# $\Lambda_{p}^{*}$-SEPARATION AXIOMS 

## P. GNANACHANDRA

Aditanar College of Arts and Science, Tiruchendur -628216, India
RECEIVED : 16 September, 2013
Separation axioms are among the most common and important and interesting concepts in topology as well as in bitopologies. In this paper, we introduce $\Lambda_{p}^{*}$-sets and some weak separation axioms using $\Lambda_{p}^{*}$-open sets and $\Lambda_{p}^{*}$-closure operator. The aim of this paper is to introduce
$\Lambda_{p}^{*}-T_{i}$ and $\Lambda_{p}^{*}-R_{j}$, for $i=0,1,2$ and $j=0,1$ spaces using $\Lambda_{p}^{*}$-open and $\Lambda_{p}^{*}$-closed sets. Some existing lower separation axioms are characterized by using these spaces.
KEYWORDS AND PHRASES: pre*-open, pre*-closed sets, $\Lambda_{p}^{*}$-open sets and $\Lambda_{p}^{*}$-closed sets.
MSC 2010: 54A20, 54C10, 54D10.

## Introduction and preliminary

The separation axioms $R_{0}$ and $R_{1}$ in topological spaces were introduced by Shanin [16] in 1943. Murdeshwar and Naimpally [12, 13] investigated the properties of $\mathrm{R}_{0}$ topological spaces and many interesting results have been obtained. Caldas et. al. [3] introduced $\Lambda_{\alpha}$-sets and $V_{\alpha}$-sets characterize some of their properties. Navaneethakrishnan [14] used regular-open sets to define $V_{r}$-sets and $\Lambda_{r}$-sets and investigate some separation axioms using these sets in topological spaces. Using semi-open sets, Caldas and Dontchev [1] extended Maki’s work by introducing and studying $\Lambda_{s}$-sets and $\mathrm{V}_{s}$-sets. The purpose of this paper is to continue the research along these directions but this time by utilizing $\Lambda_{p}^{*}$-open sets. For details see ([2], [3], [4], [8], [9], [11], [11] and [12]). In this paper, we introduce some $\Lambda_{p}^{*}$-separation axioms in topological spaces. To define and investigate the axioms, we use $\Lambda_{p}^{*}$-open sets.

Throughout this paper $(X, \tau)$ denotes a topological space on which no separation axioms are assumed unless explicitly stated. Standard definitions and notations in point set topology are used in this paper.

A subset $A$ of a topological space $(X, \tau)$ is said to be pre*-open [15] if $A \subseteq \operatorname{int*}(\operatorname{cl}(A))$, where $\operatorname{int}^{*}(A)$ and $\operatorname{cl}(A)$ respectively denote the $g$-interior and the closure of $A$. The complement of a pre*-open set is pre*-closed. We shall denote the families of all pre*-open sets in a space $(X, \tau)$ by $P^{*} O(X, \tau)$. Also $A$ subset $A$ is called a $\Lambda_{p}^{*}$-closed set [6] if $A=S \cap C$
where $S$ is a $\Lambda_{p}^{*}$-set and $C$ is a closed set. The complement of a $\Lambda_{p}^{*}$-closed set is called a $\Lambda_{p}^{*}$ -open set. The collection of all $\Lambda_{p}^{*}$-open sets in $(X, \tau)$ is denoted by $\Lambda_{p}^{*} O(X, \tau)$ and the collection of all $\Lambda_{p}^{*}$-closed sets in $(X, \tau)$ is denoted by $\Lambda_{p}^{*} C(X, \tau)$. Recall that a subset $S$ of a space $(X, \tau)$ is called a pre ${ }^{*}-\Lambda$-set (briefly $\Lambda_{p}^{*}$-set [6]) if $S=\Lambda_{p}^{*}(S)$
where $\Lambda_{p}^{*}(S)=\cap\left\{G: S \subseteq G, G \in P^{*} O(X, \tau)\right\}$.
Definition 1.1: [6] Let $X$ be a space and $A \subseteq X$. Then a point $x \in X$ is called a $\Lambda_{p}^{*}$-cluster point of $A$ if for every $\Lambda_{p}^{*}$-open set $U$ containing $x, A \cap U \neq \varnothing$. The collection of all $\Lambda_{p}^{*}{ }^{-}$ cluster points of $A$ is called the $\Lambda_{p}^{*}$-closure of $A$ and is denoted by $\Lambda_{p}^{*}-\operatorname{cl}(A)$.

Proposition 1.2: [6] $(i) A \subseteq \Lambda_{p}^{*}-c l(A)$.
(ii) $\Lambda_{p}^{*}-\operatorname{cl}(A)=\cap\left\{F: A \subseteq F\right.$ and $F$ is $\Lambda_{p}^{*}$-closed $\}$,
(iii) If $A \subseteq B$, then $\Lambda_{p}^{*}-c l(A) \subseteq \Lambda_{p}^{*}-c l(B)$, (iv) $A$ is $\Lambda_{p}^{*}$-closed if and only if $A=\Lambda_{p}^{*}$ $\operatorname{cl}(A)$ and
(v) $\Lambda_{p}^{*}-c l(A)$ is $\Lambda_{p}^{*}$-closed.

## $\Lambda_{p}^{*}-\mathbf{T}_{\mathbf{K}}(K=0,1,2)$ SPACES

Definition 2.1: A space $X$ is said to be $\Lambda_{p}^{*}-\mathrm{T}_{0}$ if for each pair of distinct points $x, y$ of $X$, there exists a $\Lambda_{p}^{*}$-open set containing one of the points but not the other.

For the existence of $\Lambda_{p}^{*}-T_{0}$ space, consider a topological space $(X, \tau)$ where $X=\{a, b, c, d\}$ and $\tau=\{\varnothing,\{a\},\{a, b\},\{a, c\},\{a, d\},\{a, b, c\},\{a, b, d\},\{a, c, d\}, X\}$.

Clearly, $(X, \tau)$ is $\Lambda_{p}^{*}-T_{0}$.
The following theorem characterizes $\Lambda_{p}^{*}-T_{0}$ spaces.
Theorem 2.2: A space X is $\Lambda_{p}^{*}-T_{0}$ if and only if for each pair of distinct points $x, y$ of $X$, $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$.

Proof. Suppose $X$ is a $\Lambda_{p}^{*}-T_{0}$ space. Let $x, y \in X$ such that $x \neq y$. By using Definition 2.1, there exists a $\Lambda_{p}^{*}$-open set $V$ containing one of the points but not the other, say $x \in V$ and $y \notin V$ and so $X \backslash V$ is a $\Lambda_{p}^{*}$-closed set containing $y$ but not $x$. It follows that $y \in \Lambda_{p}^{*}-c l(\{y\}) \subseteq$ $X \backslash V$ and so $X \notin \Lambda_{p}^{*}-c l(\{y\})$ which implies that $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$.

Conversely, let $x, y \notin X, x \neq y$ such that $\Lambda_{p}^{*}-\operatorname{cl}(\{x\}) \neq \Lambda_{p}^{*}-\operatorname{cl}(\{y\})$. Suppose there is an element $z \in X$ such that $z \in \Lambda_{p}^{*}-c l(\{x\})$ and $z \notin \Lambda_{p}^{*}-c l(\{y\})$. If $x \in \Lambda_{p}^{*}-c l(\{y\})$, then $\Lambda_{p}^{*}$ $c l(\{x\}) \subseteq \Lambda_{p}^{*}-c l(\{y\})$ that implies $z \in \Lambda_{p}^{*}-c l(\{y\})$, a contradiction. Thus $x \notin \Lambda_{p}^{*}-c l(\{y\})$ which implies that $x \in X \backslash \Lambda_{p}^{*}-c l(\{y\}), y \notin X \backslash \Lambda_{p}^{*}-c l(\{y\})$ and $X \backslash \Lambda_{p}^{*}-c l(\{y\})$ is $\Lambda_{p}^{*}$-open. This shows that $X$ is $\Lambda_{p}^{*}-T_{0}$.

Corollary 2.3. A space $X$ is $\Lambda_{p}^{*}-T_{0}$ if and only if for each pair of distinct points $x, y$ of $X$, either $x \notin \Lambda_{p}^{*}-c l(\{y\})$ or $y \notin \Lambda_{p}^{*}-c l(\{x\})$.

Theorem 2.4. A space $X$ is $\Lambda_{p}^{*}-T_{0}$ if and only if for each pair of distinct points $x, y$ of $X$, $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \neq \Lambda_{p}^{*}-\operatorname{ker}(\{y\})$.

Proof. Suppose $X$ is a $\Lambda_{p}^{*}-T_{0}$ space. By Theorem 2.2, $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$ and so by Theorem 3.8 of [6], $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \neq \Lambda_{p}^{*}-\operatorname{ker}(\{y\})$.

Conversely, suppose for $x, y \in X$ with $x \neq y, \Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \neq \Lambda_{p}^{*}-\operatorname{ker}(\{y\})$, so by Theorem 3.8 of [6], $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$ and by Theorem $2.2, X$ is a $\Lambda_{p}^{*}-T_{0}$ space.

Definition 2.5. A space $X$ is said to be $\Lambda_{p}^{*}-T_{1}$ if for any pair of distinct points $x, y$ of $X$, there is a $\Lambda_{p}^{*}$-open set $U$ in $X$ such that $x \in U$ and $y \notin U$ and there is a $\Lambda_{p}^{*}$-open set $V$ in $X$ such that $y \in V$ and $x \notin V$.

For the existence of $\Lambda_{p}^{*}-T_{1}$ space, consider a topological space $(X, \tau)$ where $X=\{a, b, c\}$ and $\tau=\{\varnothing,\{a\},\{b\},\{a, b\}, X\}$. Clearly, $(X, \tau)$ is $\Lambda_{p}^{*}-T_{1}$.

The following theorem characterizes $\Lambda_{p}^{*}-T_{1}$ spaces.
Theorem 2.6. For a space $X$, the following are equivalent :
(i) $X$ is $\Lambda_{p}^{*}-T_{1}$.
(ii) For every $x \in X,\{x\}=\Lambda_{p}^{*}-\operatorname{cl}(\{x\})$.
(iii) For each $x \in X$, the intersection of all $\Lambda_{p}^{*}$-open sets containing $x$ is $\{x\}$.

Proof. (i) $\Rightarrow$ (ii). Suppose $X$ is a $\Lambda_{p}^{*}-T_{1}$ space. Let $x \in X$ and $y \neq x$ in $X$. By Definition 2.5, there exists a $\Lambda_{p}^{*}$-open set $V$ in $X$ such that $x \notin V$ and $y \in V$. If $y \in \Lambda_{p}^{*}-c l(\{x\})$, then by using Definition 1.1, $y$ is a $\Lambda_{p}^{*}$-cluster point of $\{x\}$ which implies that for every $\Lambda_{p}^{*}$-open set $U$ containing $y,\{x\} \cap U \neq \emptyset$. Now $V$ is a -open set containing $y$ and so $\{x\} \cap V \neq \varnothing$ which
implies that $x \in V$, a contradiction. Hence $y \notin \Lambda_{p}^{*}-c l(\{x\})$. That is $y \notin \Lambda_{p}^{*}-c l(\{x\})$ for every $y \neq x$. This shows that $\{x\}=\Lambda_{p}^{*}-\operatorname{cl}(\{x\})$.
(ii) $\Rightarrow$ (iii). Suppose for every $x \in X,\{x\}=\Lambda_{p}^{*}-c l(\{x\})$. By using Lemma 3.7(1) of [6], we have $\{x\} \subseteq \Lambda_{p}^{*}-\operatorname{ker}(\{x\})$. If $y \in \Lambda_{p}^{*}-\operatorname{ker}(\{x\})$, then by By Lemma 3.7(4) of [6], $x \in$ $\Lambda_{p}^{*}-c l(\{y\})$ and so by hypothesis, $x \in\{y\}$, that is, $y \in\{x\}$ which implies that $\Lambda_{p}^{*}-k e r(\{x\}) \subseteq$ $\{x\}$. Thus we get $\{x\}=\Lambda_{p}^{*}-\operatorname{ker}(\{x\})$ and so $\{x\}=\cap\left\{G: G \in \Lambda_{p}^{*} O(X, \tau)\right.$ and $\left.\{x\} \subseteq G\right\}$.
(iii) $\Rightarrow$ (i). Suppose that for each $x \in X$, the intersection of all $\Lambda_{p}^{*}$-open sets containing $x$ is $\{x\}$. Let $x, y \in X$ with $x \neq y$. Then by hypothesis, $\{x\}=\cap\left\{G: G \in \Lambda_{p}^{*} O(X, \tau)\right.$ and $\{x\}$ $\subseteq G\}$. From this, we can find one $\Lambda_{p}^{*}$-open set $V$ containing $x$ but not $y$. In the same manner, we can find one $\Lambda_{p}^{*}$-open set $U$ containing $y$ but not $x$ and so $X$ is $\Lambda_{p}^{*}-T_{1}$.

Theorem 2.7. A space $X$ is $\Lambda_{p}^{*}-T_{1}$ if and only if the singletons are $\Lambda_{p}^{*}$-closed sets.
Proof. Suppose $X$ is $\Lambda_{p}^{*}-T_{1}$. Then $\Lambda_{p}^{*}-c l(\{x\})=\{x\}$ for every $x \in X$ and so $\{x\}$ is $\Lambda_{p}^{*}$ closed. Conversely, suppose $\{x\}$ is $\Lambda_{p}^{*}$-closed for every $x \in X$. By Proposition using 3.2(4) of [6], $\Lambda_{p}^{*}-c l(\{x\})=\{x\}$. By using Theorem 2.6, $X$ is a $\Lambda_{p}^{*}-T_{1}$ space.

Definition 2.8. A space $X$ is said to be $\Lambda_{p}^{*}-T_{2}$ if for each pair of distinct points $x$ and $y$ in $X$, there $\Lambda_{p}^{*}$-open sets $U$ and $V$ in $X$ such that $x \in U, y \in V$ and $U \cap V=\varnothing$.

For the existence of $\Lambda_{p}^{*}-T_{2}$ space, consider a topological space $(X, \tau)$ where $X=\{a, b\}$ and $\tau=\{\emptyset,\{a\},\{b\}, X\}$. It can be verified that, $(X, \tau)$ is $\Lambda_{r}-T_{2}$.

Theorem 2.9 characterizes $\Lambda_{p}^{*}-T_{2}$ spaces.
Theorem 2.9. For a space $X$, the following are equivalent:
(i) $X$ is $\Lambda_{p}^{*}-T_{2}$.
(ii) If $x \in X$, then for each $y \neq x$, there is a $\Lambda_{p}^{*}$-open set $U$ containing x such that

$$
Y \notin \Lambda_{p}^{*}-c l(U)
$$

(iii) For each $x \in X,\{x\}=\cap\left\{\Lambda_{p}^{*}-c l(U): U\right.$ is a $\Lambda_{p}^{*}$-open set containing $\left.x\right\}$.

Proof. (i) $\Rightarrow$ (ii). Suppose $X$ is a $\Lambda_{p}^{*}-T_{2}$ space. Let $x \in X$. By Definition 2.8, for each $y \neq x$, there exist $\Lambda_{p}^{*}$-open sets $A$ and $B$ such that $x \in A, y \in B$ and $A \cap B=\emptyset$. Take $X \backslash B=F$.

Then it follows that $F$ is $\Lambda_{p}^{*}$-closed, $A \subseteq F$ and $y \notin F$ which implies that $y \notin \cap\{F: F$ is $\Lambda_{p}^{*}$-closed and $\left.A \subseteq F\right\}$ and so by Proposition 1.2 (ii), we have $y \notin \Lambda_{p}^{*}-\operatorname{cl}(A)$.
(ii) $\Rightarrow$ (i). Suppose for each $y \neq x$ in $X$, there is a $\Lambda_{p}^{*}$-open set $U$ containing $x$ such that $y \notin \Lambda_{p}^{*}-c l(U)$. Then $\left.y \in X \backslash \Lambda_{p}^{*}-c l(U)\right)$ and by using Proposition 1.2(i), Proposition 1.2(v), $x \in U \subseteq \Lambda_{p}^{*}-c l(U)$ and $X \backslash\left(\Lambda_{p}^{*}-c l(U)\right)$ is $\Lambda_{p}^{*}$-open which implies that $U \cap\left(X \backslash\left(\Lambda_{p}^{*}-c l(U)\right)\right)=$ $\emptyset$.

This shows that $X$ is $\Lambda_{p}^{*}-T_{2}$.
The proof of (ii) $\Leftrightarrow$ (iii) is clear and so it is omitted.

## $\Lambda_{p}^{*}-\boldsymbol{R}_{\mathbf{0}}$ SPACES

Definition 3.1. A topological space $X$ is said to be $\Lambda_{p}^{*}-R_{0}$ if for each $\Lambda_{p}^{*}$-open set $G$, $x \in G$ implies $\Lambda_{p}^{*}-c l(\{x\}) \subseteq G$.

For the existence of $\Lambda_{p}^{*}-R_{0}$ space, consider a topological space $(X, \tau)$ where $X=\{a, b, c, d\}$ and $\tau=\{\varnothing,\{a\},\{b, c, d\}, X\}$. It is easy to check that $(X, \tau)$ is $\Lambda_{p}^{*}-R_{0}$.

Theorem 3.2. A space $X$ is $\Lambda_{p}^{*}-R_{0}$ if and only if every $\Lambda_{p}^{*}$-open subset of $X$ is the union of $\Lambda_{p}^{*}$-closed sets.

Proof. Suppose $X$ is a $\Lambda_{p}^{*}-R_{0}$ space. If $A \subseteq X$ is $\Lambda_{p}^{*}$-open, then by using 3.1, for each $x \in A, \Lambda_{p}^{*}-c l(\{x\}) \subseteq A$ which implies $\cup\left\{\Lambda_{p}^{*}-c l(\{x\}): x \in A\right\} \subseteq A$, and hence $A=\cup\left\{\Lambda_{p}^{*}\right.$ $c l(\{x\}): x \in A\}$. By Proposition 1.1(v), $A$ is the union of $\Lambda_{p}^{*}$-closed sets.

Conversely, suppose $A$ is $\Lambda_{p}^{*}$-open and $x \in A$. Then by hypothesis, there exist $\Lambda_{p}^{*}$ closed sets $B_{i}$ in $X$ such that $A=\cup\left\{B_{i}: i \in I\right\}$. Now $x \in A$ implies $x \in B_{i}$ for some $i \in I$. Then $x \in \Lambda_{p}^{*}-c l(\{x\}) \subseteq B_{i} \subseteq A$ and so $X$ is $\Lambda_{p}^{*}-R_{0}$.

Theorem 3.3. For a space $X$, the following statements are equivalent:
(i) $X$ is $\Lambda_{p}^{*}-R_{0}$.
(ii) For any $\Lambda_{p}^{*}$-closed set $F$ and a point $x \notin F$, there exists $U \in \Lambda_{p}^{*} O(X, \tau)$ such that $x \notin U$ and $F \subseteq U$.
(iii) For any $\Lambda_{p}^{*}$-closed set $F$ and a point $x \notin F, \Lambda_{p}^{*}-c l(\{x\}) \cap F=\emptyset$.

Proof. Suppose (i) holds. If $F$ is a $\Lambda_{p}^{*}$-closed set and ${ }_{\notin} \notin F$, then $X \backslash F$ is $\Lambda_{p}^{*}$-open and $x$ $\in X \backslash F$. By Definition 3.1, $\Lambda_{p}^{*}-c l(\{x\}) \subseteq X \backslash F$ and so $F \subseteq X \backslash\left(\Lambda_{p}^{*}-c l(\{x\})\right)$. Thus by Proposition 1.2(v) and $(i), X \backslash\left(\Lambda_{p}^{*}-c l(\{x\})\right)$ is the required $\Lambda_{p}^{*}$-open set containing $F$ and $x \notin$ $X \backslash\left(\Lambda_{p}^{*}-c l(\{x\})\right)$. This proves $(i i)$.

Suppose (ii) holds. If $F$ is a $\Lambda_{p}^{*}$-closed set and $x \notin F$, then by hypothesis, there exists $U \in \Lambda_{p}^{*} O(X, \tau)$ such that $x \notin U$ and $F \subseteq U$. If $U \cap \Lambda_{p}^{*}-c l(\{x\}) \neq \varnothing$, then there exists $y \in X$ such that $y \in U$ and $y \in \Lambda_{p}^{*}-c l(\{x\})$. By Definition 1.1, $y$ is a $\Lambda_{p}^{*}$-cluster point of $\{x\}$ and so for every $\Lambda_{p}^{*}$-open set $G$ containing $y, G \cap\{x\} \neq \emptyset$, that is, $x \in G$. Now $U$ is a $\Lambda_{p}^{*}$ open set containing $y$ and so $x \in U$, a contradiction. Hence $U \cap \Lambda_{p}^{*}-\operatorname{cl}(\{x\})=\varnothing$ and $F \cap$ $\Lambda_{p}^{*}-c l(\{x\})=\varnothing$.

This proves (iii).
Suppose (iii) holds. If $G$ is a $\Lambda_{p}^{*}$-open set and $x \in G$, then $X \backslash G$ is $\Lambda_{p}^{*}$-closed and $x \notin$ $X \backslash G$. By hypothesis, $\Lambda_{p}^{*}-c l(\{x\}) \cap(X \backslash G)=\varnothing$ which implies that $\Lambda_{p}^{*}-c l(\{x\}) \subseteq G$. This proves $(i)$.

Theorem 3.4. A space $X$ is $\Lambda_{p}^{*}-R_{0}$ if and only if for each pair of points $x, y$ of $X$, $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$ implies $\Lambda_{p}^{*}-c l(\{x\}) \cap \Lambda_{p}^{*}-c l(\{y\})=\varnothing$.

Proof. Assume that $X$ is $\Lambda_{p}^{*}-R_{0}$. Let $x, y \in X$ such that $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$. Then there exists $z \in X$ such that $z \in \Lambda_{p}^{*}-c l(\{x\})$ and $z \notin \Lambda_{p}^{*}-c l(\{y\})$. Since $z \notin \Lambda_{p}^{*}-c l(\{y\})$, there exists a $\Lambda_{p}^{*}$-open set $V$ containing $z$ such that $\{y\} \cap V=\varnothing$ and so $y \notin V$. Since $z \in \Lambda_{p}^{*}-c l(\{x\})$, for every $\Lambda_{p}^{*}$-open set $G$ containing $z,\{x\} \cap G \neq \varnothing$, that is $x \in G$ which implies that $x \in V$. Since $V$ is a $\Lambda_{p}^{*}$-open set containing $x$ and $y \notin V, x \notin \Lambda_{p}^{*}-c l(\{y\})$ and so $x \in X \backslash \Lambda_{p}^{*}-c l(\{y\})$. Now by using Definition 3.1, $\Lambda_{p}^{*}-c l(\{x\}) \subseteq X \backslash \Lambda_{p}^{*}-c l(\{y\})$ and so $\Lambda_{p}^{*}-c l(\{x\}) \cap \Lambda_{p}^{*}-c l(\{y\})=\varnothing$.

Conversely, suppose for each pair of points $x, y$ of $X, \Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$ implies $\Lambda_{p}^{*}-c l(\{x\}) \cap \Lambda_{p}^{*}-\operatorname{cl}(\{y\})=\emptyset$. Let $G$ be a $\Lambda_{p}^{*}$-open set such that $x \in G$. If $y \notin G$, then $x \neq$ $y$ and so $x \notin \Lambda_{p}^{*}-c l(\{y\})$ which implies that $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$. By hypothesis, $\Lambda_{p}^{*}-c l(\{x\}) \cap \Lambda_{p}^{*}-c l(\{y\})=\emptyset$ and so $y \notin \Lambda_{p}^{*}-c l(\{x\})$. This shows that $\Lambda_{p}^{*}-c l(\{x\}) \subseteq G$ and so $X$ is a $\Lambda_{p}^{*}-R_{0}$ space.

Theorem 3.5. A space $X$ is $\Lambda_{p}^{*}-R_{0}$ if and only if for each pair of points $x, y$ of $X$, $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \neq \Lambda_{p}^{*}-\operatorname{ker}(\{y\})$ implies $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \cap \Lambda_{p}^{*}-\operatorname{ker}(\{y\})=\varnothing$.

Proof. Suppose $X$ is a $\Lambda_{p}^{*}-R_{0}$ space. Let $x, y \in X$ such that $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \neq \Lambda_{p}^{*}-\operatorname{ker}(\{y\})$. Let $z \in \Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \cap \Lambda_{p}^{*}-\operatorname{ker}(\{y\})$. Then $z \in \Lambda_{p}^{*}-\operatorname{ker}(\{x\})$ and $z \in \Lambda_{p}^{*}-\operatorname{ker}(\{y\})$. By Lemma 3.7 (4) of [6], we have $x \in \Lambda_{p}^{*}-c l(\{z\})$ and $y \in \Lambda_{p}^{*}-c l(\{z\})$ and so $\Lambda_{p}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \cap$ $\Lambda_{p}^{*}-c l(\{z\}) \neq \varnothing$ and $\Lambda_{p}^{*}-c l(\{y\}) \cap \Lambda_{p}^{*}-c l(\{z\}) \neq \varnothing$. By Theorem 3.4, we have $\Lambda_{p}^{*}-$ $c l(\{x\})=\Lambda_{p}^{*}-c l(\{z\})$ and $\Lambda_{p}^{*}-c l(\{y\})=\Lambda_{p}^{*}-c l(\{z\})$ which implies that $\Lambda_{p}^{*}-c l\left(\{x\}=\Lambda_{p}^{*}\right.$ $\operatorname{cl}(\{y\})$. Then by Theorem 3.8 of $[6], \Lambda_{p}^{*}-\operatorname{ker}(\{x\})=\Lambda_{p}^{*}-\operatorname{ker}(\{y\})$, a contradiction. Hence $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \cap \Lambda_{p}^{*}-\operatorname{ker}(\{y\})=\emptyset$.

Conversely, suppose that for $x, y \in X, \Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \neq \Lambda_{p}^{*}-\operatorname{ker}(\{y\})$ implies $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \cap \Lambda_{p}^{*}-\operatorname{ker}(\{y\})=\emptyset$. Let $x, y \in X$ such that $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-\operatorname{cl}(\{y\})$. Suppose $z \in \Lambda_{p}^{*}-c l(\{x\}) \cap \Lambda_{p}^{*}-c l(\{y\})$. Then $z \in \Lambda_{p}^{*}-c l(\{x\})$ and $z \in \Lambda_{p}^{*}-c l(\{y\})$. By Lemma 3.7(4) of [66], $x \in \Lambda_{p}^{*}-\operatorname{ker}(\{z\}), y \in \Lambda_{p}^{*}-\operatorname{ker}(\{z\})$ and $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \cap \Lambda_{p}^{*}-$ $\operatorname{ker}(\{z\}) \neq \varnothing$ and so $\Lambda_{p}^{*}-\operatorname{ker}(\{y\}) \cap \Lambda_{p}^{*}-\operatorname{ker}(\{z\}) \neq \varnothing$. By hypothesis, $\Lambda_{p}^{*}-\operatorname{ker}(\{x\})=$ $\Lambda_{p}^{*}-\operatorname{ker}(\{z\}), \Lambda_{p}^{*}-\operatorname{ker}(\{y\})=\Lambda_{p}^{*}-\operatorname{ker}(\{z\})$ and so $\Lambda_{p}^{*}-\operatorname{ker}(\{x\})=\Lambda_{p}^{*}-\operatorname{ker}(\{y\})$. Again by using Theorem 3.8 of [6].
$\Lambda_{p}^{*}-c l(\{x\})=\Lambda_{p}^{*}-c l(\{y\})$, a contradiction. Therefore $\Lambda_{p}^{*}-c l(\{x\}) \cap \Lambda_{p}^{*}-c l(\{y\})=\varnothing$ and so by Theorem 3.4, $X$ is a $\Lambda_{p}^{*}-R_{0}$ space.

Theorem 3.6. For a space $X$, the following are equivalent:
(i) $X$ is $\Lambda_{p}^{*}-R_{0}$.
(ii) For any nonempty set $A$ and $G \in \Lambda_{p}^{*} O(X, \tau)$ such that $A \cap G \neq \varnothing$, there exists $F \in \Lambda_{p}^{*} C(X, \tau)$ such that $A \cap F \neq \varnothing$ and $F \subseteq G$.
(iii) For any $G \in \Lambda_{p}^{*} O(X, \tau), G=\cup\left\{F: F \in \Lambda_{p}^{*} C(X, \tau)\right.$ and $\left.F \subseteq G\right\}$.
(iv) For any $F \in \Lambda_{p}^{*} \mathrm{C}(\mathrm{X}, \tau), \mathrm{F}=\cap\left\{G: G \in \Lambda_{p}^{*} \mathrm{O}(X, \tau)\right.$ and $\left.F \subseteq G\right\}$.
(v) For any $x \in X, \Lambda_{p}^{*}-\operatorname{cl}(\{x\}) \subseteq \Lambda_{p}^{*}-\operatorname{ker}(\{x\})$.
(vi) For any $x, y \in X, y \in \Lambda_{p}^{*}-c l(\{x\}) \Leftrightarrow x \in \Lambda_{p}^{*}-c l(\{y\})$.

Proof. Suppose $(i)$ holds. Let $A$ be any nonempty subset of $X$ and $G$ be a $\Lambda_{p}^{*}$-open set in $X$ such that $A \cap G \neq \varnothing$. Let $x \in A \cap G$. Then by Definition 3.1, $x \in G$ implies $\Lambda_{p}^{*}-c l(\{x\})$ $\subseteq G$. Since $x \in A$, we have $\Lambda_{p}^{*}-c l(\{x\}) \cap A \neq \emptyset$. Thus $\Lambda_{p}^{*}-c l(\{x\})$ is the required $\Lambda_{p}^{*}-$ closed set contained in $G$ such that $A \cap \Lambda_{p}^{*}-c l(\{x\}) \neq \varnothing$. This proves $(i i)$.

Suppose (ii) holds. If $G \in \Lambda_{p}^{*} O(X, \tau)$ and $x \in G$, then by hypothesis, there exists $F \in$ $\Lambda_{p}^{*} C(X, \tau)$ such that $\{x\} \cap F \neq \varnothing$ and $F \subseteq G$. Then it follows that $x \in F$ and so $x \in \cup$ $\left\{F: F \in \Lambda_{p}^{*} C(X, \tau)\right.$ and $\left.F \subseteq G\right\}$ and so $G \subseteq \cup\left\{F: F \in \Lambda_{p}^{*} C(X, \tau)\right.$ and $\left.F \subseteq G\right\}$. Also $\cup\left\{F: F \in \Lambda_{p}^{*} C(X, \tau)\right.$ and $\left.F \subseteq G\right\} \subseteq G$. This proves (iii).

Suppose (iii) holds. If $F \in \Lambda_{p}^{*} C(X, \tau)$, then $X \backslash F \in \Lambda_{p}^{*} O(X, \tau)$ and so by hypothesis, $X \backslash F=\cup\left\{X \backslash G: X \backslash G \in \Lambda_{p}^{*} C(X, \tau)\right.$ and $\left.X \backslash G \subseteq X \backslash F\right\}$ which implies that $F=\cap\{G: G \in$ $\Lambda_{p}^{*} O(X, \tau)$ and $\left.F \subseteq G\right\}$. This proves (iv).

Suppose (iv) holds. If $y \notin \Lambda_{p}^{*}-\operatorname{ker}(\{x\})$, then by Lemma 3.7 (iv) of [6], $x \notin \Lambda_{p}^{*}$ $c l(\{y\})$. So there exists a $\Lambda_{p}^{*}$-open set $V$ containing $x$ such that $V \cap\{y\}=\varnothing$ which implies that $\Lambda_{p}^{*}-c l(\{y\}) \cap V=\varnothing$. Since $\Lambda_{p}^{*}-c l(\{y\})$ is $\Lambda_{p}^{*}$-closed, by hypothesis, $\Lambda_{p}^{*}-c l(\{y\})=\cap$ $\left\{G: G \in \Lambda_{p}^{*} O(X, \tau)\right.$ and $\left.\Lambda_{p}^{*}-c l(\{y\}) \subseteq G\right\}$. Since $x \in V$, we have $x \notin \Lambda_{p}^{*}-c l(\{y\})$ and so there exists $G \in \Lambda_{p}^{*} O(X, \tau)$ such that $\Lambda_{p}^{*}-c l(\{y\}) \subseteq G$ and $x \notin G$ which implies that $\Lambda_{p}^{*}$ $c l(\{x\}) \cap G=\emptyset$. Hence $\mathrm{y} \notin \Lambda_{p}^{*}-c l(\{x\})$ and so $\Lambda_{p}^{*}-c l(\{x\}) \subseteq \Lambda_{p}^{*}-\operatorname{ker}(\{x\})$. This proves (v).

Suppose ( $v$ ) holds. If $y \in \Lambda_{p}^{*}-c l(\{x\})$, then by hypothesis, $y \in \Lambda_{p}^{*}-\operatorname{ker}(\{x\})$ and so by Lemma 3.7(iv) of [6], $x \in \Lambda_{p}^{*}-c l(\{y\})$. In the same manner, if $x \in \Lambda_{p}^{*}-c l(\{y\})$, then by using hypothesis, $x \in \Lambda_{p}^{*}-\operatorname{ker}(\{y\})$ and so $y \in \Lambda_{p}^{*}-c l(\{x\})$. This shows that $x \in \Lambda_{p}^{*}$ $c l(\{y\}) \Leftrightarrow y \in \Lambda_{p}^{*}-c l(\{x\})$. This proves $(v i)$.

Suppose (vi) holds. Let $G \in \Lambda_{p}^{*} O(X, \tau)$ and $x \in G$. If $y \notin G$, then $y \in X \backslash G$ and, $y \in$ $\Lambda_{p}^{*}-c l(\{y\}) \subseteq X \backslash G$. Then $\Lambda_{p}^{*}-c l(\{y\}) \cap G=\emptyset$ which implies that $x \notin \Lambda_{p}^{*}-c l(\{y\})$. Then by hypothesis, $y \notin \Lambda_{p}^{*}-c l(\{x\})$. This shows that $\Lambda_{p}^{*}-c l(\{x\}) \subseteq G$. This proves $(i)$.

Theorem 3.7. For a space $X$, the following properties are equivalent:
(i) $X$ is $\Lambda_{p}^{*}-R_{0}$.
(ii) If $F$ is $\Lambda_{p}^{*}$-closed, then $F=\Lambda_{p}^{*}-\operatorname{ker}(F)$.
(iii) If $F$ is $\Lambda_{p}^{*}$-closed and $x \in F$, then $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \subseteq F$.
(iv) If $x \in X$, then $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \subseteq \Lambda_{p}^{*}-\operatorname{cl}(\{x\})$.

Proof. Suppose ( $i$ ) holds. Let $F$ be $\Lambda_{p}^{*}$-closed and $x \notin F$. Then $X \backslash F$ is a $\Lambda_{p}^{*}$-open set containing $x$. By Definition 3.1, $\Lambda_{p}^{*}-c l(\{x\}) \subseteq X \backslash F$ and so $\Lambda_{p}^{*}-c l(\{x\}) \cap F=\varnothing$. By Lemma 3.7(v) of [6], $x \notin \Lambda_{p}^{*}-\operatorname{ker}(F)$. This shows that $\Lambda_{p}^{*}-\operatorname{ker}(F) \subseteq F$. Also by Lemma 3.7 (i) of $[6], F \subseteq \Lambda_{p}^{*}-\operatorname{ker}(F)$. This proves $(i i)$.

Suppose (ii) holds. Let $F$ be $\Lambda_{p}^{*}$-closed and $x \in F$. By using Lemma 3.7 of [6] (ii), $\Lambda_{p}^{*}$ $\operatorname{ker}(\{x\}) \subseteq \Lambda_{p}^{*}-\operatorname{ker}(F)$ and by hypothesis, $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \subseteq F$. This proves (iii) .

Suppose (iii) holds. By Also by Lemma 3.7 (i and v) of [6], $x \in \Lambda_{p}^{*}-c l(\{x\})$ and $\Lambda_{p}^{*}$ $c l(\{x\})$ is $\Lambda_{p}^{*}$-closed. By hypothesis, $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \subseteq \Lambda_{p}^{*}-c l(\{x\})$. This proves (iv).

Suppose (iv) holds. Let $x \in \Lambda_{p}^{*}-c l(\{y\})$. Then by Lemma 3.7(iv) of [6], $y \in \Lambda_{p}^{*}$ $\operatorname{ker}(\{x\})$ and by hypothesis, $y \in \Lambda_{p}^{*}-c l(\{x\})$. Conversely, let $y \in \Lambda_{p}^{*} \Lambda_{r}-c l(\{x\})$. Then by Lemma 3.7(iv), $x \in \Lambda_{p}^{*}-\operatorname{ker}(\{y\})$ and by hypothesis, $x \in \Lambda_{p}^{*}-c l(\{y\})$. This shows that $\quad x$ $\in \Lambda_{p}^{*}-c l(\{y\}) \Leftrightarrow y \in \Lambda_{p}^{*}-c l(\{x\})$ and so by Theorem 3.6, $X$ is $\Lambda_{p}^{*}-R_{0}$. This proves $(i)$.

Corollary 3.8. A space $X$ is $\Lambda_{r}-R_{0}$ if and only if for any $x \in X, \Lambda_{p}^{*}-\operatorname{cl}(\{x\})=\Lambda_{p}^{*}$ $\operatorname{ker}(\{x\})$.
$\Lambda_{p}^{*}-\boldsymbol{R}_{\mathbf{1}}$ SPACES
Definition 4.1. A space $X$ is said to be $\Lambda_{p}^{*}-R_{1}$ if for each pair of points $x, y \in X$ with $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$, there exists $\Lambda_{p}^{*}$-open sets $U$ and $V$ in $X$ such that $\Lambda_{p}^{*}-c l(\{x\}) \subseteq$ $U, \Lambda_{p}^{*} c l(\{y\}) \subseteq V$ and $U \cap V=\emptyset$.

For the existence of $\Lambda_{p}^{*}-R_{1}$ space, consider a topological space $(X, \tau)$
where $X=\{a, b, c, d\}$ and $\tau=\{\varnothing,\{a\},\{b, c\},\{a, b, c\}, X\}$. This space $(X, \tau)$ is $\Lambda_{p}^{*}-R_{1}$.
Theorem 4.2. Every $\Lambda_{p}^{*}-R_{1}$ space is $\Lambda_{p}^{*}-R_{0}$.
Proof. Suppose $X$ is a $\Lambda_{p}^{*}-R_{1}$ space. Let $U$ be $\Lambda_{p}^{*}$-open in $X$ and $x \in U$. Then for each $y$ $\in X \backslash U, x \neq y$ and so $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$. By Definition 4.1, there exist disjoint $\Lambda_{p}^{*}$ open sets $U_{y}$ and $V_{y}$ such that $\Lambda_{p}^{*}-c l(\{x\}) \subseteq U_{y}$ and $\Lambda_{p}^{*}-c l(\{y\}) \subseteq V_{y}$. Take $V=\cup\left\{V_{y}: y \in\right.$
$X \backslash U\}$. Then by Proposition 3.5 of [1], $V$ is $\Lambda_{p}^{*}$-open. Now $x \in \Lambda_{p}^{*}-c l(\{x\}) \subseteq U_{y}$ and $U_{y} \cap$ $V_{y}=\varnothing$ for each $y \in X \backslash U$ and so $x \notin V_{y}$ for each $y \in X \backslash U$ which implies that $x \notin V$. Thus we have $V$ is $\Lambda_{p}^{*}$-open, $x \in X \backslash V$ and $X \backslash U \subseteq V$. By Remark 3.3 of [6], $x \in \Lambda_{p}^{*}-c l(\{x\}) \subseteq X \backslash V$ $\subseteq U$.

Theorem 4.3. If $X$ is a $\Lambda_{p}^{*}-R_{0}$ space and for each pair of points $x$ and $y$ of $X$ with $\Lambda_{p}^{*}$ $c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$, there exists $\Lambda_{p}^{*}$-open sets $U$ and $V$ such that $x \in U, y \in V$ and $U \cap V$ $=\varnothing$, then $X$ is a $\Lambda_{p}^{*}-R_{1}$ space.

Proof. Let $X$ be a $\Lambda_{p}^{*}-R_{0}$ space and for each pair of points $x$ and $y$ of $X$ with $\Lambda_{p}^{*}-c l(\{x\})$ $\neq \Lambda_{p}^{*}-c l(\{y\})$, there exists $\Lambda_{p}^{*}$-open sets $U$ and $V$ such that $x \in U, y \in V$ and $U \cap V=\varnothing$. By Definition 3.1, $\Lambda_{p}^{*}-c l(\{x\}) \subseteq U$ and $\Lambda_{p}^{*}-c l(\{y\}) \subseteq V$ and so by Definition 4.1, $X$ is $\Lambda_{p}^{*}-R_{1}$.

The following theorem characterizes $\Lambda_{p}^{*}-R_{1}$ spaces.
Theorem 4.4. A topological space $X$ is $\Lambda_{p}^{*}-R_{1}$ if and only if for each points $x, y \in X$ such that $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \neq \Lambda_{p}^{*}-\operatorname{ker}(\{y\})$, there exist $\Lambda_{p}^{*}$-open sets $U$ and $V$ in $X$ such that $\Lambda_{p}^{*}$ $c l(\{x\}) \subseteq U, \Lambda_{p}^{*}-c l(\{y\}) \subseteq V$ and $U \cap V=\emptyset$.

Proof. Suppose $X$ is $\Lambda_{p}^{*}-R_{1}$. Let $x, y \in X$ such that $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \neq \Lambda_{p}^{*}-\operatorname{ker}(\{y\})$. By Theorem 4.2, $X$ is $\Lambda_{p}^{*}-R_{0}$ and so by Corollary 4.3, $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$. Then by Definition 4.1, there exist disjoint $\Lambda_{p}^{*}$-open sets $U$ and $V$ such that $\Lambda_{p}^{*}-c l(\{x\}) \subseteq U$ and $\Lambda_{p}^{*}$ $c l(\{y\}) \subseteq V$.

Conversely, suppose for each of points $x, y \in X$ such that $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \neq \Lambda_{p r}^{*}-\operatorname{ker}(\{y\})$, there exist $\Lambda_{p}^{*}$-open sets $U$ and $V$ in $X$ such that $\Lambda_{p}^{*}-c l(\{x\}) \subseteq U, \Lambda_{p}^{*}-c l(\{y\}) \subseteq V$ and $U \cap$ $V=\varnothing$. Let $x, y \in X$ such that $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$. Then by Theorem 3.8 of of [6], $\Lambda_{p}^{*}-\operatorname{ker}(\{x\}) \neq \Lambda_{p}^{*}-\operatorname{ker}(\{y\})$ and by hypothesis, there exist disjoint $\Lambda_{p}^{*}$-open sets $U$ and $V$ such that $\Lambda_{p}^{*}-c l(\{\mathrm{x}\}) \subseteq U$ and $\Lambda_{p}^{*}-c l(\{y\}) \subseteq V$. This shows that $X$ is a $\Lambda_{p}^{*}-R_{1}$ space.

Theorem 4.5. For a space $X$, the following are equivalent :
(i) $X$ is a $\Lambda_{p}^{*}-T_{2}$ space.
(ii) $X$ is both a $\Lambda_{p}^{*}-R_{1}$ space and $\Lambda_{p}^{*}-T_{1}$ space.
(iii) $X$ is both a $\Lambda_{p}^{*}-R_{1}$ space and $\Lambda_{p}^{*}-T_{0}$ space.

Proof. (i) $\Rightarrow$ (ii). Suppose $X$ is a $\Lambda_{p}^{*}-T_{2}$ space. Then by Definition 2.8 itself, $X$ is $\Lambda_{p}^{*}$ $T_{1}$. If $x, y \in X$ with $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$, then by Theorem 2.6, $x \neq y$ and so by Definition 2.8, there exists $\Lambda_{p}^{*}$-open sets $G$ and $H$ such that $x \in G, y \in H$ and $G \cap H=\varnothing$. Then it follows that $\{x\}=\Lambda_{p}^{*}-c l(\{x\}) \subseteq G$ and $\{y\}=\Lambda_{p}^{*}-c l(\{y\}) \subseteq H$ and so by Definition 4.1, $X$ is $\Lambda_{p}^{*}-R_{1}$.
(ii) $\Rightarrow$ (iii). Suppose $X$ is both $\Lambda_{p}^{*}-R_{1}$ and $\Lambda_{p}^{*}-T_{1}$ spaces. Then by Definition 2.1 itself, $X$ is $\Lambda_{p}^{*}-T_{0}$.
(iii) $\Rightarrow$ (i). Suppose $X$ is both a $\Lambda_{p}^{*}-R_{1}$ space and $\Lambda_{p}^{*}-T_{0}$ space. Let $x, y \in X$ with $x \neq$ y. By Theorem 2.2, $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$ and so by Definition 4.1, there exist disjoint $\Lambda_{p}^{*}$-open sets $G$ and $H$ such that $\Lambda_{p}^{*}-c l(\{x\}) \subseteq G$ and $\Lambda_{p}^{*}-c l(\{y\}) \subseteq H$ which implies that $x$ $\in G, y \in H$ and $G \cap H=\varnothing$ and so $X$ is $\Lambda_{p}^{*}-T_{2}$.

Theorem 4.6. A space $X$ is $\Lambda_{p}^{*}-R_{1}$ if and only if for each points $x, y \in X$ such that $\Lambda_{p}^{*}$ $c l(\{\mathrm{x}\}) \neq \Lambda_{p}^{*}-c l(\{y\})$, there exists $\Lambda_{p}^{*}$-closed sets $F_{1}$ and $F_{2}$ such that $x \in F_{1}, y \notin F_{1}, x \notin$ $F_{2}, y \in F_{2}$ and $X=F_{1} \cup F_{2}$.

Proof. Suppose $X$ is a $\Lambda_{p}^{*}-R_{l}$ space. Let $x, y \in X$ such that $\Lambda_{p}^{*}-c l(\{x\}) \neq \Lambda_{p}^{*}-c l(\{y\})$. By Definition 4.1, there exist disjoint $\Lambda_{p}^{*}$-open sets $U$ and $V$ in $X$ such that $\Lambda_{p}^{*}-c l(\{x\}) \subseteq U$ and $\Lambda_{p}^{*}-c l(\{y\}) \subseteq V$. Then $F_{1}=X \backslash V$ and $F_{2}=X \backslash U$ are $\Lambda_{p}^{*}$-closed sets such that $x \in F_{1}, y \notin F_{1}$, $x \notin F_{2}, y \in F_{2}$ and $X=F_{1} \cup F_{2}$.

Conversely, let $x, y \in X$ such that $\Lambda_{p}^{*}-\operatorname{cl}(\{x\}) \neq \Lambda_{\mathrm{r}}-\operatorname{cl}(\{y\})$. Then by hypothesis, there exists $\Lambda_{p}^{*}$-closed sets $F_{1}$ and $F_{2}$ such that $x \in F_{1}, y \notin F_{1}, x \notin F_{2}, y \in F_{2}$ and $X=F_{1} \cup F_{2}$. Then $U=X \backslash F_{2}$ and $V=X \backslash F_{1}$ are $\Lambda_{p}^{*}$-open sets, $x \in U, y \in V$ and $U \cap V=\varnothing$. This shows that $X$ is $\Lambda_{p}^{*}-T_{2}$ and so by Theorem 4.5, $X$ is $\Lambda_{p}^{*}-R_{1}$.

The above discussions lead to the following implications but none of the reverse implications is true.

## Diagram 4.7.

$$
\begin{array}{cc}
\Lambda_{p}^{*}-T_{2} & \Rightarrow \Lambda_{p}^{*}-T_{1} \Rightarrow \Lambda_{p}^{*}-T_{0} \\
\Downarrow & \Downarrow \\
\Lambda_{p}^{*}-R_{1} & \Rightarrow \Lambda_{p}^{*}-R_{0}
\end{array}
$$

## Conclusion

$\Lambda_{p}^{*}$-sets and $\Lambda_{p}^{*}$-sets are used to introduce and investigate $\Lambda_{p}^{*}-R_{1}$ spaces, $\Lambda_{p}^{*}-R_{0}$ spaces, $\Lambda_{p}^{*}-T_{2}$ spaces, $\Lambda_{p}^{*}-T_{1}$ spaces and $\Lambda_{p}^{*}-T_{0}$ spaces. The further scope for research in this area is to characterize the existing concepts in topological spaces. For example the lower separation axioms namely $\Lambda_{s}^{*}-T_{i}$ spaces, $\Lambda_{s}^{*}-R_{j}$ spaces [7] for $i=0,1,2$ and $j=0,1$ may be characterized by using $\Lambda_{p}^{*}-T_{i}$ spaces, $\Lambda_{p}^{*}-R_{j}$ spaces.

## References

1. Caldas, M. and Dontchev, J.G., $\Lambda_{s}$-sets and $\mathrm{V}_{s}$-sets, Mem. Fac. Sci. Kochi Univ. Math., 21, 21-30 (2002).
2. Caldas, M., Ganster, M., Jafari, S. and Noiri, T., On $\Lambda_{p}-$ sets and functions, Mem. Fac. Sci. Kochi Univ. Math., 25, 1-8 (2004).
3. Caldas, M., Georgiou, D.N. and Jafari, S., Study of $(\Lambda, \alpha)$-closed sets and the related notions in topological spaces, Bull. Malays. Math. Sci. Soc., (2), 30(1), 23-36 (2007).
4. Caldas, M. and Jafari, S., On some low separation axioms in topological space, Houston Journal of Math., 29, 93-104 (2003).
5. Ganster, M. and Jafari, S., On pre- $\Lambda$-sets and pre-V-sets, Acta Math. Hungar, 95 (4), 337-343 (2002).
6. Gnanachandra, P., On pre*- $\Lambda$-sets and pre*-V-sets, Acta Ciencia Indica. (Preprint)
7. Gnanachandra, P., On Semi*- $\Lambda$-sets and Semi ${ }^{*}$-V-sets, Ultra Scientist. (Preprint)
8. Maki, H., Generalized $\Lambda$-sets and the associated closure operator, The Special Issue in Commemoration of Prof. Kazusada IKEDA' Retirement, 1(10), 139-146 (1986).
9. Cueva, Miguel Caldas and Dontchev, Julian, $\Lambda_{s}$-closure operator and the associated topology $\tau \Lambda_{s}$, Journal of the Indian Math. Soc., 69 (1-4), 71-79 (2002).
10. Caldas, Miguel, Jafari, Saeid and Navalagi, Govindappa, More on $\lambda$-closed sets in topological spaces, Revista Colombiana de Matemáticas, 41(2), 355-369 (2007).
11. Caldas, Miguel and Jafari, Saeid, Generalized $\Lambda_{\delta}$-sets and related topics, Georgian Mathematical Journal, 16(2), 247-256 (2009).
12. Murdeshwar, M.G. and Naimpally, S.A., $R_{1}$-topological spaces, Canad. Math.Bull., 9, 521-523 (1966).
13. Naimpally, S.A., On $R_{0}$-topological spaces, Ann.Univ. Sci. Budapest Eötvös sect. Math., 10, 53-54 (1967).
14. Navaneetha Krishnan, M., A study on ideal topological spaces, Ph.D. Dissertation, Manonmaniam Sundaranar University, Tirunelveli, India (2009).
15. Selvi, T. and Dharani, A. Punitha, Some new class of nearly closed and open sets, Asian J. of Curr. Eng. and Maths, 1(5), 305-307 (2012).
16. Shanin, N.A., On separation in topological spaces, Dokl. Akad. Nauk SSSR, 38, 110-113 (1943).
