Λ_{p}^{*} -SEPARATION AXIOMS

P. GNANACHANDRA

Aditanar College of Arts and Science, Tiruchendur -628216, India

RECEIVED : 16 September, 2013

Separation axioms are among the most **common** and important and interesting concepts in topology as well as in bitopologies. In this paper, we introduce Λ_p^* -sets and some weak separation axioms using Λ_p^* -open sets and Λ_p^* -closure operator. The aim of this paper is to introduce Λ_p^* - T_i and Λ_p^* - R_j , for i = 0, 1, 2 and j = 0, 1 spaces using Λ_p^* -open and Λ_p^* -closed sets. Some existing lower separation axioms are characterized by using these spaces. **KEYWORDS AND PHRASES:** pre*-open, pre*-closed sets, Λ_p^* -closed sets.

MSC 2010: 54A20, 54C10, 54D10.

INTRODUCTION AND PRELIMINARY

he separation axioms R_0 and R_1 in topological spaces were introduced by Shanin [16] in 1943. Murdeshwar and Naimpally [12, 13] investigated the properties of R_0 topological spaces and many interesting results have been obtained. Caldas *et. al.* [3] introduced Λ_{α} -sets and V_{α} -sets characterize some of their properties. Navaneethakrishnan [14] used regular-open sets to define V_r -sets and Λ_r -sets and investigate some separation axioms using these sets in topological spaces. Using semi-open sets, Caldas and Dontchev [1] extended Maki's work by introducing and studying Λ_s -sets and V_s -sets. The purpose of this paper is to continue the research along these directions but this time by utilizing Λ_p^* -open sets. For details see ([2],

[3], [4], [8], [9], [11], [11] and [12]). In this paper, we introduce some Λ_p^* -separation axioms

in topological spaces. To define and investigate the axioms, we use Λ_p^* -open sets.

Throughout this paper (X, τ) denotes a topological space on which no separation axioms are assumed unless explicitly stated. Standard definitions and notations in point set topology are used in this paper.

A subset A of a topological space (X, τ) is said to be pre*-open [15] if $A \subseteq \text{int*}(cl(A))$, where int*(A) and cl(A) respectively denote the g-interior and the closure of A. The complement of a pre*-open set is pre*-closed. We shall denote the families of all pre*-open sets in a space (X, τ) by $P^*O(X, \tau)$. Also A subset A is called a Λ_p^* -closed set [6] if $A = S \cap C$ where *S* is a Λ_p^* -set and *C* is a closed set. The complement of a Λ_p^* -closed set is called a Λ_p^* -open set. The collection of all Λ_p^* -open sets in (X, τ) is denoted by $\Lambda_p^* O(X, \tau)$ and the collection of all Λ_p^* -closed sets in (X, τ) is denoted by $\Lambda_p^* C(X, \tau)$. Recall that a subset *S* of a space (X, τ) is called a *pre**- Λ -set (briefly Λ_p^* -set [6]) if $S = \Lambda_p^*$ (*S*)

where $\Lambda_p^*(S) = \bigcap \{ G: S \subseteq G, G \in P^*O(X, \tau) \}.$

Definition 1.1: [6] Let X be a space and $A \subseteq X$. Then a point $x \in X$ is called a Λ_p^* -cluster point of A if for every Λ_p^* -open set U containing $x, A \cap U \neq \emptyset$. The collection of all Λ_p^* cluster points of A is called the Λ_p^* -closure of A and is denoted by Λ_p^* -cl(A).

Proposition 1.2: [6] $(i)A \subseteq \Lambda_p^* - cl(A)$.

(*ii*)
$$\Lambda_p^*$$
-cl(A) = $\cap \{F : A \subseteq F \text{ and } F \text{ is } \Lambda_p^* \text{ -closed}\},\$

(*iii*) If $A \subseteq B$, then $\Lambda_p^* - cl(A) \subseteq \Lambda_p^* - cl(B)$, (*iv*) A is Λ_p^* -closed if and only if $A = \Lambda_p^* - cl(A)$ and

(v) Λ_p^* -cl(A) is Λ_p^* -closed.

Λ_p^* -T_K (K=0,1,2) SPACES

Definition 2.1: A space X is said to be Λ_p^* -T₀ if for each pair of distinct points x, y of X, there exists a Λ_p^* -open set containing one of the points but not the other.

For the existence of Λ_p^* - T_0 space, consider a topological space (X, τ)

where $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}$. Clearly, (X, τ) is $\Lambda_p^* - T_0$.

The following theorem characterizes Λ_p^* - T_0 spaces.

Theorem 2.2: A space X is $\Lambda_p^* - T_0$ if and only if for each pair of distinct points x, y of X, $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\}).$

Proof. Suppose X is a Λ_p^* - T_0 space. Let $x, y \in X$ such that $x \neq y$. By using Definition 2.1, there exists a Λ_p^* -open set V containing one of the points but not the other, say $x \in V$ and $y \notin V$ and so $X \setminus V$ is a Λ_p^* -closed set containing y but not x. It follows that $y \in \Lambda_p^*$ - $cl(\{y\}) \subseteq X \setminus V$ and so $X \notin \Lambda_p^*$ - $cl(\{y\})$ which implies that Λ_p^* - $cl(\{x\}) \neq \Lambda_p^*$ - $cl(\{y\})$.

Conversely, let $x, y \notin X, x \neq y$ such that $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$. Suppose there is an element $z \in X$ such that $z \in \Lambda_p^* - cl(\{x\})$ and $z \notin \Lambda_p^* - cl(\{y\})$. If $x \in \Lambda_p^* - cl(\{y\})$, then $\Lambda_p^* - cl(\{x\}) \subseteq \Lambda_p^* - cl(\{y\})$ that implies $z \in \Lambda_p^* - cl(\{y\})$, a contradiction. Thus $x \notin \Lambda_p^* - cl(\{y\})$ which implies that $x \in X \setminus \Lambda_p^* - cl(\{y\}), y \notin X \setminus \Lambda_p^* - cl(\{y\})$ and $X \setminus \Lambda_p^* - cl(\{y\})$ is $\Lambda_p^* - open$. This shows that X is $\Lambda_p^* - T_0$.

Corollary 2.3. A space X is $\Lambda_p^* - T_0$ if and only if for each pair of distinct points x, y of X, either $x \notin \Lambda_p^* - cl(\{y\})$ or $y \notin \Lambda_p^* - cl(\{x\})$.

Theorem 2.4. A space X is $\Lambda_p^* - T_0$ if and only if for each pair of distinct points x, y of X, $\Lambda_p^* - ker(\{x\}) \neq \Lambda_p^* - ker(\{y\}).$

Proof. Suppose X is a $\Lambda_p^* - T_0$ space. By Theorem 2.2, $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$ and so by Theorem 3.8 of [6], $\Lambda_p^* - ker(\{x\}) \neq \Lambda_p^* - ker(\{y\})$.

Conversely, suppose for $x, y \in X$ with $x \neq y$, $\Lambda_p^* - ker(\{x\}) \neq \Lambda_p^* - ker(\{y\})$, so by Theorem 3.8 of [6], $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$ and by Theorem 2.2, X is a $\Lambda_p^* - T_0$ space.

Definition 2.5. A space X is said to be $\Lambda_p^* - T_1$ if for any pair of distinct points x, y of X, there is a Λ_p^* -open set U in X such that $x \in U$ and $y \notin U$ and there is a Λ_p^* -open set V in X such that $y \in V$ and $x \notin V$.

For the existence of $\Lambda_p^* - T_1$ space, consider a topological space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Clearly, (X, τ) is $\Lambda_p^* - T_1$.

The following theorem characterizes Λ_p^* - T_1 spaces.

Theorem 2.6. For a space *X*, the following are equivalent :

(i) X is $\Lambda_p^* - T_1$.

(*ii*) For every $x \in X$, $\{x\} = \Lambda_p^* - cl(\{x\})$.

(*iii*) For each $x \in X$, the intersection of all Λ_p^* -open sets containing x is $\{x\}$.

Proof. (i) \Rightarrow (ii). Suppose X is a Λ_p^* - T_1 space. Let $x \in X$ and $y \neq x$ in X. By Definition 2.5, there exists a Λ_p^* -open set V in X such that $x \notin V$ and $y \in V$. If $y \in \Lambda_p^*$ - $cl(\{x\})$, then by using Definition 1.1, y is a Λ_p^* -cluster point of $\{x\}$ which implies that for every Λ_p^* -open set U containing y, $\{x\} \cap U \neq \emptyset$. Now V is a -open set containing y and so $\{x\} \cap V \neq \emptyset$ which

implies that $x \in V$, a contradiction. Hence $y \notin \Lambda_p^* - cl(\{x\})$. That is $y \notin \Lambda_p^* - cl(\{x\})$ for every $y \neq x$. This shows that $\{x\} = \Lambda_p^* - cl(\{x\})$.

(*ii*) \Rightarrow (*iii*). Suppose for every $x \in X$, $\{x\} = \Lambda_p^* - cl(\{x\})$. By using Lemma 3.7(1) of [6], we have $\{x\} \subseteq \Lambda_p^* - ker(\{x\})$. If $y \in \Lambda_p^* - ker(\{x\})$, then by By Lemma 3.7(4) of [6], $x \in \Lambda_p^* - cl(\{y\})$ and so by hypothesis, $x \in \{y\}$, that is, $y \in \{x\}$ which implies that $\Lambda_p^* - ker(\{x\}) \subseteq \{x\}$. Thus we get $\{x\} = \Lambda_p^* - ker(\{x\})$ and so $\{x\} = \cap \{G : G \in \Lambda_p^* O(X, \tau) \text{ and } \{x\} \subseteq G\}$.

(*iii*) \Rightarrow (*i*). Suppose that for each $x \in X$, the intersection of all Λ_p^* -open sets containing x is $\{x\}$. Let $x, y \in X$ with $x \neq y$. Then by hypothesis, $\{x\} = \bigcap \{G : G \in \Lambda_p^* O(X, \tau) \text{ and } \{x\} \subseteq G\}$. From this, we can find one Λ_p^* -open set V containing x but not y. In the same manner, we can find one Λ_p^* -open set U containing y but not x and so X is $\Lambda_p^* - T_1$.

Theorem 2.7. A space X is Λ_p^* - T_1 if and only if the singletons are Λ_p^* -closed sets.

Proof. Suppose X is $\Lambda_p^* - T_1$. Then $\Lambda_p^* - cl(\{x\}) = \{x\}$ for every $x \in X$ and so $\{x\}$ is $\Lambda_p^* - closed$. Conversely, suppose $\{x\}$ is $\Lambda_p^* - closed$ for every $x \in X$. By Proposition using 3.2(4) of [6], $\Lambda_p^* - cl(\{x\}) = \{x\}$. By using Theorem 2.6, X is a $\Lambda_p^* - T_1$ space.

Definition 2.8. A space X is said to be $\Lambda_p^* - T_2$ if for each pair of distinct points x and y in X, there Λ_p^* -open sets U and V in X such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

For the existence of $\Lambda_p^* - T_2$ space, consider a topological space (X, τ) where $X = \{a, b\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, X\}$. It can be verified that, (X, τ) is $\Lambda_r - T_2$.

Theorem 2.9 characterizes Λ_p^* - T_2 spaces.

Theorem 2.9. For a space X, the following are equivalent:

(i) X is $\Lambda_p^* - T_2$.

(*ii*) If $x \in X$, then for each $y \neq x$, there is a Λ_p^* -open set U containing x such that

$$Y \notin \Lambda_n^* - cl(U)$$

(iii) For each $x \in X$, $\{x\} = \bigcap \{\Lambda_p^* - cl(U) : U \text{ is a } \Lambda_p^* \text{ -open set containing } x\}$.

Proof. (*i*) \Rightarrow (*ii*). Suppose X is a Λ_p^* - T_2 space. Let $x \in X$. By Definition 2.8, for each $y \neq x$, there exist Λ_p^* -open sets A and B such that $x \in A, y \in B$ and $A \cap B = \emptyset$. Take $X \setminus B = F$.

Then it follows that F is Λ_p^* -closed, $A \subseteq F$ and $y \notin F$ which implies that $y \notin \bigcap \{F : F \text{ is } \Lambda_p^* \text{-closed and } A \subseteq F\}$ and so by Proposition 1.2 (*ii*), we have $y \notin \Lambda_p^* \text{-cl}(A)$.

(*ii*) \Rightarrow (*i*). Suppose for each $y \neq x$ in X, there is a Λ_p^* -open set U containing x such that $y \notin \Lambda_p^* - cl(U)$. Then $y \in X \setminus \Lambda_p^* - cl(U)$ and by using Proposition 1.2(*i*), Proposition 1.2(*v*), $x \in U \subseteq \Lambda_p^* - cl(U)$ and $X \setminus (\Lambda_p^* - cl(U))$ is Λ_p^* -open which implies that $U \cap (X \setminus (\Lambda_p^* - cl(U))) = \emptyset$.

This shows that X is $\Lambda_p^* - T_2$.

The proof of (ii) \Leftrightarrow (iii) is clear and so it is omitted.

Λ_p^* -R₀ SPACES

Definition 3.1. A topological space X is said to be $\Lambda_p^* - R_0$ if for each Λ_p^* -open set G, $x \in G$ implies $\Lambda_p^* - cl(\{x\}) \subseteq G$.

For the existence of Λ_p^* -*R*₀ space, consider a topological space (*X*, τ)

where $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b, c, d\}, X\}$. It is easy to check that (X, τ) is $\Lambda_p^* - R_0$.

Theorem 3.2. A space X is $\Lambda_p^* - R_0$ if and only if every Λ_p^* -open subset of X is the union of Λ_p^* -closed sets.

Proof. Suppose X is a $\Lambda_p^* - R_0$ space. If $A \subseteq X$ is Λ_p^* -open, then by using 3.1, for each $x \in A$, $\Lambda_p^* - cl(\{x\}) \subseteq A$ which implies $\bigcup \{\Lambda_p^* - cl(\{x\}): x \in A\} \subseteq A$, and hence $A = \bigcup \{\Lambda_p^* - cl(\{x\}): x \in A\}$. By Proposition 1.1(v), A is the union of Λ_p^* -closed sets.

Conversely, suppose A is Λ_p^* -open and $x \in A$. Then by hypothesis, there exist Λ_p^* closed sets B_i in X such that $A = \bigcup \{B_i : i \in I\}$. Now $x \in A$ implies $x \in B_i$ for some $i \in I$. Then $x \in \Lambda_p^*$ -cl($\{x\}$) $\subseteq B_i \subseteq A$ and so X is Λ_p^* -R₀.

Theorem 3.3. For a space X, the following statements are equivalent:

(i) X is $\Lambda_p^* - R_0$.

(*ii*) For any Λ_p^* -closed set F and a point $x \notin F$, there exists $U \in \Lambda_p^* O(X, \tau)$ such that $x \notin U$ and $F \subseteq U$.

(iii) For any Λ_p^* -closed set F and a point $x \notin F$, Λ_p^* -cl($\{x\}$) $\cap F = \emptyset$.

Proof. Suppose (i) holds. If F is a Λ_p^* -closed set and $x \notin F$, then X/F is Λ_p^* -open and $x \notin X/F$. By Definition 3.1, $\Lambda_p^* - cl(\{x\}) \subseteq X/F$ and so $F \subseteq X/(\Lambda_p^* - cl(\{x\}))$. Thus by Proposition 1.2(v) and (i), $X/(\Lambda_p^* - cl(\{x\}))$ is the required Λ_p^* -open set containing F and $x \notin X/(\Lambda_p^* - cl(\{x\}))$. This proves (ii).

Suppose (*ii*) holds. If F is a Λ_p^* -closed set and $x \notin F$, then by hypothesis, there exists $U \in \Lambda_p^* O(X, \tau)$ such that $x \notin U$ and $F \subseteq U$. If $U \cap \Lambda_p^* - cl(\{x\}) \neq \emptyset$, then there exists $y \in X$ such that $y \in U$ and $y \in \Lambda_p^* - cl(\{x\})$. By Definition 1.1, y is a Λ_p^* -cluster point of $\{x\}$ and so for every Λ_p^* -open set G containing y, $G \cap \{x\} \neq \emptyset$, that is, $x \in G$. Now U is a Λ_p^* -open set containing y and so $x \in U$, a contradiction. Hence $U \cap \Lambda_p^* - cl(\{x\}) = \emptyset$ and $F \cap \Lambda_p^* - cl(\{x\}) = \emptyset$.

This proves (iii).

Suppose (*iii*) holds. If G is a Λ_p^* -open set and $x \in G$, then X\G is Λ_p^* -closed and $x \notin X\setminus G$. By hypothesis, Λ_p^* -cl($\{x\}$) \cap (X\G) = Ø which implies that Λ_p^* -cl($\{x\}$) \subseteq G. This proves (*i*).

Theorem 3.4. A space X is $\Lambda_p^* - R_0$ if and only if for each pair of points x, y of X, $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$ implies $\Lambda_p^* - cl(\{x\}) \cap \Lambda_p^* - cl(\{y\}) = \emptyset$.

Proof. Assume that X is $\Lambda_p^* - R_0$. Let $x, y \in X$ such that $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$. Then there exists $z \in X$ such that $z \in \Lambda_p^* - cl(\{x\})$ and $z \notin \Lambda_p^* - cl(\{y\})$. Since $z \notin \Lambda_p^* - cl(\{y\})$, there exists a Λ_p^* -open set V containing z such that $\{y\} \cap V = \emptyset$ and so $y \notin V$. Since $z \in \Lambda_p^* - cl(\{x\})$, for every Λ_p^* -open set G containing z, $\{x\} \cap G \neq \emptyset$, that is $x \in G$ which implies that $x \in V$. Since V is a Λ_p^* -open set containing x and $y \notin V, x \notin \Lambda_p^* - cl(\{y\})$ and so $x \in X \setminus \Lambda_p^* - cl(\{y\})$. Now by using Definition 3.1, $\Lambda_p^* - cl(\{x\}) \subseteq X \setminus \Lambda_p^* - cl(\{y\})$ and so $\Lambda_p^* - cl(\{x\}) \cap \Lambda_p^* - cl(\{y\}) = \emptyset$.

Conversely, suppose for each pair of points x, y of X, $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$ implies $\Lambda_p^* - cl(\{x\}) \cap \Lambda_p^* - cl(\{y\}) = \emptyset$. Let G be a Λ_p^* -open set such that $x \in G$. If $y \notin G$, then $x \neq y$ and so $x \notin \Lambda_p^* - cl(\{y\})$ which implies that $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$. By hypothesis, $\Lambda_p^* - cl(\{x\}) \cap \Lambda_p^* - cl(\{y\}) = \emptyset$ and so $y \notin \Lambda_p^* - cl(\{x\})$. This shows that $\Lambda_p^* - cl(\{x\}) \subseteq G$ and so X is a $\Lambda_p^* - cl(\{x\}) = \emptyset$.

Theorem 3.5. A space X is $\Lambda_p^* \cdot R_0$ if and only if for each pair of points x, y of X, $\Lambda_p^* \cdot ker(\{x\}) \neq \Lambda_p^* \cdot ker(\{y\})$ implies $\Lambda_p^* \cdot ker(\{x\}) \cap \Lambda_p^* \cdot ker(\{y\}) = \emptyset$.

Proof. Suppose X is a $\Lambda_p^* - R_0$ space. Let $x, y \in X$ such that $\Lambda_p^* -ker(\{x\}) \neq \Lambda_p^* -ker(\{y\})$. Let $z \in \Lambda_p^* -ker(\{x\}) \cap \Lambda_p^* -ker(\{y\})$. Then $z \in \Lambda_p^* -ker(\{x\})$ and $z \in \Lambda_p^* -ker(\{y\})$. By Lemma 3.7 (4) of [6], we have $x \in \Lambda_p^* -cl(\{z\})$ and $y \in \Lambda_p^* -cl(\{z\})$ and so $\Lambda_p^* -cl(\{x\}) \cap \Lambda_p^* -cl(\{z\}) \neq \emptyset$ and $\Lambda_p^* -cl(\{y\}) \cap \Lambda_p^* -cl(\{z\}) \neq \emptyset$. By Theorem 3.4, we have $\Lambda_p^* -cl(\{x\}) = \Lambda_p^* -cl(\{z\})$ and $\Lambda_p^* -cl(\{y\}) = \Lambda_p^* -cl(\{z\})$ which implies that $\Lambda_p^* -cl(\{x\}) = \Lambda_p^* -cl(\{x\}) = 0$.

Conversely, suppose that for $x, y \in X$, $\Lambda_p^* - ker(\{x\}) \neq \Lambda_p^* - ker(\{y\})$ implies $\Lambda_p^* - ker(\{x\}) \cap \Lambda_p^* - ker(\{y\}) = \emptyset$. Let $x, y \in X$ such that $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$. Suppose $z \in \Lambda_p^* - cl(\{x\}) \cap \Lambda_p^* - cl(\{y\})$. Then $z \in \Lambda_p^* - cl(\{x\})$ and $z \in \Lambda_p^* - cl(\{y\})$. By Lemma 3.7(4) of [66], $x \in \Lambda_p^* - ker(\{z\})$, $y \in \Lambda_p^* - ker(\{z\})$ and $\Lambda_p^* - ker(\{x\}) \cap \Lambda_p^* - ker(\{z\}) \neq \emptyset$ and so $\Lambda_p^* - ker(\{y\}) \cap \Lambda_p^* - ker(\{z\}) \neq \emptyset$. By hypothesis, $\Lambda_p^* - ker(\{x\}) = \Lambda_p^* - ker(\{z\})$, $\Lambda_p^* - ker(\{y\}) = \Lambda_p^* - ker(\{z\})$ and so $\Lambda_p^* - ker(\{x\}) = \Lambda_p^* - ker(\{y\})$. Again by using Theorem 3.8 of [6].

 $\Lambda_p^* - cl(\{x\}) = \Lambda_p^* - cl(\{y\}), \text{ a contradiction. Therefore } \Lambda_p^* - cl(\{x\}) \cap \Lambda_p^* - cl(\{y\}) = \emptyset$ and so by Theorem 3.4, X is a $\Lambda_p^* - R_0$ space.

Theorem 3.6. For a space X, the following are equivalent:

(i) X is $\Lambda_p^* - R_0$.

(*ii*) For any nonempty set A and $G \in \Lambda_p^* O(X, \tau)$ such that $A \cap G \neq \emptyset$, there exists $F \in \Lambda_p^* C(X, \tau)$ such that $A \cap F \neq \emptyset$ and $F \subseteq G$.

- (*iii*) For any $G \in \Lambda_p^* O(X, \tau)$, $G = \bigcup \{F : F \in \Lambda_p^* C(X, \tau) \text{ and } F \subseteq G\}$.
- (iv) For any $F \in \Lambda_p^* C(X, \tau)$, $F = \bigcap \{G : G \in \Lambda_p^* O(X, \tau) \text{ and } F \subseteq G\}$.
- (v) For any $x \in X$, $\Lambda_p^* cl(\{x\}) \subseteq \Lambda_p^* ker(\{x\})$.
- (vi) For any $x, y \in X, y \in \Lambda_p^*$ -cl({x}) $\Leftrightarrow x \in \Lambda_p^*$ -cl({y}).

Proof. Suppose (i) holds. Let A be any nonempty subset of X and G be a Λ_p^* -open set in X such that $A \cap G \neq \emptyset$. Let $x \in A \cap G$. Then by Definition 3.1, $x \in G$ implies $\Lambda_p^* -cl(\{x\}) \subseteq G$. Since $x \in A$, we have $\Lambda_p^* -cl(\{x\}) \cap A \neq \emptyset$. Thus $\Lambda_p^* -cl(\{x\})$ is the required $\Lambda_p^* -cl(\{x\}) \in G$ set contained in G such that $A \cap \Lambda_p^* -cl(\{x\}) \neq \emptyset$. This proves (ii).

Suppose (*ii*) holds. If $G \in \Lambda_p^* O(X, \tau)$ and $x \in G$, then by hypothesis, there exists $F \in \Lambda_p^* C(X, \tau)$ such that $\{x\} \cap F \neq \emptyset$ and $F \subseteq G$. Then it follows that $x \in F$ and so $x \in \bigcup$ $\{F : F \in \Lambda_p^* C(X, \tau) \text{ and } F \subseteq G\}$ and so $G \subseteq \bigcup \{F : F \in \Lambda_p^* C(X, \tau) \text{ and } F \subseteq G\}$. Also $\bigcup \{F : F \in \Lambda_p^* C(X, \tau) \text{ and } F \subseteq G\} \subseteq G$. This proves (*iii*).

Suppose (*iii*) holds. If $F \in \Lambda_p^* C(X, \tau)$, then $X \setminus F \in \Lambda_p^* O(X, \tau)$ and so by hypothesis, $X \setminus F = \bigcup \{X \setminus G : X \setminus G \in \Lambda_p^* C(X, \tau) \text{ and } X \setminus G \subseteq X \setminus F\}$ which implies that $F = \bigcap \{G : G \in \Lambda_p^* O(X, \tau) \text{ and } F \subseteq G\}$. This proves (*iv*).

Suppose (iv) holds. If $y \notin \Lambda_p^*$ -ker({x}), then by Lemma 3.7 (iv) of [6], $x \notin \Lambda_p^*$ cl({y}). So there exists a Λ_p^* -open set V containing x such that $V \cap \{y\} = \emptyset$ which implies that Λ_p^* -cl({y}) $\cap V = \emptyset$. Since Λ_p^* -cl({y}) is Λ_p^* -closed, by hypothesis, Λ_p^* -cl({y}) = \cap $\{G : G \in \Lambda_p^* O(X, \tau) \text{ and } \Lambda_p^*$ -cl({y}) $\subseteq G\}$. Since $x \in V$, we have $x \notin \Lambda_p^*$ -cl({y}) and so there exists $G \in \Lambda_p^* O(X, \tau)$ such that Λ_p^* -cl({y}) $\subseteq G$ and $x \notin G$ which implies that Λ_p^* cl({x}) $\cap G = \emptyset$. Hence $y \notin \Lambda_p^*$ -cl({x}) and so Λ_p^* -cl({x}) $\subseteq \Lambda_p^*$ -ker({x}). This proves (v).

Suppose (v) holds. If $y \in \Lambda_p^* - cl(\{x\})$, then by hypothesis, $y \in \Lambda_p^* - ker(\{x\})$ and so by Lemma 3.7(*iv*) of [6], $x \in \Lambda_p^* - cl(\{y\})$. In the same manner, if $x \in \Lambda_p^* - cl(\{y\})$, then by using hypothesis, $x \in \Lambda_p^* - ker(\{y\})$ and so $y \in \Lambda_p^* - cl(\{x\})$. This shows that $x \in \Lambda_p^* - cl(\{y\}) \Leftrightarrow y \in \Lambda_p^* - cl(\{x\})$. This proves (vi).

Suppose (vi) holds. Let $G \in \Lambda_p^* O(X, \tau)$ and $x \in G$. If $y \notin G$, then $y \in X \setminus G$ and, $y \in \Lambda_p^* - cl(\{y\}) \subseteq X \setminus G$. Then $\Lambda_p^* - cl(\{y\}) \cap G = \emptyset$ which implies that $x \notin \Lambda_p^* - cl(\{y\})$. Then by hypothesis, $y \notin \Lambda_p^* - cl(\{x\})$. This shows that $\Lambda_p^* - cl(\{x\}) \subseteq G$. This proves (i).

Theorem 3.7. For a space X, the following properties are equivalent:

- (i) X is $\Lambda_p^* R_0$.
- (*ii*) If F is Λ_p^* -closed, then $F = \Lambda_p^*$ -ker(F).

(*iii*) If F is Λ_p^* -closed and $x \in F$, then Λ_p^* -ker($\{x\}$) $\subseteq F$. (*iv*) If $x \in X$, then Λ_p^* -ker($\{x\}$) $\subseteq \Lambda_p^*$ -cl($\{x\}$).

Proof. Suppose (*i*) holds. Let *F* be Λ_p^* -closed and $x \notin F$. Then *X**F* is a Λ_p^* -open set containing *x*. By Definition 3.1, Λ_p^* -cl({*x*}) \subseteq *X**F* and so Λ_p^* -cl({*x*}) \cap *F* = Ø. By Lemma 3.7(v) of [6], $x \notin \Lambda_p^*$ -ker(*F*). This shows that Λ_p^* -ker(*F*) \subseteq *F*. Also by Lemma 3.7 (i) of [6], $F \subseteq \Lambda_p^*$ -ker(*F*). This proves (*ii*).

Suppose (*ii*) holds. Let F be Λ_p^* -closed and $x \in F$. By using Lemma 3.7 of [6] (*ii*), Λ_p^* ker({x}) $\subseteq \Lambda_p^*$ -ker(F) and by hypothesis, Λ_p^* -ker({x}) $\subseteq F$. This proves (*iii*).

Suppose (*iii*) holds. By Also by Lemma 3.7 (i and v) of [6], $x \in \Lambda_p^* - cl(\{x\})$ and $\Lambda_p^* - cl(\{x\})$ is Λ_p^* -closed. By hypothesis, $\Lambda_p^* - ker(\{x\}) \subseteq \Lambda_p^* - cl(\{x\})$. This proves (*iv*).

Suppose (*iv*) holds. Let $x \in \Lambda_p^* - cl(\{y\})$. Then by Lemma 3.7(iv) of [6], $y \in \Lambda_p^* - ker(\{x\})$ and by hypothesis, $y \in \Lambda_p^* - cl(\{x\})$. Conversely, let $y \in \Lambda_p^* \Lambda_r - cl(\{x\})$. Then by Lemma 3.7(*iv*), $x \in \Lambda_p^* - ker(\{y\})$ and by hypothesis, $x \in \Lambda_p^* - cl(\{y\})$. This shows that $x \in \Lambda_p^* - cl(\{y\}) \Leftrightarrow y \in \Lambda_p^* - cl(\{x\})$ and so by Theorem 3.6, X is $\Lambda_p^* - R_0$. This proves (*i*).

Corollary 3.8. A space X is $\Lambda_r - R_0$ if and only if for any $x \in X$, $\Lambda_p^* - cl(\{x\}) = \Lambda_p^* - ker(\{x\})$.

Λ_p^* - **R**₁ SPACES

Definition 4.1. A space X is said to be $\Lambda_p^* - R_1$ if for each pair of points $x, y \in X$ with $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$, there exists Λ_p^* -open sets U and V in X such that $\Lambda_p^* - cl(\{x\}) \subseteq U$, $\Lambda_p^* - cl(\{y\}) \subseteq V$ and $U \cap V = \emptyset$.

For the existence of Λ_p^* -*R*₁ space, consider a topological space (*X*, τ)

where $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$. This space (X, τ) is $\Lambda_p^* - R_1$.

Theorem 4.2. Every $\Lambda_p^* - R_1$ space is $\Lambda_p^* - R_0$.

Proof. Suppose X is a $\Lambda_p^* - R_1$ space. Let U be Λ_p^* -open in X and $x \in U$. Then for each $y \in X \setminus U, x \neq y$ and so $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$. By Definition 4.1, there exist disjoint $\Lambda_p^* - cl(\{x\}) = U_y$ and $\Lambda_p^* - cl(\{y\}) \subseteq V_y$. Take $V = \bigcup \{V_y : y \in V_y : y \in V_y$.

 $X \setminus U$. Then by Proposition 3.5 of [1], V is Λ_p^* -open. Now $x \in \Lambda_p^*$ - $cl(\{x\}) \subseteq U_y$ and $U_y \cap V_y = \emptyset$ for each $y \in X \setminus U$ and so $x \notin V_y$ for each $y \in X \setminus U$ which implies that $x \notin V$. Thus we have V is Λ_p^* -open, $x \in X \setminus V$ and $X \setminus U \subseteq V$. By Remark 3.3 of [6], $x \in \Lambda_p^*$ - $cl(\{x\}) \subseteq X \setminus V \subseteq U$.

Theorem 4.3. If X is a $\Lambda_p^* - R_0$ space and for each pair of points x and y of X with $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$, there exists Λ_p^* -open sets U and V such that $x \in U, y \in V$ and $U \cap V = \emptyset$, then X is a $\Lambda_p^* - R_1$ space.

Proof. Let X be a $\Lambda_p^* - R_0$ space and for each pair of points x and y of X with $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$, there exists Λ_p^* open sets U and V such that $x \in U, y \in V$ and $U \cap V = \emptyset$. By Definition 3.1, $\Lambda_p^* - cl(\{x\}) \subseteq U$ and $\Lambda_p^* - cl(\{y\}) \subseteq V$ and so by Definition 4.1, X is $\Lambda_p^* - R_1$.

The following theorem characterizes $\Lambda_p^* - R_1$ spaces.

Theorem 4.4. A topological space X is $\Lambda_p^* - R_1$ if and only if for each points $x, y \in X$ such that $\Lambda_p^* - ker(\{x\}) \neq \Lambda_p^* - ker(\{y\})$, there exist Λ_p^* -open sets U and V in X such that $\Lambda_p^* - cl(\{x\}) \subseteq U$, $\Lambda_p^* - cl(\{y\}) \subseteq V$ and $U \cap V = \emptyset$.

Proof. Suppose X is $\Lambda_p^* - R_1$. Let $x, y \in X$ such that $\Lambda_p^* - ker(\{x\}) \neq \Lambda_p^* - ker(\{y\})$. By Theorem 4.2, X is $\Lambda_p^* - R_0$ and so by Corollary 4.3, $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$. Then by Definition 4.1, there exist disjoint Λ_p^* -open sets U and V such that $\Lambda_p^* - cl(\{x\}) \subseteq U$ and $\Lambda_p^* - cl(\{y\}) \subseteq V$.

Conversely, suppose for each of points $x, y \in X$ such that $\Lambda_p^* -ker(\{x\}) \neq \Lambda_p^* -ker(\{y\})$, there exist Λ_p^* -open sets U and V in X such that $\Lambda_p^* -cl(\{x\}) \subseteq U$, $\Lambda_p^* -cl(\{y\}) \subseteq V$ and $U \cap V = \emptyset$. Let $x, y \in X$ such that $\Lambda_p^* -cl(\{x\}) \neq \Lambda_p^* -cl(\{y\})$. Then by Theorem 3.8 of of [6], $\Lambda_p^* -ker(\{x\}) \neq \Lambda_p^* -ker(\{y\})$ and by hypothesis, there exist disjoint Λ_p^* -open sets U and V such that $\Lambda_p^* -cl(\{x\}) \subseteq U$ and $\Lambda_p^* -cl(\{y\}) \subseteq V$. This shows that X is a $\Lambda_p^* -R_1$ space.

Theorem 4.5. For a space *X*, the following are equivalent :

- (*i*) X is a Λ_p^* T_2 space.
- (*ii*) X is both a $\Lambda_p^* R_1$ space and $\Lambda_p^* T_1$ space.
- (*iii*) X is both a Λ_p^* - R_1 space and Λ_p^* - T_0 space.

Proof. (i) \Rightarrow (ii). Suppose X is a $\Lambda_p^* - T_2$ space. Then by Definition 2.8 itself, X is $\Lambda_p^* - T_1$. If $x, y \in X$ with $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$, then by Theorem 2.6, $x \neq y$ and so by Definition 2.8, there exists Λ_p^* -open sets G and H such that $x \in G, y \in H$ and $G \cap H = \emptyset$. Then it follows that $\{x\} = \Lambda_p^* - cl(\{x\}) \subseteq G$ and $\{y\} = \Lambda_p^* - cl(\{y\}) \subseteq H$ and so by Definition 4.1, X is $\Lambda_p^* - R_1$.

(ii) \Rightarrow (iii). Suppose X is both $\Lambda_p^* - R_1$ and $\Lambda_p^* - T_1$ spaces. Then by Definition 2.1 itself, X is $\Lambda_p^* - T_0$.

(iii) \Rightarrow (i). Suppose X is both a $\Lambda_p^* - R_1$ space and $\Lambda_p^* - T_0$ space. Let $x, y \in X$ with $x \neq y$. By Theorem 2.2, $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$ and so by Definition 4.1, there exist disjoint Λ_p^* -open sets G and H such that $\Lambda_p^* - cl(\{x\}) \subseteq G$ and $\Lambda_p^* - cl(\{y\}) \subseteq H$ which implies that $x \in G, y \in H$ and $G \cap H = \emptyset$ and so X is $\Lambda_p^* - T_2$.

Theorem 4.6. A space X is $\Lambda_p^* - R_1$ if and only if for each points $x, y \in X$ such that $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$, there exists Λ_p^* -closed sets F_1 and F_2 such that $x \in F_1, y \notin F_1, x \notin F_2, y \in F_2$ and $X = F_1 \cup F_2$.

Proof. Suppose X is a $\Lambda_p^* - R_l$ space. Let $x, y \in X$ such that $\Lambda_p^* - cl(\{x\}) \neq \Lambda_p^* - cl(\{y\})$. By Definition 4.1, there exist disjoint Λ_p^* -open sets U and V in X such that $\Lambda_p^* - cl(\{x\}) \subseteq U$ and $\Lambda_p^* - cl(\{y\}) \subseteq V$. Then $F_1 = X \setminus V$ and $F_2 = X \setminus U$ are Λ_p^* -closed sets such that $x \in F_1, y \notin F_1$, $x \notin F_2, y \in F_2$ and $X = F_1 \cup F_2$.

Conversely, let $x, y \in X$ such that $\Lambda_p^* - cl(\{x\}) \neq \Lambda_r - cl(\{y\})$. Then by hypothesis, there exists Λ_p^* -closed sets F_1 and F_2 such that $x \in F_1, y \notin F_1, x \notin F_2, y \in F_2$ and $X = F_1 \cup F_2$. Then $U = X \setminus F_2$ and $V = X \setminus F_1$ are Λ_p^* -open sets, $x \in U, y \in V$ and $U \cap V = \emptyset$. This shows that X is $\Lambda_p^* - T_2$ and so by Theorem 4.5, X is $\Lambda_p^* - R_1$.

The above discussions lead to the following implications but none of the reverse implications is true.

Diagram 4.7.

Conclusion

 Λ_p^* -sets and Λ_p^* -sets are used to introduce and investigate Λ_p^* - R_1 spaces, Λ_p^* - R_0 spaces, Λ_p^* - T_2 spaces, Λ_p^* - T_1 spaces and Λ_p^* - T_0 spaces. The further scope for research in this area is to characterize the existing concepts in topological spaces. For example the lower separation axioms namely Λ_s^* - T_i spaces, Λ_s^* - R_j spaces [7] for i = 0, 1, 2 and j = 0, 1 may be characterized by using Λ_p^* - T_i spaces, Λ_p^* - R_j spaces.

References

- 1. Caldas, M. and Dontchev, J.G., Λ_s-sets and V_s-sets, *Mem. Fac. Sci. Kochi Univ. Math.*, **21**, 21-30 (2002).
- Caldas, M., Ganster, M., Jafari, S. and Noiri, T., On Λ_p-sets and functions, *Mem. Fac. Sci. Kochi* Univ. Math., 25, 1-8 (2004).
- 3. Caldas, M., Georgiou, D.N. and Jafari, S., Study of (Λ, α) -closed sets and the related notions in topological spaces, *Bull. Malays. Math. Sci. Soc.*, (2), 30(1), 23-36 (2007).
- Caldas, M. and Jafari, S., On some low separation axioms in topological space, *Houston Journal of Math.*, 29, 93-104 (2003).
- 5. Ganster, M. and Jafari, S., On pre-Λ-sets and pre-V-sets, Acta Math. Hungar, 95 (4), 337-343 (2002).
- 6. Gnanachandra, P., On pre*-A-sets and pre*-V-sets, Acta Ciencia Indica. (Preprint)
- 7. Gnanachandra, P., On Semi*-A-sets and Semi*-V-sets, Ultra Scientist. (Preprint)
- Maki, H., Generalized Λ-sets and the associated closure operator, *The Special Issue in Commemoration of Prof. Kazusada IKEDA' Retirement*, 1(10), 139-146 (1986).
- Cueva, Miguel Caldas and Dontchev, Julian, Λ_s-closure operator and the associated topology τ Λ_s, Journal of the Indian Math. Soc., 69 (1-4), 71-79 (2002).
- Caldas, Miguel, Jafari, Saeid and Navalagi, Govindappa, More on λ-closed sets in topological spaces, *Revista Colombiana de Matemáticas*, 41(2), 355-369 (2007).
- 11. Caldas, Miguel and Jafari, Saeid, Generalized Λ_{δ} -sets and related topics, *Georgian Mathematical Journal*, **16(2)**, 247–256 (2009).
- 12. Murdeshwar, M.G. and Naimpally, S.A., *R*₁-topological spaces, *Canad. Math.Bull.*, **9**, 521–523 (1966).
- 13. Naimpally, S.A., On R₀-topological spaces, Ann. Univ. Sci. Budapest Eötvös sect. Math., 10, 53–54 (1967).
- 14. Navaneetha Krishnan, M., A study on ideal topological spaces, *Ph.D. Dissertation*, Manonmaniam Sundaranar University, Tirunelveli, India (2009).
- 15. Selvi, T. and Dharani, A. Punitha, Some new class of nearly closed and open sets, *Asian J. of Curr. Eng. and Maths*, **1(5)**, 305-307 (2012).
- 16. Shanin, N.A., On separation in topological spaces, Dokl. Akad. Nauk SSSR, 38, 110-113 (1943).