finishes the proof of the first step. 

Step 2: By the first step, we can find a scalary measurable multifunction F1wk (X) 

such that F1 (t) F (t) for all t and F1 < 0. Again the first step applied to F1 ensures the 

existence of a scalary measurable multifunction F2wk (X) such that F2 (t) F1 (t) such 

that t and F21/2.   

In this way we can find a sequence of scalary measurable multifunction Fnwk (X) 

with Fn1/n such that Fn + 1 (t) Fn (t) for every t . 

Then the multifunction Gwk (X) given by G (t) = nN Fn (t) is scalary 

measurable (by lemma 4.2.2) and G = 0 because GFn for every nconsequently 

every selector of G (which in turn is a selector of F) is scalary measurable. 

Theorem is proved. 

Application: Application of this result is in the following area of mathematics: 

(1) Control theory:   

(2) Game theory :          

(3) Differential inclusion: 

(4) Mathematical models in economy. 

(5) Integration of multifunction. 
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