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Separation axioms are among the most common and 
important and interesting concepts in   topology as well as 

in bitopologies. In this paper, we introduce *
p  -sets and 

some weak separation axioms using *
p  -open sets and 

*
p  -closure operator. The aim of this paper is to introduce 

*
p -Ti  and *

p -Rj, for i = 0, 1, 2 and j = 0, 1  spaces using 

*
p -open and *

p -closed sets. Some existing lower 

separation axioms are characterized by using these 
spaces.  
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INTRODUCTION AND PRELIMINARY 

The separation axioms R0 and R1 in topological spaces were introduced by Shanin [16] 

in 1943. Murdeshwar and Naimpally [12, 13] investigated the properties of R0 topological 
spaces and many interesting results have been obtained. Caldas et. al. [3] introduced Λα-sets 
and Vα -sets characterize some of their properties. Navaneethakrishnan [14] used regular-open 
sets to define  Vr-sets and  r-sets and investigate some separation axioms using these sets in 
topological spaces.  Using semi-open sets, Caldas and Dontchev [1] extended Maki’s work by 
introducing and studying Λs-sets and Vs-sets. The purpose of this paper is to continue the 

research along these directions but this time by utilizing * p -open sets. For details see ([2], 

[3], [4], [8], [9], [11], [11] and [12]).  In this paper, we introduce some *
p -separation axioms 

in topological spaces. To define and investigate the axioms, we use *
p -open sets.  

Throughout this paper (X, ) denotes a topological space on which no separation axioms 
are assumed unless explicitly stated. Standard definitions and notations in point set topology 
are used in this paper.  

A subset A of a topological space (X, τ) is said to be pre*-open [15] if A  int*(cl(A)), 
where int*(A) and cl(A) respectively denote the g-interior and the closure of A. The 
complement of a pre*-open set is pre*-closed. We shall denote the families of all pre*-open 

sets in a space (X, τ) by P*O (X, τ). Also A subset A is called a *
p -closed set [6] if A = S  C 
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where S is a *
p -set and C is a closed set. The complement of a *

p -closed set is called a *
p

-open set.  The collection of all *
p -open sets in (X, τ) is denoted by *

p O(X, τ) and the 

collection of all *
p -closed sets in (X, τ) is denoted by *

p C(X, τ). Recall that a subset S of a 

space (X, τ) is called a pre*-Λ-set (briefly *
p -set [6]) if S = *

p  (S)  

where *
p  (S) = {G: S  G, G  P*O (X, τ)}. 

Definition 1.1: [6] Let X be a space and A X. Then a point xX is called a *
p -cluster 

point of A if for every *
p -open set U containing x, AU  Ø. The collection of all *

p -

cluster points of A is called the *
p -closure of A and is denoted by *

p -cl(A).  

Proposition 1.2: [6] (i)A *
p -cl(A). 

(ii) *
p -cl(A) ={F : A F and F is *

p -closed}, 

(iii) If A B, then *
p -cl(A)  *

p  -cl(B), (iv) A is *
p -closed if and only if A= *

p -

cl(A) and   

(v) *
p -cl(A) is *

p -closed. 

*
p -TK (K=0,1,2) SPACES 

Definition 2.1: A space X is said to be *
p -T0 if for each pair of distinct points x, y of 

X, there exists a *
p -open set containing one of the points but not the other. 

For the existence of *
p -T0 space, consider a topological space (X, )   

where X = {a, b, c, d} and = {Ø, {a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, X}.  

 Clearly, (X,  ) is *
p -T0. 

The following theorem characterizes *
p -T0 spaces. 

Theorem 2.2: A space X is *
p -T0 if and only if for each pair of distinct points x, y of X,           

*
p -cl({x}) ≠ *

p -cl({y}).               

Proof.  Suppose X is a *
p -T0 space. Let x, y  X such that x  y. By using Definition 

2.1, there exists a *
p -open set V containing one of the points but not the other, say xV and 

yV and so X\V is a *
p -closed set containing y but not x. It follows that y   *

p -cl({y})

X\V and so X   *
p -cl({y}) which implies that *

p -cl({x}) ≠ *
p -cl({y}).  

 
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Conversely, let x, yX, x  y such that *
p -cl({x})   *

p -cl({y}). Suppose there is an 

element z X such that z  *
p -cl({x}) and z   *

p -cl({y}). If x   *
p -cl({y}), then *

p -

cl({x})  *
p -cl({y}) that implies z  *

p -cl({y}), a contradiction. Thus x   *
p -cl({y}) 

which implies that x  X\ *
p -cl({y}), yX \ *

p -cl({y}) and X\ *
p -cl({y}) is *

p -open. 

This shows that X is *
p -T0.                                                                                                                                                                  

Corollary 2.3. A space X is *
p -T0 if and only if for each pair of distinct points x, y of X, 

either x   *
p -cl({y}) or y  *

p -cl({x}). 

Theorem 2.4. A space X is *
p -T0 if and only if for each pair of distinct points x, y of X,           

*
p -ker({x}) ≠ *

p -ker({y}). 

Proof. Suppose X is a *
p -T0 space. By Theorem 2.2, *

p -cl({x}) ≠ *
p -cl({y}) and so 

by Theorem 3.8 of [6], *
p -ker({x}) ≠ *

p -ker({y}).  

Conversely, suppose for x, y  X with x  y, *
p -ker({x})  *

p -ker({y}), so by 

Theorem 3.8 of [6],
 

*
p -cl({x})  *

p -cl({y}) and by Theorem 2.2, X is a *
p -T0 space.   

Definition 2.5. A space X is said to be *
p -T1 if for any pair of distinct points x, y of X, 

there is a *
p -open set U in X such that x U and yU and there is a *

p -open set V in X 

such that  y V and x   V. 

For the existence of *
p -T1 space, consider a topological space (X, )  where X = {a, b, c} 

and   = {Ø, {a}, {b}, {a, b}, X}. Clearly, (X,  ) is *
p -T1. 

The following theorem characterizes *
p -T1 spaces. 

Theorem  2.6. For a space X, the following are equivalent : 

(i) X is *
p -T1. 

(ii) For every x X, {x} = *
p -cl({x}). 

(iii) For each x X, the intersection of all *
p -open sets containing x is {x}.                    

Proof. (i)   (ii). Suppose X is a *
p -T1 space. Let x  X and y  x in X. By Definition 

2.5, there exists a *
p -open set V in X such that x   V and y   V. If y  *

p -cl({x}), then by 

using Definition 1.1,  y is a *
p -cluster point of {x} which implies that for every *

p -open set 

U containing y, {x} U   Ø. Now V is a -open set containing y and so {x} V   Ø which 

 





  











 



 
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implies that x V, a contradiction. Hence y  *
p -cl({x}). That is y   *

p -cl({x}) for every 

y ≠ x. This shows that {x} = *
p -cl({x}).   

(ii)   (iii). Suppose for every xX, {x} = *
p -cl({x}). By using Lemma 3.7(1) of [6], 

we have {x}  *
p -ker({x}). If y  *

p -ker({x}), then by By Lemma 3.7(4) of [6], x  

*
p -cl({y}) and so by hypothesis, x {y}, that is, y {x} which implies that *

p -ker({x})

{x}. Thus we get {x} = *
p -ker({x}) and so {x} = {G : G  *

p O(X, ) and {x}  G}.  

(iii)   (i).  Suppose that for each x X, the intersection of all *
p -open sets containing 

x is {x}. Let x, y X with x  y. Then by hypothesis, {x} = {G : G  *
p O(X, ) and {x}

G}. From this, we can find one *
p -open set V containing x but not y. In the same manner, 

we can find one *
p -open set U containing y but not x and so X is *

p -T1.  

Theorem 2.7. A space X is *
p -T1 if and only if the singletons are *

p -closed sets.                          

Proof. Suppose X is *
p -T1. Then *

p -cl({x}) = {x} for every x  X and so {x} is *
p -

closed. Conversely, suppose {x} is *
p -closed for every x X. By Proposition using 3.2(4) of 

[6], *
p -cl({x}) = {x}. By using Theorem 2.6, X is a *

p -T1 space.                                      

Definition 2.8. A space X is said to be *
p -T2 if for each pair of distinct points x and y in 

X, there *
p -open  sets U and V in X such that x U,  y V and UV = Ø. 

For the existence of *
p -T2 space, consider a topological space (X, )  where X = {a, b} 

and   = {Ø, {a}, {b}, X}. It can be verified that, (X, )  is  r-T2. 

Theorem 2.9 characterizes *
p -T2 spaces.  

Theorem 2.9. For a space X, the following are equivalent: 

(i) X is *
p -T2. 

(ii) If x X, then for each y  x, there is a *
p -open set U containing x such that                     

           Y  *
p -cl(U). 

(iii) For each x X, {x} = { *
p -cl(U) : U is a *

p -open set containing x}. 

Proof. (i)   (ii). Suppose X is a *
p -T2 space. Let x  X. By Definition 2.8, for each    

y x, there exist *
p -open sets A and B such that x A, y  B and A  B = Ø. Take X\B = F. 



  

  

   



    







 

 



 



   
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Then it follows that F is *
p -closed, A  F and y  F which implies that y {F : F is 

*
p -closed and A  F} and so by Proposition 1.2 (ii), we have  y  *

p -cl(A).   

(ii)   (i). Suppose for each y   x in X, there is a *
p -open set U containing x such that 

y  *
p -cl(U). Then y   X\ *

p -cl(U)) and by using Proposition 1.2(i), Proposition 1.2(v),      

xU  *
p -cl(U) and X\( *

p -cl(U)) is *
p -open which implies that U (X\( *

p -cl(U))) = 

Ø.  

This shows that X is *
p -T2.  

The proof of (ii)
 
  (iii) is clear and so it is omitted.                                   

*
p -R0 SPACES 

Definition 3.1. A topological space X is said to be *
p -R0 if for each *

p -open set G,      

x G implies *
p -cl({x})  G. 

For the existence of *
p -R0 space, consider a topological space (X, )  

where X = {a, b, c, d} and   = {Ø, {a}, {b, c, d}, X}. It is easy to check that (X, )  is *
p -R0. 

Theorem 3.2. A space X is *
p -R0 if and only if every *

p -open subset of X is the union 

of *
p -closed sets. 

Proof. Suppose X is a *
p -R0 space. If A X is *

p -open, then by using 3.1, for each     

x A, *
p -cl({x}) A which implies { *

p -cl({x}): x A}  A, and hence A= { *
p -

cl({x}) : x   A}. By Proposition 1.1(v), A is the union of *
p -closed sets.  

Conversely, suppose A is *
p -open and x A. Then by hypothesis, there exist *

p -

closed sets Bi in X such that A = {Bi : i I}. Now x A implies x Bi for some i I. Then 

x  *
p -cl({x})  Bi  A and so X is *

p -R0.    

Theorem 3.3. For a space X, the following statements are equivalent: 

(i) X is *
p -R0. 

(ii) For any *
p -closed set F and a point x F, there exists U  *

p O (X, ) such that  

x U and F  U. 

(iii) For any *
p -closed set F and a point x F, *

p -cl({x}) F = Ø. 

   

 







     



    
  

  



 
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Proof. Suppose (i) holds. If F is a *
p -closed set and x  F, then X\F is *

p -open and x

X\F. By Definition 3.1, *
p -cl({x}) X\F and so F   X\( *

p -cl({x})). Thus by 

Proposition 1.2(v) and (i), X\( *
p -cl({x})) is the required *

p -open set containing F and x

X\( *
p -cl({x})). This proves (ii). 

Suppose (ii) holds. If F is a *
p -closed set and x   F, then by hypothesis, there exists    

U  *
p O(X, )  such that x  U and F  U. If U  *

p -cl({x})  Ø, then there exists     

y X such that y  U and y  *
p -cl({x}). By Definition 1.1, y is a *

p -cluster point of {x} 

and so for every *
p -open set G containing y, G {x} Ø, that is, x  G. Now U is a *

p -

open set containing y and so x U, a contradiction. Hence U  *
p -cl({x}) = Ø and  F  

*
p -cl({x}) = Ø.  

This proves (iii). 

Suppose (iii) holds. If G is a *
p -open set and x G, then X\G is *

p -closed and x

X\G. By hypothesis, *
p -cl({x})  (X\G) = Ø which implies that *

p -cl({x})   G. This 

proves (i).                                                                                  

Theorem 3.4. A space X is *
p -R0 if and only if for each pair of points x, y of X,                                   

*
p -cl({x})  *

p -cl({y}) implies *
p -cl({x})  *

p -cl({y}) = Ø. 

Proof. Assume that X is *
p -R0. Let x, y X such that *

p -cl({x})  *
p -cl({y}). Then 

there exists z X such that z  *
p -cl({x}) and z  *

p -cl({y}). Since z  *
p -cl({y}),  

there exists a *
p -open set V containing z such that {y} V = Ø and so y V. Since              

z  *
p -cl({x}), for every *

p -open set G containing z, {x}  G  Ø, that is x  G which 

implies that x  V. Since V is a *
p -open set containing x and y  V, x  *

p -cl({y}) and 

so x  X\ *
p -cl({y}).  Now by using Definition 3.1, *

p -cl({x})   X\ *
p -cl({y}) and so 

*
p -cl({x})  *

p -cl({y}) = Ø.  

Conversely, suppose for each pair of points x, y of X, *
p -cl({x})  *

p -cl({y}) implies        

*
p -cl({x})  *

p -cl({y}) = Ø. Let G be a *
p -open set such that x G. If y G, then x 

y and so x  *
p -cl({y}) which implies that *

p -cl({x}) *
p -cl({y}). By hypothesis,            

*
p - cl({x})  *

p -cl({y}) = Ø and so y  *
p -cl({x}). This shows that *

p -cl({x}) G 

and so X is a *
p -R0 space.                                                                 







   

  

  

  

 



 

 

   

 

   

  







   

 

 
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Theorem 3.5. A space X is *
p -R0 if and only if for each pair of points x, y of X,                                   

*
p -ker({x}) *

p -ker({y}) implies *
p -ker({x})  *

p -ker({y}) = Ø. 

Proof. Suppose X is a *
p -R0 space. Let x, y   X such that *

p -ker({x})  *
p -ker({y}). 

Let z   *
p -ker({x})   *

p -ker({y}). Then z   *
p -ker({x}) and z   *

p -ker({y}). By 

Lemma 3.7 (4) of [6], we have x   *
p -cl({z}) and y   *

p -cl({z}) and so *
p -cl({x})  

*
p -cl({z}) Ø and *

p -cl({y})  *
p -cl({z})  Ø. By Theorem 3.4, we have *

p -

cl({x})= *
p -cl({z}) and *

p -cl({y}) = *
p -cl({z}) which implies that *

p -cl({x} = *
p -

cl({y}). Then by Theorem 3.8 of [6], *
p -ker({x}) = *

p -ker({y}), a contradiction. Hence 

*
p -ker({x})  *

p -ker({y}) = Ø.  

Conversely, suppose that for x, y   X, *
p -ker({x})   *

p -ker({y}) implies                   

*
p -ker({x})  *

p -ker({y}) = Ø. Let x, y   X such that *
p -cl({x})   *

p -cl({y}). 

Suppose z   *
p -cl({x})  *

p -cl({y}). Then z   *
p -cl({x}) and z   *

p -cl({y}).  By 

Lemma 3.7(4) of [66], x   *
p -ker({z}), y   *

p -ker({z}) and *
p -ker({x})  *

p -

ker({z}) Ø and  so *
p -ker({y})  *

p -ker({z})  Ø. By  hypothesis, *
p -ker({x}) = 

*
p -ker({z}), *

p -ker({y}) = *
p -ker({z}) and so  *

p -ker ({x}) = *
p -ker({y}). Again by 

using Theorem 3.8 of [6].  

*
p -cl({x}) = *

p -cl({y}), a contradiction. Therefore *
p -cl({x})  *

p -cl({y}) = Ø 

and so by  Theorem 3.4, X is a *
p -R0 space.                                                                                                             

Theorem 3.6. For a space X, the following are equivalent: 

(i) X is *
p -R0. 

(ii) For any nonempty set A and G   *
p O(X, )  such that A  G  Ø,  there exists    

F  *
p C (X, )  such that A  F   Ø 

 and F  G.   

(iii) For any G   *
p O(X , ),  G = {F : F   *

p C(X, )  and FG}. 

(iv) For any F   *
p C(X, ), F = {G : G   *

p O(X, )  and FG}. 

(v) For any x X, *
p -cl({x})   *

p -ker({x}). 

(vi) For any x, y   X, y   *
p -cl({x})  x   *

p -cl({y}). 

 



  









  



 





 





160 Acta Ciencia Indica, Vol. XL M, No. 2 (2014) 

 

Proof. Suppose (i) holds. Let A be any nonempty subset of X and G be a *
p -open set in 

X such that A G  Ø. Let x   A  G. Then by Definition 3.1, x G implies *
p -cl({x})

G. Since x A, we have *
p -cl({x}) A Ø. Thus *

p -cl({x}) is the required *
p -

closed set contained in G such that A  *
p -cl({x})   Ø. This proves (ii). 

Suppose (ii) holds. If G 
*
p O (X, )  and x   G, then by hypothesis, there exists F

*
p C(X, )  such that {x}  F Ø and F G. Then it follows that x   F and so x    

{F : F  *
p C (X, )  and F G} and so G {F : F  *

p C(X, )  and F  G}.  Also 

{F : F  *
p C(X, )   and F  G}  G. This proves (iii). 

Suppose (iii) holds. If F  *
p C (X, ) , then X \ F  *

p O(X, ) and so by hypothesis, 

X\F = {X\G : X\G  *
p C(X, )  and X\G  X\F} which implies that F = {G : G  

*
p O(X, )  and F G}. This proves (iv). 

Suppose (iv) holds. If y  *
p -ker({x}), then by Lemma 3.7 (iv) of [6], x  *

p -

cl({y}). So there exists a *
p -open set V containing x such that V {y} = Ø which implies 

that *
p -cl({y}) V = Ø. Since *

p -cl({y}) is *
p -closed, by hypothesis, *

p -cl({y}) =

{G : G  *
p O (X, )  and *

p -cl({y}) G}. Since x V, we have x  *
p -cl({y}) and so 

there exists G  *
p O(X, )  such that *

p -cl({y})  G and x G which implies that *
p -

cl({x}) G = Ø. Hence y  *
p -cl({x}) and so *

p -cl({x})  *
p -ker({x}). This proves 

(v). 

Suppose (v) holds. If y  *
p -cl({x}), then by hypothesis, y  *

p -ker({x}) and so by 

Lemma 3.7(iv) of [6], x  *
p -cl({y}). In the same manner, if x  *

p -cl({y}), then by 

using hypothesis, x  *
p -ker({y}) and so y  *

p -cl({x}). This shows that x  *
p -

cl({y}) y  *
p -cl({x}). This proves (vi). 

Suppose (vi) holds. Let G  *
p O (X, )  and x G. If y G, then y  X\G and, y  

*
p -cl({y})  X\G. Then *

p -cl({y})  G = Ø
 
which implies that x  *

p -cl({y}). Then 

by hypothesis, y  *
p -cl({x}). This shows that *

p -cl({x})  G. This proves (i).                                                                                 

Theorem 3.7. For a space X, the following properties are equivalent: 

(i) X is *
p -R0. 

(ii) If F is *
p -closed, then F = *

p -ker(F). 

   

  



   

    

   

 

    



 



 

   

  

  

 

 

  

 

    

  

 
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(iii) If F is *
p -closed and x  F, then *

p -ker({x})  F. 

(iv) If x   X, then *
p -ker({x})   *

p -cl({x}). 

Proof. Suppose (i) holds. Let F be *
p -closed and x  F. Then X\F is a *

p -open set 

containing x. By Definition 3.1, *
p -cl({x})   X\F and so *

p -cl({x})  F = Ø. By Lemma 

3.7(v) of [6],  x  *
p -ker(F). This shows that *

p -ker(F)   F. Also by Lemma 3.7 (i) of 

[6], F  *
p -ker(F). This proves (ii). 

Suppose (ii) holds. Let F be *
p -closed and x F. By using Lemma 3.7 of [6] (ii), *

p -

ker({x})   *
p -ker(F) and by hypothesis, *

p -ker({x})   F. This proves (iii). 

Suppose (iii) holds. By Also by Lemma 3.7 (i and v) of [6], x   *
p -cl({x}) and  *

p -

cl({x}) is *
p -closed. By hypothesis,

 

*
p -ker({x})  *

p -cl({x}). This proves (iv). 

Suppose (iv) holds. Let x   *
p -cl({y}). Then by Lemma 3.7(iv) of [6], y   *

p -

ker({x}) and by hypothesis, y   *
p -cl({x}). Conversely, let y   *

p r -cl({x}). Then by 

Lemma 3.7(iv), x   *
p -ker({y}) and by hypothesis, x   *

p -cl({y}). This shows that          x 

  *
p -cl({y})   y   *

p -cl({x}) and so by Theorem 3.6, X is *
p -R0. This proves (i).                                                                                                                            

Corollary 3.8.  A space X is r -R0 if and only if for any xX, *
p -cl({x})= *

p -

ker({x}). 

*
p -R1 SPACES 

Definition 4.1. A space X is said to be *
p -R1 if for each pair of points x, yX with                   

*
p -cl({x})   *

p -cl({y}), there exists *
p -open sets U and V in X such that *

p -cl({x})

U, *
p cl({y})  V and U V = Ø. 

For the existence of *
p -R1 space, consider a topological space (X, )   

where X = {a, b, c, d} and   = {Ø, {a}, {b, c}, {a, b, c}, X}. This space (X, )  is *
p -R1. 

Theorem 4.2. Every *
p -R1 space is *

p -R0. 

Proof. Suppose X is a *
p -R1 space. Let U be *

p -open in X and x U. Then for each y

  X\U, x  y and so *
p -cl({x})  *

p -cl({y}). By Definition 4.1, there exist disjoint *
p -

open sets Uy and Vy such that *
p -cl({x})   Uy and *

p -cl({y})   Vy. Take V = {Vy : y 

 













 


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X\U}. Then by Proposition 3.5 of [1], V is *
p -open. Now x   *

p -cl({x})   Uy and Uy 

Vy = Ø for each y 
 
X\U and so x Vy for each y   X\U which implies that x   

V. Thus we 

have V is *
p -open, x 

 
X\V and X\U 

 
V. By Remark 3.3 of [6], x

 
  *

p -cl({x})   X\V 

 U.  

Theorem 4.3. If X is a *
p -R0 space and for each pair of points x and y of X with *

p -

cl({x})   *
p -cl({y}), there exists *

p -open sets U and V such that x U, y 
 
V and U V 

= Ø, then X is a *
p -R1  space. 

Proof. Let X be a *
p -R0 space and for each pair of points x and y of X with *

p -cl({x})

 *
p -cl({y}), there exists *

p -open sets U and V such that x 
 
U, y V and U V = Ø. By 

Definition 3.1, *
p -cl({x})   U and  *

p -cl({y}) V and so by Definition 4.1, X is *
p -R1.                                                                                       

The following theorem characterizes *
p -R1 spaces. 

Theorem 4.4. A topological space X is *
p -R1 if and only if for each points x, y X such 

that *
p -ker({x}) *

p -ker({y}), there exist *
p -open sets U and V in X such that *

p -

cl({x})   
U, *

p -cl({y})   V and U V = Ø. 

Proof. Suppose  X is *
p -R1. Let x, y   X such that *

p -ker({x})   *
p -ker({y}). By 

Theorem 4.2, X is *
p -R0 and so by Corollary 4.3, *

p -cl({x})  *
p -cl({y}). Then by 

Definition 4.1, there exist disjoint *
p -open sets U and V such that *

p -cl({x})  U and *
p -

cl({y})
 
V.  

Conversely, suppose for each of points x, y   X such that *
p -ker({x})   *

p r-ker({y}), 

there exist *
p -open sets U and V in X such that *

p -cl({x})
 
U, *

p -cl({y})  V and U

V = Ø. Let x, y   
X such that *

p -cl({x})   *
p -cl({y}). Then by Theorem 3.8 of of [6],  

*
p -ker({x})  *

p -ker({y}) and  by hypothesis, there exist disjoint *
p -open sets U and V 

such that *
p -cl({x})  U and *

p -cl({y}) 
 
V. This shows that X is a *

p -R1 space.                                                     

Theorem 4.5. For a space X, the following are equivalent : 

(i) X is a *
p -T2 space. 

(ii) X is both a *
p -R1 space and *

p -T1 space. 

(iii) X is both a *
p -R1 space and *

p -T0 space. 














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Proof.  (i)   (ii). Suppose X is a *
p -T2 space. Then by Definition 2.8 itself, X is *

p -

T1. If  x, y   X with *
p -cl({x})   *

p -cl({y}), then by Theorem 2.6, x   
y and so by 

Definition 2.8, there exists *
p -open sets G and H such that x   G, y   H and G   H = Ø. 

Then it follows that {x} = *
p -cl({x})   G and {y} = *

p -cl({y})   H and so by Definition 

4.1, X is *
p -R1.  

(ii)   (iii). Suppose X is both *
p -R1 and *

p -T1 spaces. Then by Definition 2.1 itself, 

X is *
p -T0.  

(iii)   (i).  Suppose X is both a *
p -R1 space and *

p -T0 space. Let x, y   X with x   

y. By Theorem 2.2, *
p -cl({x})   *

p -cl({y}) and so by Definition 4.1, there exist disjoint 

*
p -open sets G and H such that *

p -cl({x})   G and *
p -cl({y})   H which implies that x 

  G, y   H and G   H = Ø and so X is *
p -T2.  

Theorem 4.6. A space X is *
p -R1 if and only if for each points x, y   X such that *

p -

cl({x})   *
p -cl({y}), there exists *

p -closed sets F1 and F2 such that x   F1, y   F1, x 

F2, y   F2 and X = F1  F2.   

Proof. Suppose X is a *
p -R1 space. Let x, y   X such that *

p -cl({x})   *
p -cl({y}). 

By Definition 4.1, there exist disjoint *
p -open sets U and V in X such that *

p -cl({x}) U 

and *
p -cl({y}) V. Then F1 = X\V and F2 = X\U are *

p -closed sets such that x   F1, yF1, 

x   F2, y  F2 and X = F1  F2.  

Conversely, let x, y   X such that *
p -cl({x})  r-cl({y}). Then by hypothesis, there 

exists *
p -closed sets F1 and F2 such that x   F1, y   F1, x   F2, y   F2 and X = F1  F2. 

Then U = X\F2 and V = X\F1 are *
p -open sets, x   U, y   V and U  V = Ø. This shows that 

X is *
p -T2 and so by Theorem 4.5, X is *

p -R1. 

The above discussions lead to the following implications but none of the reverse 
implications is true. 

Diagram 4.7.                    

                         *
p -T2       *

p -T1       *
p -T0   

                                                   

                          *
p -R1         *

p -R0     

 


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CONCLUSION 

*
p -sets and *

p -sets are used to introduce and investigate *
p -R1 spaces, *

p -R0 

spaces, *
p -T2 spaces, *

p -T1 spaces and *
p -T0 spaces. The further scope for research in 

this area is to characterize the existing concepts in topological spaces. For example the lower 

separation axioms namely *
s -Ti spaces, *

s -Rj spaces [7] for i = 0, 1, 2 and j = 0, 1 may be 

characterized by using *
p -Ti spaces, *

p -Rj spaces. 
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