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INTRODUCTION 

Interval arithmetic was first suggested by Dwyer [6] in 1951. Development of  interval 

arithmetic as a formal system and evidence of its value as a computational device was 
provided by Moore [12] in 1959 and Moore and Yang [13] 1962. Furthermore, Moore and 
others [7] and [14] have developed applications to differential equations. 

 Chiao in [10] introduced sequence of interval numbers and defined usual convergence of 
sequences of interval number. Sengönül and Eryilmax [15] in 2010 introduced and studied 
bounded and convergent sequence space of interval numbers and showed that these spaces are 
complete metric space. Recently Esi [1], [2], [3], [4] and [9] introduced some new type 
sequence spaces of interval numbers. 

 A set consisting of a closed interval of real numbers x such that a  x b is called an 
interval number. A real interval can also be considered as a set. Thus we can investigate some 
properties of interval numbers, for instance arithmetic properties or analysis properties. We 
denote the set of all real valued closed intervals by .I  Any elements of I   is called closed 
interval and denoted by .x  That is    { : }.x x a x b An interval number x is a closed 

subset of real numbers. Let andl rx x  be be respectively first and last points of the interval 

number x . 

For  1 2, ,x x I  we define 1 2x x  if and only if  1 2 1 2andl l r rx x x x
 

     
      1 2 1 2 1 2{ : )}l l r rx x x x x x x x  
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    1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2{ : min( , , , ) max( , , , )}l l l r r l r r l l l r r l r rx x x x x x x x x x x x x x x x x x x x

 
The set of all interval numbers I is a complete metric space defined by  

     1 2 1 2 1 2( , ) max{ , }  l l r rd x x x x x x  

In the special case 1 [ , ]x a a and 2 [ , ],x b b we obtain usual metric of .  

Let us define transformation f : N ,  k f(k) = ,kx
 
then ( ) kx x is called sequence 

of interval numbers. kx
 
is called kth term of sequence ( ), kx x  i  denotes the set of all 

interval numbers with real terms and the algebraic properties of i  are in [11]. 

A sequence ( ) kx x of interval numbers is said to be convergent to the interval number 

0x if for each  > 0 there exists a positive integer k0 such that 0( , )  kd x x  for all k   k0 and 

we denote it by 0lim .k
k

x x  Equivalently 0lim k
k

x x
 
iff 0 0lim and lim .kl l kr r

k k
x x x x   

 An interval valued sequence space iE  is said to be solid if ( )  i
ky y E whenever

k ky x  for all kN and ( ) .  i
kx x E  

 An interval valued sequence space iE is said to be monotone if iE contains the canonical 
pre-image of all its step spaces. 

 A interval sequence space iE is said to be sequence algebra if ( ) ,    i
k kx y x y E  

whenever ( ) ,  i
kx x E ( )  i

ky y E [1]. 

Let us denote the space of all entire functions of interval numbers by .i   

For each fixed k, we define the metric 

      
1 1 1( , ) max{ , } [ ( , )]    

k k k
k k kl kl kr kr k kx y x y x y d x y  

We define i  by   { ( ) : lim ( , 0) 0}


     i i
k k

k
x x x  

 Throughout this paper, let ( )  k  be a fixed sequence of positive real numbers such 

that 1 1



k

k

  as k  and 1 k  for all k. The space 
2

iG is defined by 

     2
2 2

1

{ ( ) : ( , 0) }





    i
k k k

k

G x x d x  

Example:  Let 
4 2

1 1
( ) ( ), and ( ) ,

  
         

  
k kk k N x x

k k
 

Then      

2

2 2 2
4 2

1 1

1 1
( , 0) max ,

 

 

  
     

   
 k k k
k k

d x
k k

 

                              2
4 2

1 1

1 1 

 

    
k k

k
k k
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Hence ( )kx is in  
2 .


iG  

The object of this paper is to investigate some properties of  
2 .


iG  

MAIN RESULTS 

Theorem 2.1.  The sequence space 
2

iG
 is a complete metric space with respect to the 

metric defined by      2 2

1

( , ) ( , )




  k k k
k

d x y d x y           … (2.1) 

Proof:  Let ( )nx be a Cauchy sequence in 
2 .


iG  Then for a given 0  there exists n0N 

such that  

     ( , )  n md x x   for all n, m   n0 

then      2 2

1

( , )n m
k k k

k

d x x




    for all n, m   n0            … (2.2) 

             2 2( , )n m
k k kd x x     for all n, m   n0 

                   2
2

( , )n m
k k

k

d x x





for all n, m   n0 and for all k   N  

                     

1 2

2
( , )n m

k k
k

d x x
 

     
for all n, m   n0 and for all k   N  

This means that ( )n
kx is a Cauchy sequence in .I  Since I  is a Banach space, ( )n

kx is 

convergent. Now, let lim n
k k

n
x x for each k   N and ( ). kx x  

Taking limit as m  in (2.2) we have 

          2 2

1

( , )




   n
k k

k

d x x  for all n  n0 

          ( , )  nd x x  for all n   n0 

Now for all  n  n0, 

          ( , 0) ( , ) ( , 0)      n nd x d x x d x   

Thus 2( )


  i
kx x G  and so 

2
iG  is complete. This completes the proof. 

Theorem 2.2.  
2

iG  is a subset of i  
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Proof:   Let 
2 ,


 ix G   then 2 2

1

( , 0)




   k k
k

d x  … (2.1) 

where     1 1



k

k

  as k and 1 k  for all k … (2.2) 

We claim that  1[ ( , 0)] k
kd x converges to zero as .k  

From  Equation (2.1)  

     2 2 2( , 0)   k
k kd x  for all k N   

     2 2 2( , 0)   k
k kd x  

     ( , 0)   k
k kd x  

     1 1
1[ ( , 0)]     k k

k kd x   from  (2.2) 

Hence 
1[ ( , 0)] 0k

kd x  as k  and so ix  

Consequently,  
2

iG  is a subset of .i  

Remark.  
2

iG is a Banach space with norm  

     
2

1 2

2 2

1

[ ( , 0)]






  
  
  
i k kG
k

x d x  

Theorem 2.3. If  2
iG  and 

2
iG  are two  sequences of interval numbers, then 

2 2 
i iG G    

if and only if   1 2 ,


 


k

k
k k   where   1 2andk k  are constants. 

Proof:   The sufficiency of the condition  1 2


 


k

k
k k   … (2.3) 

If   2  k kk  then   2 2 2 2 2
2( , 0)] ( , 0)]  k k k kd x k d x  

If      ( )  i
kx G , 

2 2

1

( , 0)




   k k
k

d x  

Therefore     2 2 2 2 2
2

1 1

( , 0) ( , 0)
 

 

     k k k k
k k

d x k d x  

This implies that    
2( )


 i

kx G  

Hence     
2 2 
i iG G

 

 … (2.4) 

Similarly, if   1  k kk  then  
2 2 
i iG G                         …  (2.5) 
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From  (2.4)  and  (2.5) ,           
2 2 
i iG G  

 To prove the necessity of the condition, let us suppose that the condition is not satisfied. 

First consider the right hand side inequality of (2.3). Let as .k

k
k


  


 

Then it has a subsequence as


 


n

n

k
n

k
k  in such a manner that  





n

n

k

k
n  for the 

values n =1, 2, ..... and 1 2 ..... k k  

Now we shall define a sequence ( )kx as follows 

      

1
0, when

[0,0] when

 
    

 

n
k k

n

k k
x n

k k

 

Then     2 2 2 2

1 1

( , 0) ( , 0)
 

 

    n nk k k k
k n

d x d x   

                                                             
2

2 2 2
1 1

1 

 


   


 n

n

k

kn nn n
 

Therefore    
2( )


 i

kx G      … (2.6) 

But   2 2 2 2

1 1

( , 0) ( , 0)
 

 

    n nk k k k
k n

d x d x  

                             
2

2 2 2
2

1 1

( , 0)
 

 


    


  n

n n
n

k
k k

kn n

n
n d x

n
 

Thus     2 2

1

( , 0)




   k k
k

d x  

Therefore    
2( )


 i

kx G       … (2.7) 

From  (2.6)  and  (2.7)  contradict (2.4). 

Similarly , if the left hand side inequality of (2.3) is not satisfied, then we can contradict 
(2.5) by constructing a sequence of the above type. 

Hence the condition  1 2


 


k

k
k k  is necessary and sufficient in order that 

2 2 .
 

i iG G  

Theorem 2.4.  2
iG  is an AK space. 

Proof:  For each 
2( ) .


 i

kx G   
[ ]( ) 0 as  nx x n  
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Hence 2
iG  has AK. 

Theorem 2.5.  2
iG  has AB property. 

Proof:  It is enough to show that 
iG 2

 has monotone norm. Indeed for n < m and for every 

2( ) ,


 i
kx G  we have 

2 2
[ ] 2 2 2 2 [ ]

1 1

( ) ( , 0) ( , 0) ( )
 

     
n m

n m
k k k k

k k

x d x d x x  

              [ ] [ ]( ) ( )n mx x  

Also [ ]{ ( ) , 1, 2, ...}nx n  is a monotonically increasing sequence of interval numbers 

bounded above by 
2

iG
x  

Hence    

2

[ ] [ ]lim ( ) sup { ( ) , 1,2,...}
iG

n n

n n

x x x n




    

Thus 2
iG  has monotone norm. 

Theorem 2.6.  The space 2
iG  is solid. 

Proof: Let ( )kx  and ( )ky  be two sequences such that  

     
2( )


 i

kx G  and ( , 0) ( , 0)k kd y d x  for all k N  

Since 
2( ) ,


 i

kx G   we have 2 2

1

( , 0)




   k k
k

d x  

Also we have    2 2 2 2( , 0) ( , 0)  k k k kd y d x  

                         2 2 2 2

1 1

( , 0) ( , 0)
 

 

     k k k k
k k

d y d x  

So 
2( ) .


 i

ky G  Therefore 
2

iG  is solid. 

Theorem 2.7.  The space 2
iG  is symmetric. 

Proof:  Let ( )kx  be a sequence in 2 .

iG  Then 2 2

1

( , 0)




   k k
k

d x  

For 0  there exists 0 ( ) k k  such that 

0

2 2 2 2

1

( , 0) ( , 0)
 

 

     k k k k
k k k

d x d x  

Let ( )ky  be a rearrangement of ( )kx  and 1k be such that  
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     0 1{ : } { : }  k kx k k y k k  

Then     

1

2 2 2 2

1

( , 0) ( , 0)
 

 

     k k k k
k k k

d y d x  

and so     2 2

1

( , 0)




   k k
k

d y  

Hence 
2( )


 i

ky G  and 2
iG  is symmetric. 

Theorem 2.8. The space 2
iG  is sequence algebra. 

Proof:  We consider the space 2
iG

 

Let ( )kx  and ( )ky  be two sequences in 2
iG  and 0 1.    

Then the result follows from the following inclusion relation. 

        : ( , 0) : ( , 0) : ( , 0)     k k k kk N d x y k N d x k N d y  
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